
CHAPTER 9

ROTATION

• Angular velocity and angular acceleration
  ! equations of rotational motion

• Torque and Moment of Inertia
   ! Newton’s 2nd Law for rotation

• Determination of the Moment of Inertia
  ! Parallel axis theorem
  ! Perpendicular axis theorem

• Rotational kinetic energy
  ! power

• Rolling objects (with no slip)

Angular velocity and angular acceleration

The arc length moved by the ith element in a rotating 
rigid, non-deformable disk is: 

  dsi = ri dθ
where   dθ is in radians.  The angular velocity of the 
rotating disk is defined as:

  
ω =

dθ
dt

,

and so the linear velocity of the i th element (in the 
direction of the tangent) is:

  
vi =

dsi
dt

= riω,

where   ri is the distance from the rotation axis.

  θi    
! r i

  dsi

  dθ



DISCUSSION PROBLEM [9.1]:

You have a friend who lives in Minnesota, and you live 
in Florida .  As the Earth rotates, your linear velocity 
is ___________ hers, and your angular velocity is 
____________ hers. 

A: less than; equal to  
B: equal to; greater than  
C: greater than; less than 
D: less than; greater than
E: greater than; equal to

If the angular velocity changes 
there is angular acceleration ...

The angular acceleration of the disk is:

  
α =

dω
dt

=
d
dt
.dθ
dt

=
d2θ
dt2 ,

and the tangential acceleration of the i th element is:

  
ait =

dvi
dt

= ri
dω
dt

= riα .

But, because the ith element is traveling in a circle, it 
experiences a radial (centripetal) acceleration:

  
air (= aic) =

vi
2

ri
= riω

2.

The resultant linear acceleration is      
! a i = air

2 + ait
2 .
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Angular velocity (ω) (vector)

Dimension: 
  
ω⇒

1
[T]

(Check: 
  
vi = riω⇒ [L] 1

[T]
=
[L]
[T]

).

Units: rad/s

Angular acceleration (α)   (vector)

Dimension: 
  
α⇒

1
[T]2

Units:   rad/s2

CONNECTION BETWEEN LINEAR  
AND ROTATIONAL MOTION 

Linear motion Rotational motion 
a ⇒  constant α⇒ constant

    v = v! + at     ω = ω! + αt

    
(x − x!) = v!t +

1
2

at2
    
(θ − θ! ) = ω!t +

1
2
αt2

    v
2 = v!2 + 2a(x − x!)     ω

2 = ω!2 + 2α(θ − θ!)

You see, they’re
very similar



Question 9.1:  A disk of radius 12 cm, initially at rest, 
begins rotating about its axis with a constant angular 

acceleration of   3.00 rad/s2.  After 5 s, what are 

(a) the angular velocity of the disk, and 
(b) the tangential and centripetal accelerations of a 

point on the perimeter of the disk?  
(c)  How many revolutions were made by the disk in 

those 5 s?

  r = 0.12 m:     ω! = 0:     θ! = 0:   t = 5 s

  α = 3.00 rad/s2.

ω = ?: θ = ?:   a t = ?:   ac = ?

(a)     ω = ω! + αt = (3.00 rad/s2)(5 s) = 15.0 rad/s.

(b)   vi = riω = (0.12 m)(15.0 rad/s) = 1.80 m/s   (linear).
• tangential acceleration:    a t = riα

  = (0.12 m)(3.00 rad/s2 ) = 0.36 m/s2.

• centripetal acceleration:    ac = riω
2

  = (0.12 m)(15.0 rad/s)2 = 27.0 m/s2.

(Check ... 
  
ac =

v2

r
=
(1.80 m/s)2

0.12 m
= 27.0 m/s2.)

(c) 
    
(θ − θ! ) = ω!t +

1
2
αt2

  
=

1
2
(3.00 rad/s2 )(5 s)2 = 37.5 rad,

  
⇒ n =

37.5 rad
2π

= 5.97 rev.

 r 



In many applications a belt or chain is pulled from or 
wound onto a pulley or gear wheel ... 

As the string (chain or belt) is removed (or added), its 
instantaneous velocity is the same as the tangential 
velocity at the rim of the wheel, providing there is no 
slip:

i.e.,    vt = Rω .

Also, under the same conditions, the instantaneous 
acceleration of the string is the same as the tangential 
acceleration at the rim of the wheel:

i.e.,  
  
a t =

dvt
dt

= R
dω
dt

= Rα .

  R

  v t

  a t

  v t

As we saw in chapter 4 that force produces change in 
motion.  However, force does not always produce a 
change in rotational motion.  It is torque that produces a 
change in rotational motion.  Consider a mass   m attached 
to a massless rigid rod that rotates around an axis O.  The 
force   F shown will cause the mass to rotate.

The magnitude of the torque due to a force   F on m is:

    τ = ℓF = (r sin θ)F, 
where   ℓ is called the lever arm.  The lever arm is the 
perpendicular distance from the axis of rotation (O) to 
the line of action of the force.

NOTE: if     
" 
F  passes through O, i.e.,     ℓ = 0, then   τ = 0 and 

there will be no change in rotational motion.

  r
θ
  m

  ℓ

    
" 
F 

O
    ℓ = r sinθ



Dimension:  
  
τ ⇒ [L]

[M][L]
[T]2

=
[M][L]2

[T]2
(vector)

Unit:    N ⋅m

 Form the radial and tangential components of the
 force:

Then      τ = ℓF = (r sin θ)F = r(Fsin θ) 
i.e.,    τ = rFt.

Note: the radial component   Fr, which passes through 

the axis of rotation, does not produce a torque and 
therefore it does not produce rotation; only the 
tangential component   Ft produces a torque that results 

in rotation.

  r
θ
  m

  ℓ

    
" 
F 

O

  Fr = F cosθ

  Ft = F sinθ

  r   m

  ℓ

    
" 
F 

O

  r
θ
  m

  ℓ

    
" 
F 

O

  Fr = F cosθ

  Ft = F sinθ

Newton’s 2nd Law tells us that the tangential component 
of the force   Ft produces a tangential acceleration   a t,

i.e.,    Ft = ma t.
Therefore, the torque is

  τ = rFt = mrat,
but, from earlier, the tangential (linear) acceleration is 
related to the angular acceleration α, viz:    a t = rα .

  ∴τ = mrat = mr2α .

So torque (τ) produces angular acceleration (α).

A rigid object that rotates about a fixed axis can be 
thought of as a collection of small, individual elements 
of mass   mi that each move in a circular path of radius   ri, 
where   ri is measured from the axis of rotation.



From above, for each separate mass element, we have 

  τi = miri2α ,

where   τi is the net torque 
on the ith element.  
Summing over all 
elements, the total net 
torque on the object is:

  τnet = τii∑ = miri2αi∑ = miri2i∑( )α
  = Iα ,

where   I = miri2i∑  is called the MOMENT OF INERTIA.  

This is Newton’s 2nd Law for rotation, i.e., 

  τnet = Iα .

“A net external torque acting on a body produces 
an angular acceleration, α, of that body given 
by   Iα , where I is the moment of inertia.” 

(viz:    Fnet = Fii∑ = ma .)

  ri
O

  mi

Dimension:    I⇒ [M][L]2 (scalar)

Units:    kg ⋅m2

Every object has a moment of inertia about an axis of 
rotation.  Its value depends not simply on mass but on 
how the mass is distributed around that axis.  For a 
discrete collection of i objects, the moment of inertia 
about the rotation axis is:

  I = Iii∑ = mii∑ ri2.

For a ‘continuous’ object: 

  
I =

mi→0
Limit mirii∑ 2 = r2∫ dm,

where m is a function of r.

Moment of inertia ... so
what’s that all about?



Question 9.2:  Find the moment of inertia of a uniform 
thin rod of length   ℓ and mass M rotating about an axis 
perpendicular to the rod and through its center.

  x

  y

  ℓ

A rod is a ‘continuous’ object, so the moment of inertia is 

    
I = r2dm =∫ x2dm

x=−ℓ2

x=ℓ2
∫ .

The mass per unit length of the rod is      
M
ℓ , so the mass of 

the small element of length dx is

    dm = M
ℓ( )dx.

Substituting for dm, the integral becomes

    

I = x2 M
ℓ( )

x=−ℓ2

x=ℓ2
∫ dx = M

ℓ( ) x3

3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ −ℓ2

ℓ
2

    
= M

ℓ( ) ℓ
3

24
−
(−ℓ3)

24
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ =
1

12
Mℓ2.

  x

  y

  dx

  x
    −
ℓ

2     
ℓ
2



[1] Show for yourselves that the moment of inertia of a 
rod of mass M and length   ℓ about one end is 

    
I =

1
3

Mℓ2.

[2] Show for yourselves that the moment of inertia of a 
rod of mass M and length   ℓ about an axis one-third the 
distance from one end is 

    
I =

1
9

Mℓ2.

  x

  y

  dx

  x
  0   ℓ

  x

  y

  dx

  x
    −
ℓ

3     
2ℓ

3  0

Question 9.3:  Find the moment of inertia of the circular 
disk shown below, rotating about an axis perpendicular 
to the plane and through its center.  The mass of the disk 
is 1.50 kg.

  10 cm

  20 cm



The moment of inertia is given by  
  
I = r2

r1

r2
∫ dm.  Consider 

a ring of radius r and 
width dr. If the mass of 
the object is M, the 
mass of the ring is

  
dm = M

2πrdr
π r22 − r12( ) ,

where   r1 and   r2 are the inner and outer radii of the 

object.  Then, substituting for dm,

  
I = r2

r1

r2
∫ M

2πrdr
π r22 − r12( ) =

2M
r22 − r12( ) r3

r1

r2
∫ dr

  
=

2M
r22 − r12( )

r4

4

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ r1

r2
=

M
2 r22 − r12( ) r24 − r14( )

  
=

M
2 r22 − r12( ) r22 − r12( ) r22 + r12( ) =

1
2

M r22 + r12( ).

  r
  dr

  
∴I =

1
2

M r22 + r12( ) 

  
=

1
2
(1.50 kg) (0.20 m)2 + (0.10 m)2( )

  = 3.75 ×10−2  kg ⋅m2.

[1] If   r1 = 0, then 
  
Idisk =

1
2

MR2, 

where R is the radius of the disk   = r2( ).

[2] For a thin hoop,   r1 ≈ r2 = R, 

then 
  
Ihoop =

1
2

M 2R2( )   = MR2.

Providing the thicknesses of the disks are uniform, the 
moments of inertia do not depend on thickness.  So, these 
expressions also apply to cylinders and tubes.

R

R



 Sure, but, what’s the significance of  I?

Remember, from chapter 4 ...
Mass ⇒ a measure of resistance to a change in 
linear motion, e.g., how difficult it is to start or 
stop linear motion.

Moment of Inertia ⇒ a measure of resistance to a 
change in rotational motion, i.e., how difficult it is 
to start or stop rotational motion.

    RMM04VD1.MOV

Same torques
Different moments of inertia

Values of the moment of inertia for “simple” shapes ...

 Thin rod

  
I = 1

12
ML2

 Thin rod

  
I = 1

3
ML2

 Slab

  
I = 1

12
M(a 2 + b2 )

 Slab

  
I = 1

3
Ma 2

 L  L
 a

 b
 a

 b

Solid cylinder

  
I = 1

2
MR2

Thin-walled cylinder

  I = MR2

Hollow sphere

  
I = 2

3
MR2

Hollow cylinder

  
I = 1

2
M(R2 + r2 )

Solid sphere

  
I = 2

5
MR2



Question 9.4:  A 1 m ruler has a mass of 0.25 kg.  A 5 kg 
mass is attached to the 100 cm end of the rule.  What is 
its moment of inertia about the 0 cm end?

The combined moment of inertia is   I = Iruler + Imass, 
where   Iruler  and   Imass are calculated about   O− ′ O .

Since   a >> b we assume the meter rule is a rod (viz: 

Question 9.2) with 
  
I =

1
3

Ma2 about   O− ′ O .  

  
∴Iruler =

1
3

Ma2 =
1
3
(0.25 kg)(1 m)2

  = 0.083 kg ⋅m2.

The moment of inertia of the 5 kg mass about   O− ′ O  is

  Imass = ma2 = (5.0 kg)(1 m)2 = 5.0 kg ⋅m2.

Thus, the total moment of inertia of the ruler and mass is

  Iruler + Imass = 5.083 kg ⋅m2.

  a
  b

  5 kg  O

  ′ O 



DISCUSSION PROBLEM [9.2]:

A pair of meter rulers are 
placed so that their lower 
ends are against a wall.  
One of the rulers has a 
large mass attached to its 
upper end.  If the meter 
rulers are released at the 
same time and allowed to 
fall, which one hits the 
floor first?

A: The meter ruler with the mass.
B: The meter ruler without the mass.
C: They hit the floor at the same time.

Parallel axis theorem:

Usually, the moment of inertia is 
given for an axis that passes through 
the center of mass (cm) of the 
object.  What if the object rotates 
about an axis parallel to the axis 
through the center of mass for which 

we don’t know the moment of inertia?  The moment of 
inertia about a general (parallel) axis is given by:

  I = Icm + Md2

where   Icm is the moment of inertia about the center of 

mass, M is the mass of the object and d is the distance 
between the parallel axes. 
 

Note: the two rotation axes must be parallel

  Icm
  I   d



Perpendicular axis theorem:

Consider a planar object (e.g., a thin 
disk or sheet) in the x,y plane.  By 
definition, the moment of inertia 
about the z-axis (perpendicular to 
the plane of the object) is

  Iz = mii∑ ri2 = mi (xi
2

i∑ + yi
2) = mixi

2
i∑ + mii∑ yi

2

But   mixi
2

i∑ = Ix, i.e., the moment of inertia about x, and

  mii∑ yi
2 = Iy, i.e., the moment of inertia about y.

  ∴Iz = Ix + Iy.

Note: the object must be planar
Example of a disk:

  
Iz =

1
2

MR2.

But, by symmetry,   Ix = Iy.

  
∴Ix = Iy =

1
4

MR2.

  z

  x

  y  yi
  xi

  mi
  ri

  z

  x

  y

Question 9.5:  Four masses at the corners of a square 
with side length   L = 2 m are conncted by massless rods.  
The masses are   m1 = m3 = 3 kg and   m2 = m4 = 4 kg.  

Find (a) the moment of inertia about the z-axis, (b) the 
moment of inertia about an axis that is perpendicular to 
the plane of the ensemble and passes through the center 
of mass of the system, (c) the moment of inertia about 
the x-axis, which passes through   m3 and   m4.

  m3  m4

  m1   m2

  L

  L

  x

  y

  z



(a) Since we are dealing 
with discrete masses

  I = Iii∑ = mii∑ ri
2.

Moment of inertia about 
the z-axis:

  Iz = miri2i∑

  = (3 kg)(2 m)2 + (4 kg)(2 2 m)2

  +(3 kg)(2 m)2 + (4 kg)(0) = 56 kg ⋅m2.

(b) By symmetry, the center of mass is at the center of 
the square.

  ∴Icm = miri2i∑ = (3 kg)( 2 m)2 + (4 kg)( 2 m)2

  +(3 kg)( 2 m)2 + (4 kg)( 2 m)2 = 28 kg ⋅m2.

• Check, using the parallel axis-theorem

  Iz = Icm + MD2

  ∴Icm = Iz −MD2 = (56 kg ⋅m2) − (14 kg)( 2 m)2

  = 28 kg ⋅m2.

  3 kg   4 kg
  2 m

  2 m

  x

  y

  z

  4 kg   3 kg

  cm

  D

  2 m   3 kg   4 kg
  2 m

  2 m

  x

  y

  z

  4 kg   3 kg

(c) Since the ensemble is planar and confined to the x,y
plane, we can use the perpendicular axis theorem, i.e., 

  Iz = Ix + Iy.

But, by symmetry,   Ix = Iy.

  
∴Ix =

1
2

Iz =
1
2

56 kg ⋅m2( )
  = 28 kg ⋅m2.

Check:

  Ix = miri2i∑ = 3 kg( ) 2 m( )2 + 4 kg( ) 2 m( )2

  = 28 kg ⋅m2.



Question 9.6: Four thin rods, each of length   ℓ and mass 
M, are arranged to form a square, in the x,y plane, as 
shown.  If the origin of the axes is at the center of the 
square,  

(a) using the parallel axis theorem, show that 

    
Iz =

4
3

Mℓ2.

(b) Hence find   Ix and   Iy.

  ℓ

  ℓ

  x

  y

  z

(a) Using the parallel axis 
theorem, we have for each 
rod 

  Iz = Icm + Md2,

where   Icm is the moment of 

inertia through the center of mass of each rod and     d = ℓ2.

    
∴Iz(total) = 4

1
12

mℓ2 + m
ℓ2

4
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ =

4
3

mℓ2.

(b) Since the object is planar we can use the perpendicular 
axis theorem, i.e., 

  Iz = Ix + Iy.  

But because of symmetry   Ix = Iy.

    
∴Ix = Iy =

1
2

Iz =
2
3

mℓ2.

  ℓ

  ℓ

  x

  y

  z



We saw in chapter 6 that a linearly moving object has 
translational kinetic energy ... an object rotating about 
an axis has rotational kinetic energy ...

If a rigid object is rotating 
with angular velocity ω, 
the kinetic energy of the ith 
element is:

  
Ki =

1
2

mivi
2

  
=

1
2

miri2ω
2, since   vi = riω .  

So, the total rotational kinetic energy is:

  
K = Ki =i∑

1
2

miri2ω
2

i∑

  
=

1
2

Iω2.

*  
  
Krot =

1
2

Iω2 is the analog of 
  
Ktrans =

1
2

mv2.

  ri
O

  v i
ω   mi

A torque is required to rotate (or slow down) an object ... 
but torque involves force ...

When force is applied over a distance, work is done, 
given by: 

    dW =
! 
F • d! s = F.dscos γ = F cos γ.ds

  = Ft.ds = Ft .rdθ = τ.dθ (J or N.m).
Power is the rate at which the torque does work, 

i.e.,  
  
P =

dW
dt

= τ
dθ
dt

= τω (watts).

Note: P is the instantaneous power.
•   dW = τ.dθ  is the analog of   dW = F.ds.
•   P = τω  is the analog of   P = Fv.

    
! r 

O
  dθ

  ds
    
! 
F 

  Ft

  Fr

    
! 
F 

θ
γ

    γ + θ = 90"

  Ft = F cos γ



Question 9.7: The 3.9 liter V-8 engine fitted to a 488GTB 
Ferrari develops   560 ft ⋅ lb of torque at 3000 rev/min.  
What is the power developed by the engine with these 
parameters?  (  1 ft ⋅ lb = 1.36 N ⋅m.)

From earlier, power   P = τω .  Convert the torque to   N ⋅m 
and angular velocity to   rad/s,

i.e.,    τ = 1.36 × 560 = 762 N ⋅m,
and

  
ω =

2π(3700 rev/min)
60 s/min

= 387.5 rad/s.

  ∴P = (762 N ⋅m)(387.5 rad/s) = 2.95 ×105 watts.

But 746 watts =  1 HP

  
∴P =

2.95 ×105 watts
746 watts/HP

= 396 HP.



Question 9.8: An electric motor exerts a constant torque 
of   10.0 N ⋅m to the shaft of a grindstone with mass 

  16.0 kg and radius   0.50 m.  If the system starts from rest, 
find 

(a) the rotational kinetic energy of the grindstone 
after 8.0 s, 

(b) the work done by the motor during this time, and 

(c) the average power delivered by the motor.

(a) To find the rotational kinetic energy we need to know 
the angular velocity (ω).  Treating the grindstone as a 
solid disk

  
I =

1
2

MR2 =
1
2
(16.0 kg)(0.50 m)2 = 2.0 kg ⋅m2. 

Since   τ = Iα , 
  
α =

τ
I
=

10 N ⋅m
2 kg ⋅m2 = 5.0 rad/s2.  

The grindstone starts from rest (    ω! = 0) so 

  ω = αt = (5.0 rad/s2)(8.0 s) = 40 rad/s.

  
∴K =

1
2

Iω2 =
1
2
(2 kg ⋅m2 )(40 rad/s)2 = 1600 J.

(b) There are two ways to determine the work done by 
the motor.  

(i) By the work-kinetic energy theorem we would 
expect the motor to have done 1600 J of work.

(ii) We can use the expression   W = τθ, but we need 
to find θ, i.e., the angle through which the grindstone has 
turned in 8.0 s.

    
θ = ω!t +

1
2
αt2 =

1
2
(5.0 rad/s2)(8.0 s)2 = 160 rad



  ∴W = τθ = (10.0 N ⋅m)(160 rad) = 1600 J.

(c) The average power is the total work done divided by 
the total time interval, i.e., 

  
Pav =

ΔW
Δt

=
1600 J
8.0 s

= 200 W.

Note: the expression   P = τω  we derived earlier is actually 
the instantaneous power.  We cannot use that expression 
here as ω is not constant.    

The instantaneous power actually increases linearly from 
zero at   t = 0 to   (10.0 N ⋅m) × (40 rad/s) = 400 W at 

  t = 8.0 s.

If a rigid object is suspended from an arbitrary point O 
and is free to rotate about that point, it will turn until the 
center of mass is vertically beneath the suspension point.

If the y-direction is vertical and the suspension point is 
not at the center of mass, the object will experience a net 
torque given by

  τ = Mgxcm,
where   xcm is the x component of the center of mass.  
Therefore, the object will rotate until   xcm = 0, i.e., the 
suspension point is direction above the center of mass.

  rcm

  Mg
O

×   cm

  x

  y

  xcm



Question 9.9: The “zero” end of a 1 m ruler of mass 

  0.25 kg is attached to a frictionless pivot, the other end is 
free to rotate in the vertical plane.  If the ruler is released 
from rest in the horizontal position, what is

(a) the initial acceleration of the 100 cm end of the 
ruler, and 

(b) the linear speed of the 100 cm end as the ruler 
passes through the vertical?

pivot

 (a) Use Newton’s 2nd Law 
for rotation, i.e.,   τ = Iα , 

where     τ = mg ℓ2 and 

    I =
1
3( )mℓ2.  Then

    α = τ
I = 3g

2ℓ ,

which is the initial angular 
acceleration of the center of 

mass.  The linear acceleration of the 100 cm end is then

    a = ℓα = 3g
2 = 14.7 m/s2,

which is greater than g!  Also note, the torque τ varies as 
the ruler swings down.

(b) To find the speed of the 100 cm end as it passes the 
vertical we use the conservation of mechanical energy, 

i.e.,   U1 + K1 = U2 + K2.

Taking the zero of the gravitational potential energy at the 
point where the center of mass is at its lowest point, then

    
mg
ℓ
2
+ 0 = 0 +

1
2

Iω2.

x
cm

mg

x

    
U1 = mg

ℓ
2
: K1 = 0

  
U2 = 0 : K2 = 1

2
Iω2

    
ℓ
2



    
∴ω =

mgℓ
I

=
3g
ℓ

.

The linear velocity of the 100 cm end as it passes the 
vertical is then

    v = ℓω = 3gℓ = 3(9.81 m/s2)(1.0 m)

  = 5.42 m/s.

Consider a ball, cylinder, wheel 
or disc) rolling on a surface 
without slipping.

• The point in contact with the surface has zero 
instantaneous velocity relative to the surface.

 • The velocity of the cm is   vcm (  = rω = v),

• The velocity of a point at the top is   2vcm (= 2v).

Since the object has the same linear velocity as the cm, 
i.e., v, the total kinetic energy is:

  
Ktot =

1
2

mv2 +
1
2

Iω2

translational +  rotational

where    ω = v
r .  So, as a ball rolls down a hill ...

  v,ω Gravitational potential energy ⇒
translational energy

+  rotational energy

ω   vcm

  2vcm

  v = 0



Consider rolling a sphere, cylinder and a hoop down an 
incline.  Do they have the same velocity at the bottom? 

For each object, conservation of energy gives:

  
mgh =

1
2

mv2 +
1
2

Iω2,

and with no slip   v = Rω , where R is the radius of the 
object.  After manipulation we find:

  

v2 =
2gh

1 + I
mR2

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
.

∴ For maximum velocity:   I⇒ smallest value.

So, in a race between objects rolling down a slope, the 
order would be (1) sphere, (2) cylinder, (3) hoop, and is 
completely independent of m and R!

 h  v 

RMA07VD2.MOV

  

v2 =
2gh

1 + I
mR2

⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 

For a solid sphere  
  
I =

2
5

mR2.

  
∴v2 =

2gh
1 + 2

5
,  i.e.,  

  
v =

10gh
7

.

Since this is independent of m and R, a bowling ball and 
a pool ball would have the same speeds at the bottom of 
an incline, despite their different masses and radii!



Question 9.10: A uniform solid ball of mass M and radius 
R rolls without slipping down an incline at an angle θ to 
the horizontal.  Find (a) the frictional force acting at the 
point of contact with the surface, and (b) the acceleration 
of the center of mass of the ball, in terms of M, R, g and θ.

NOTE: there must be friction at the point of contact 
otherwise the ball would slide down the incline!

θ

(a) Draw the free body diagram of all the forces acting on 
the ball.  Use Newton’s 2nd Law down the incline: 

    Mg sinθ − f = Macm ... (i)
where   acm is the acceleration 
of the center of mass.  To get 
an expression for   acm, we take 
torques about O, the center of 
the ball.  (Note: the normal 

force N and the weight force Mg do not contribute to the 
torque as their lines of action pass through O.)

  ∴τ = fR = Iα ,   i.e.,  
  
α =

fR
I

,

where I is the moment of inertia of the ball and α its 
angular acceleration.  With no slip 

  
acm = Rα =

fR2

I
... ... (ii)

Substituting for   acm in equation (i), we get 

  

Mg sinθ − f = M
fR2

I
=

MfR2

2
5

MR2⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
=

5
2

f .

  f

  Mg

  R
  O

θ

N



  
∴Mg sinθ =

5
2

f + f =
7
2

f , 

i.e., 
  
f =

2
7

Mg sin θ.

Note that this is a static frictional force (because there is 
no slip).  

(b) Substituting for f in equation (ii), we get 

  

acm =
fR2

I
=

2
7

Mg sin θ⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ 

R2

2
5

MR2⎛ 
⎝ ⎜ ⎞ 

⎠ ⎟ 
=

5
7

gsin θ.

You can show yourselves that if we put   I = βMR2, where 

  β = 1 for a hoop,   β = 1
2 for a disk, etc., then a general 

expression for the static frictional force acting on an 
object rolling down an incline, with no slip, and the 
acceleration of the center of mass are:

  
f =

Mg sin θ
1 + β−1   and   

  
acm =

gsinθ
1 + β

.

Question 9.11: Suppose you can choose wheels of any 
design for a soapbox derby race car.  If the total weight 
of the vehicle is fixed, which type of wheel design should 
you choose if you want to have the best chance to win 
the race?



The total mechanical energy of the car is:
translational kinetic energy  +   rotational kinetic energy.

Conservation of energy gives:

  
Mgh = Ktrans + Krot =

1
2

Mv2 +
1
2

Iω2,

where M is the total mass of the car and I is the moment of 
inertia of the wheels.  With four wheels of radius r, for 
example, we have, using the no-slip condition,

  
Krot = 4 ×

1
2

Iω2 = 2 βmr2( ) v
r( )2 = 2βmv2,

  
∴Mgh =

1
2

Mv2 + 2βmv2,  

i.e.,  
  
v2 =

2Mgh
M + 4βm( )

.

So, for maximum speed (v) at the bottom of the hill (and 
greater average speed) with M fixed, we want m and β to 

be as small as possible.  Note: that the result does not 
depend on the radius of the wheels (r).  So, solid wheels are 
a good choice with the mass concentrated as close to the 
axle as possible.

Question 9.12: A cue ball is struck by a horizontal cue a 
distance h above the center of the ball.  If the cue ball is 
to roll without slipping, what is h?  Express your answer 
in terms of the radius R of the ball.

You can assume that the frictional force of the table on 
the ball is negligible compared with the applied force F.

F

h R



F

h R
 f

The net torque about the center is    τ = Fh − fR.
From earlier, if there is no-slip then    vcm = Rω,

i.e.,  
  
acm =

dvcm
dt

= R
dω
dt

= Rα.

Using Newton’s 2nd Law   F + f = macm.

If   F >> f , then   F ≈ macm and    τ ≈ Fh = Iα.

  
∴

F
m

= acm = Rα = R
Fh
I

,  i.e., 
  
h =

I
mR

.

For a solid sphere  
  
I =

2
5

mR2.

  
∴h =

2
5

R.  

• 
  
h >

2
5

R ⇒ top spin

• 
  
h <

2
5

R ⇒ back spin
“SLIP”

Question 9.13: The 30 kg mass, shown above, is 
released from rest, from a distance of 2 m above the 
ground.  Modeling the pulley as a uniform disk with a 
radius of 10 cm and mass 5 kg, find (a) the speed of the 
30 kg mass just before it strikes the ground, (b) the 
angular velocity of the pulley at that instant, (c) the 
tensions in the two strings, and (d) the time it takes for 
the 30 kg block to reach the ground.  Assume the 
bearings in the pulley are frictionless and there is no slip 
between the string and the pulley.

20 kg

30 kg

2 m

  m2

  m1

•



We have both translational and rotational motion.  The 
moment of inertia of the pulley is: 

  
I =

1
2

mR2 =
1
2
(5 kg)(0.10 m)2 = 0.025 kg ⋅m2.

(a)  Using conservation of energy, as   m2 hits the ground

  
m2gh =

1
2

m1v2 + m1gh +
1
2

m2v2 +
1
2

Iω2.

The angular velocity of the pulley  
  
ω =

v
R

, so

  
(30 kg)(9.81 m/s2)(2 m) =

1
2
(20 kg)v2

  
+(20 kg)(9.81 m/s2)(2 m) +

1
2
(30 kg)v2

  
+

1
2
(0.025 kg ⋅m2) v

(0.10 m)
⎛ 
⎝ 
⎜ ⎞ 

⎠ 
⎟ 

2
,

20 kg

30 kg

2 m

  m2

  m1

•

  m1

  m2

ω

  v
  v

•

20 kg

30 kg

2 m

  m2

  m1

•

  m1

  m2

ω

  v
  v

•

i.e.,    589 = 10v2 + 392 +15v2 +1.3v2

  
∴v =

197
26.3

= 2.74 m/s.

(b)  
  
ω =

v
R
=

2.74
0.10

= 27.4 rad/s.

(c) Draw the free-body 
diagrams for the masses.

What is the upward acceleration of   m1?

    v
2 = v!2 + 2ah.    

  
∴a =

v2

2h
=
(2.74 m/s)2

2(2 m)
= 1.88 m/s2.

  T1   T2

  m2g  m1g   a   a



  T1   T2

  m2g  m1g   a   a

Then    T1 − m1g = m1a, 

i.e.,    T1 = m1(g + a) = 234 N.

Also    T2 − m2g = m2(−a),
i.e.,    T2 = m2(g − a) = 238 N.

(d)  
    
y − y!( ) = h =

1
2

at2.

  
∴ t =

2h
a

=
2(2 m)

1.88 m/s2 = 1.46 s.


