## **EQUILIBRIUM CONSTANT**

The equilibrium constant for a reaction can be roughly formulated as follows:

$$K = e^{-\frac{E}{RT}} \tag{1}$$

where E = energy barrier (calories/mole)

 $R = gas constant = 1.987 cal/^{\circ} mole$ 

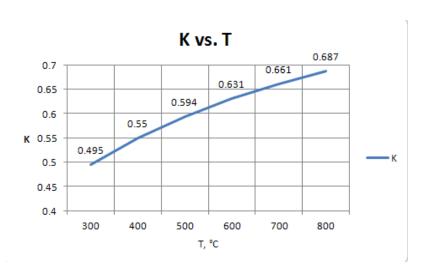
T = temperature (Kelvin)

$$^{\circ}$$
C + 273.15 = Kelvin

e = natural logarithm base

1. Suppose a reaction takes place at a constant temperature of 25°C. Calculate K for the following values of E.

| E, cal/mol | K                       |
|------------|-------------------------|
| 5.0        | 0.99                    |
| 50.        | 0.92                    |
| 500.       | 0.43                    |
| 5000.      | 2.2 x 10 <sup>-4</sup>  |
| 50000.     | 2.2 x 10 <sup>-37</sup> |


Assume all values of E are good to two significant figures.

2. Suppose a reaction takes place with a constant energy barrier of 800 cal/mol. Calculate K for the following temperatures.

| T, °C | K     |
|-------|-------|
| 300   | 0.495 |
| 400   | 0.550 |
| 500   | 0.594 |
| 600   | 0.631 |
| 700   | 0.661 |
| 800   | 0.687 |

Assume T and E values are good to three significant figures.

3. Prepare a plot of K vs. T for the temperature range 300 to 800°C. This may be done on a computer, but the plot must be printed out and handed in.



4. For a constant energy barrier of 800 cal/mol calculate the temperature in  $^{\circ}$ C at which the amount of products should equal the amount of reactants (i.e. when K = 0.500). This answer should be calculated to three significant figures. (HINT: Take the natural log of both sides of the above equation).

$$T = 308$$
 °C