NATIVE ELEMENTS, SULFIDES, AND SULFOSALTS

Native Elements

The native elements may be divided into metallic, non-metallic, and semi-metallic. The luster shows distinctive changes from one group to another. Except for graphite and sulfur these are all reference specimens so please dot not perform destructive tests.

Metals			Non-metals			Semi-metals	
* COPPER	Cu		SULFUR	S	*	Bismuth	Bi
* GOLD	Au		GRAPHITE	С	*	Antimony	Sb
* SILVER	Ag	*	DIAMOND	С	*	Arsenic	As
* PLATINUM	Pt						

Sulfides

This group is composed of sulfides and the closely allied minerals selenides, tellurides, arsenides, and antimonides. Most of these minerals are opaque, and they often have characteristic colors. The general formula is $A_m X_n$ where A represents metallic elements, X represents a sulfide group element whose oxidation state is -2, and m and n are integers. Many of these minerals are important ore minerals.

Bornite	Cu_5FeS_4
GALENA	PbS
SPHALERITE	ZnS
CHALCOPYRITE	CuFeS ₂
PYRRHOTITE	$Fe_{1-x}S$ where $x = 0.0 - 0.2$, usually
Niccoline	NiAs
REALGAR	AsS
ORPIMENT	As_2S_3
STIBNITE	Sb_2S_3
PYRITE	FeS ₂
COBALTITE	(Co,Fe)AsS
MARCASITE	FeS ₂
ARSENOPYRITE	FeAsS

	MOLYBDENITE	MoS_2
	CINNABAR	HgS
	CHALCOCITE	Cu ₂ S
*	Millerite	NiS
*	Calaverite	AuTe ₂
	Smaltite	$(Co,Ni)As_{3-x}$ where x = 0.0 - 0.5, usually

Notes: Although orpiment (As_2S_3) and stibuite (Sb_2S_3) have the same general formula they are not isostructural. Orpiment is monoclinic, stibuite is orthorhombic.

Pyrite and cobaltite are isostructural (isometric system). Pyrite and marcasite are dimorphs (marcasite is orthorhombic).

Galena and sphalerite, although very commonly found together, are not isostructural. Galena is isotypous with halite, while sphalerite has a structure like that of diamond.

Sulfosalts

In the sulfosalts semimetallic elements substitute, at last in part, for the metallic elements in sulfides.

Tetrahedrite	$Cu_{12}Sb_4S_{13}$
ENARGITE	$Cu_3AsS_4{\cdot}Cu_4AsS_4$

* Samples denoted with this symbol are reference pieces. <u>DO NOT</u> perform hardness, streak color, or acid tests on these samples.

4200\lab2019\4200LAB2_F19.wpd August 12, 2019