GLY 4200C
Laboratory Midterm - Closed Book KEY
8 points - 4 took exam
points - 4 took exam

Name
October 9, 2019

1. If an object has at least one four-fold axis and one three-fold axis which are not collinear, how many three-fold axes must it have? \qquad FOUR
2. A six-fold rotation involves rotating through an andle of 60° six times.
3. Which symmetry operation is associated with the center of symmetry?

INVERSION
4. The act that reproduces the motif to create the pattern is a SYMMETRY OPERATION.

5-8.What is the coordination number of a cation in each of the following configurations?
(4 points total)

Configuration
Cubic
Trigonal Planar
Linear
Tetrahedral
Roman numerals

$$
\mathrm{CN}
$$

\qquad
\qquad
\qquad
IV

GLY 4200C
Laboratory Midterm KEY -

Name
October 9, 2019
32 points

1. Examine each model. Determine all of the symmetry elements present. List the number of each type of element in the table below. For the inversion center, indicate YES (it is present) or NO (it is not present). Then indicate the crystal class to which the object belongs. The crystal class sheet is on the reverse of this sheet. You will receive one-half point for each symmetry element correctly listed (number and type). One-half point will be subtracted for elements listed which are not present. You will receive one point for each crystal class correctly listed. (Total 24 points) A_{2} through inversion center, $1 / 2$ point each; Crystal class, 1 point each

Model \#	A_{2}	$\mathrm{~A}_{3}$	$\mathrm{~A}_{4}$	$\mathrm{~A}_{6}$	Mirror Planes	Inversion Center	Crystal Class H-M Symbol	Points Missed
4	63	43	33	02	93	+2	$4 / \mathrm{m} \overline{3} 2 / \mathrm{m} 3$	
13	32	44	02	00	33	+0	$2 / \mathrm{m} \overline{3} 4$	
21	43	03	13	01	53	+0	$4 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} 3$	
Marble object	02	01	11	01	42	-2	4 mm 2	
33	31	11	00	00	42	-1	6 m 22	
Green object	63	02	02	13	72	-12	$6 / \mathrm{m} 2 / \mathrm{m} 2 / \mathrm{m} 3$	

2. Examine Model E. Is it HCP or CCP? (2 points) a)_HCP 0

Name the types of voids are present between the layers? b)_Tetrahedral 2 and c)_Octahedral _2 \qquad (1 point each)
What is the ratio of b voids to c voids $(\mathrm{b} / \mathrm{c})$? \qquad 2:1 2 \qquad (1 point)
3. Examine Models F, G, and H. Identify the configurations. (1 point each)
G. Linear
H. Octahedral

THE THIRTY-TWO CRYSTAL CLASSES AND THEIR SYMMETRY (PROPER SYMMETRY OPERATIONS ONLY)

Crystal System	Crystal Class	Name	Symmetry Content
TRICLINIC	1	Pedial	None
	-	Pinacoidal	i
MONOCLINIC	2	Sphenoidal	$1 \mathrm{~A}_{2}$
	m	Domatic	1 m
	2/m	Prismatic	$i, 1 \mathrm{~A}_{2}, 1 \mathrm{~m}$
ORTHORHOMBIC	222	Rhombic-disphenoidal	$3 \mathrm{~A}_{2}$
	mm2	Rhombic-pyramidal	$1 \mathrm{~A}_{2}, 2 \mathrm{~m}$
	2/m 2/m 2/m	Rhombic-dipyramidal	i, $3 \mathrm{~A}_{2}, 3 \mathrm{~m}$
TETRAGONAL	4	Tetragonal-pyramidal	$1 \mathrm{~A}_{4}$
	$\overline{4}$	Tetragonal-disphenoidal	$i, 1 \mathrm{~A}_{2}$
	4/m	Tetragonal-dipyramidal	$i, 1 \mathrm{~A}_{4}, 1 \mathrm{~m}$
	422	Tetragonal-trapezohedral	$1 \mathrm{~A}_{4}, 4 \mathrm{~A}_{2}$
	4 mm	Ditetragonal-pyramidal	$1 \mathrm{~A}_{4}, 4 m$
	$\overline{4} 2 m$	Tetragonal-scalenohedral	$3 \mathrm{~A}_{2}, 2 \mathrm{~m}$
	4/m 2/m $2 / \mathrm{m}$	Ditetragonal-dipyramidal	$i, 1 \mathrm{~A}_{4}, 4 \mathrm{~A}_{2}, 5 \mathrm{~m}$
RHOMBOHEDRAL	3	Trigonal-pyramidal	$1 \mathrm{~A}_{3}$
	$\overline{3}$	Rhombohedral	$i, 1 \mathrm{~A}_{3}$
	32	Trigonal-trapezohedral	$1 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}$
	3 m	Ditrigonal-pyramidal	$1 \mathrm{~A}_{3}, 3 \mathrm{~m}$
	$\overline{3} 2 / m$	Hexagonal-scalenohedral	$i, 1 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}, 3 \mathrm{~m}$
HEXAGONAL	6	Hexagonal-pyramidal	$1 \mathrm{~A}_{6}$
	$\overline{6}$	Trigonal-dipyramidal	$1 \mathrm{~A}_{3}, 1 \mathrm{~m}$
	6/m	Hexagonal-dipyramidal	$i, 1 \mathrm{~A}_{6}, 1 \mathrm{~m}$
	622	Hexagonal-trapezohedral	$1 \mathrm{~A}_{6}, 6 \mathrm{~A}_{2}$
	6 mm	Dihexagonal-pyramidal	$1 \mathrm{~A}_{6}, 6 \mathrm{~m}$
	$\overline{6} \mathrm{~m} 2$	Ditrigonal-dipyramidal	$1 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}, 4 \mathrm{~m}$
	6/m 2/m 2/m	Dihexagonal-dipyramidal	$i, 1 \mathrm{~A}_{6}, 6 \mathrm{~A}_{2}, 7 \mathrm{~m}$
ISOMETRIC	23	Tetartoidal	$4 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}$
	$2 / m 3$	Diploidal	$i, 4 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}, 3 \mathrm{~m}$
	432	Gyroidal	$3 \mathrm{~A}_{4}, 4 \mathrm{~A}_{3}, 6 \mathrm{~A}_{2}$
	$\overline{4} 3 \mathrm{~m}$	Hextetrahedral	$4 \mathrm{~A}_{3}, 3 \mathrm{~A}_{2}, 6 \mathrm{~m}$
	$4 / m \overline{3} 2 / m$	Hexoctahedral	$i, 3 \mathrm{~A}_{4}, 4 \mathrm{~A}_{3}, 6 \mathrm{~A}_{2}, 9 m$

