GLY 4310C LAB EXERCISE 2

SILICATES: PART 2

CLASS : SILICATES

SUBCLASS: INOSILICATES continued

AMPHIBOLE GROUP -

The structure of this group consists of double chains of tetrahedra running parallel to the crystallographic z axis. Like the pyroxenes both orthorhombic and monoclinic symmetry is possible. The only common orthoamphibole is anthophyllite. All of the others are clinoamphiboles. Amphiboles are hydrous minerals.

Anthophyllite - (Mg,Fe)₇Si₈O₂₂(OH)₂

TREMOLITE - Ca₂Mg₅Si₈O₂₂(OH)₂ Also occurs as variety hexagonite.

ACTINOLITE - Ca₂(Mg,Fe)₅Si₈O₂₂(OH)₂

Tremolite and actinolite form a solid solution series. As the iron content increases the color of the mineral changes from white to progressively darker green.

HORNBLENDE - (Ca,Na)₂₋₃(Mg,Fe,Al)₅Si₆(Si,Al)₂O₂₂(OH)₂ Most common and most important amphibole.

Glaucophane - $Na_2Mg_3Al_2Si_8O_{22}(OH)_2$

Riebeckite - $Na_2Fe^{3+}Fe_2^{3+}Si_8O_{22}(OH)_2$

SUBCLASS: PHYLLOSILICATES

The word *phyllon* means leaf in Greek. Most minerals in this group have one cleavage direction (basal cleavage) and exhibit a platy or flaky habit. Most are flexible and some are elastic. The structure is a sheet or layer like arrangement of silicon tetrahedra which share three corners. The Si:O ratio is 2:5. The SiO₄ layers are tetrahedral or t-layers. If the cations are divalent all cation positions are filled; the structure is trioctahedral. If the cations are trivalent, only two-thirds of the cation sites are occupied; the structure is dioctahedral. Diphormic phyllosilicates consist of one t-layer joined to one o-layer. The o-layer consists of non-Si cations in octahedral coordination. Triphormic phyllosilicates consist of one o-layer and two t-layers (t-o-t). Tetraphormic phyllosilicates consist of t-o-t sandwiches held together by o-layers.

The minerals are hydrous. Many of these minerals are weathering products but they may also be primary minerals formed directly from magma and as a result of metamorphism. The mica and clay mineral groups are the most important but the serpentine and chlorite group also contain common minerals.

> SERPENTINE GROUP - These minerals are generally the weathering products of ultramafic stocks. Antigorite and chrysotile are dimorphous. Antigorite has a platy habit. Chrysotile is the chief source of asbestos. Garnierite is a Ni-ore, formed by the weathering of Ni-rich peridotites. These minerals are diphormic trioctahedral phyllosilicates.

ANTIGORITE - $Mg_3Si_2O_5(OH)_4$

CHRYSOTILE - $Mg_3Si_2O_5(OH)_4$

Garnierite - $(Ni,Mg)_3Si_2O_5(OH)_4$

REFERENCE sample -DO NOT TEST!

CLAY MINERAL GROUP - Clay refers to a very small particle size. Clays become plastic when mixed with small quantities of water. They are composed of a number of minerals known collectively as clay minerals. These are weathering products and are hydrous aluminosilicates.

KAOLINITE - $Al_2Si_2O_5(OH)_4$	Diphormic, dioctahedral
Pyrophyllite - Al ₂ Si ₄ O ₁₀ (OH) ₂	Triphormic, dioctahedral

TALC -	Mg ₂ Si	$O_{10}(OH$	D_{2}
III IL C	11151~12		- <u>)</u>)

Triphormic, trioctahedral

MUSCOVITE - $KAl_2(AlSi_3O_{10})(OH)_2$ Dioctahedral

Phlogopite - $KMg_3(AlSi_3O_{10})(OH)_2$ Trioctahedral

BIOTITE - $K(Mg,Fe)_3(AlSi_3O_{10})(OH)_2$ Trioctahedral

LEPIDOLITE - K(Li,Al)₂₋₃(AlSi₃O₁₀)(O,OH,F)₂ Di- or trioctahedral

Vermiculite - $(Mg,Fe^{2+},Al)_3(Al,Si)_4O_{10}(OH)_2.4H_2O$

CHLORITE GROUP - These minerals closely resemble each other. It is usually necessary to do quantitative chemical analysis, or careful optical and X-Ray studies to distinguish individual species. They are tetraphormic.

CHLORITE - $(Mg,Fe)_3(Si,Al)_4O_{10}(OH)_2.(Mg,Fe)_3(OH)_6$ Di- or trioctahderal. Prochlorite is similar.

PREHNITE - Ca₂Al(AlSi₃O₁₀)(OH)₂

\4310\lab_S20\4310LB2_S20.wpd January 8, 2020