
CHAPTER 5

APPLICATIONS OF NEWTON’S LAWS

• Friction
  ! static friction
  ! kinetic friction

• Circular motion
  !  centripetal acceleration
  !  centripetal force
  ! loop-the-loop

• airplane
• roller coaster

• Drag forces

FRICTION

Direction of frictional forces ... (not always obvious) ... 

Here’s the easy way to remember ...

Usually, the frictional force is opposite to the 
direction of the motion without friction.

• crate moves to right.      ∴
! 
F GC

• without friction foot would slip to the 
left.      ∴

! 
F GM

frictional force
of the ground on the man

frictional force
of the ground on the crate

    
! 
F GM     

! 
F GC
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  f1   f2

Note that   FGM and   FGC are frictional forces.  

Consider the man and crate as a system.  The forces   FMC 

and   FCM are internal to the system; also   FCM = FMC , and 

so they do not contribute to any motion.

The remaining forces acting on the system are   FGM and 

  FGC.  Thus, if   FGM > FGC  the system, i.e., the man and 

the crate, moves to the right.  So, it is the frictional forces 

  f1 and   f2 that determine the outcome!

  FGM   FGC

[1]  Block initially at rest:

The normal force     
! 

N  is always present when an object rests 

on a surface.  You can think of it as a reaction force of the 
surface to the force of the object on the surface.  Note 

    
! 
F yy∑ =     

! 
N      − m! g = 0,  i.e.,     

! 
N      = m! g .

The frictional force that has to be overcome is:

    
! 
f s ⇒ µs    

! 
N ,

where   µs is called the coefficient of static friction.

If      
! 
F >
! 
f s  the block will move.  Therefore, a minimum 

applied force (  = µs    
! 

N ) is required to start moving an object 

over a surface.  If      
! 
F ≤
! 
f s  the net force on the block is 

zero, so the frictional force in this case is     
! 
f =
! 
F .

    
! 
F 

    
! 
f 

 frictional force 
    
! 
F     

! 
f 

    
! w  (= m! g )

    
! 

N 

 applied force  
weight 

normal force 

Forces acting ON the crate



[2]  Block moving:
When the object is moving, the frictional force is:   

    
! 
f k = µk    

! 
N ,

where   µk is the coefficient of kinetic friction.  Thus, the 

net force on the object is then

    
! 
F −
! 
f k

towards the right (  = ma).  Note, until the applied force 

    
! 
F >
! 
f s  (  = µs    

! 
N ), the net force is zero, i.e.,     

! 
F =
! 
f .

Forces acting ON the crate

 frictional force 
    
! 
F     

! 
f k

    
! w  (= m! g )

    
! 

N 

 applied force  
weight 

normal force 

    
! 
F 

    
! 
f k

    
! v 

  f = F
  fk = µk    

! 
N 

at rest in motion 

  fs = µs    
! 

N  
frictional
force (f)

Applied 
force (F)

Here is some experimental data:

At A (“breakout”):   F = fs = µs  N   = µsmg

i.e., 
  
µs = F

mg = (5 N)
(2 × 9.81 m/s2)

= 0.255.  

From B to C (net force   = 0):   F = µk  N   = µkmg   

i.e., 
  
µk = F

mg = (3.7 N)
(2 × 9.81 m/s2)

= 0.189.
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Values of   µs and   µk depend on the two surfaces in 
contact:

Materials   µs   µk
Steel/steel 0.7 0.6
Brass/steel 0.5 0.4
Glass/glass 0.9 0.4
Teflon/steel 0.04 0.04
Rubber/dry concrete 1.0 0.8
Rubber/wet concrete 0.30 0.25

Wax/snow 0.10 0.05

Note:   µs > µk.

Note also that the NORMAL FORCE     
! 

N  is always 
perpendicular to the surface even if the surface is 
inclined:

    
! 

N 

•

  mg

    
! 

N    = mg

    
! 

N 
•

  mg

    
! 

N    = mgcosθθ

Question 5.1: A horizontal 100 N force exerted on a 1000 
N crate causes it to slide across a level floor at constant 
velocity.  What is the magnitude of the frictional force 
acting on the crate?



Constant velocity means that the net force acting on the 
crate is zero, i.e., 

    
! 
F +
! 
f = 0 ⇒

! 
f = −

! 
F 

    ∴
! 
f =
! 
F .

So, the frictional force has the same magnitude as the 
pushing force although they are in opposing directions, 

i.e.,     
! 
f = 100 N.

Do they constitute an action-reaction pair?

    
! 
F 

    
! 
f 

  F1 = 8 N  F2 = 2 N

D 

  2 kg

  F1 = 8 N  F2 = 4 N

B 

  4 kg

  F1 = 8 N  F2 = 2 N

C 

  3 kg

  F1 = 12 N  F2 = 3 N

A 

  6 kg

Question 5.2: Two forces,   F1 and   F2, act on different 

objects on a surface, as shown below.  If the objects are all 
moving with constant velocity, in which case is the 
coefficient of friction between the object and surface 
greatest?



Draw the FBD.  The net force on each block is 

  F1 − F2 − f = 0

since they are moving with constant velocity.  

  ∴f = F1 − F2 = µ  N,  i.e.,  
  
µ =

(F1 −F2 )
.

  
µA = 9 N

6g = 1.5 N
g;

  
µB = 4 N

4g = 1 N
g, 

  
µC = 6 N

3g = 2 N
g;

  
µD = 6 N

2g = 3N
g.

  F1 = 8 N  F2 = 2 N

D 

  2 kg

  F1 = 8 N  F2 = 4 N

B 

  4 kg

  F1 = 8 N  F2 = 2 N

C 

  3 kg

  F1 = 12 N  F2 = 3 N

A 

  6 kg

  F1  F2
  f

  N

smallest

greatest

NOTE: the “friction” equation

    
! 
f = µ    

! 
N 

is not a vector equation.  Even though the coefficient of 

friction µ is a scalar,     
! 
f  is not parallel to     

! 
N .



Question 5.3: Your daughter is sitting on a sled and asks 
you to propel her across a flat, horizontal surface.  You 
have a choice; (a) you can push on her shoulders, or (b) 
you can pull her using a rope attached to the sled.  
Which would require less force from you to get the sled 
moving, case (a), case (b) or is the force the same in both 
cases?

(b) 

(a) 

    
! 
F 
θ

    
! 
F θ

Look at the FBD’s of the girl/sled system.  The minimum 
force required to start the sled moving in either case is:

  Fx = Fmin cosθ = µsN.

The angle θ is the same in both cases, so   Fmin ∝ N.

  Fya∑ =    a − Fsin θ = mg, i.e.,      a = mg +Fsin θ.

    Fyb∑ =    b + Fsin θ = mg , i.e.,      b = mg −Fsin θ.  

∴ Na > Nb.

So,    Fmin (a) > Fmin (b), i.e., a smaller force is required to 

start the sled moving in (b) than in (a).

N N

N N

(b) 

(a) 

    
! 
F 
θ

    
! 
F θ

  F

  f
  mg

  F
  f

  mg

Na 

Nb 

θ

θ



Question 5.4:  The coefficient of friction between the 
tires of a car and the road on a particular day is 0.70.  
What is the steepest slope of the road on which the car is 
parked if the car is not to slide down the hill?  Note, the 
brakes are fully on so the wheels are locked. 

θ

When the car is just about to move: 

    
! 
F x∑ = 0  and      

! 
F y∑ = 0.

From chapter 4, we have:

• forces along x:    mg sin θ − fs = 0 ... ... (i),

• forces along y:  N   −mg cosθ = 0 ... ... (ii).

But   fs = µsN.

  ∴mg sin θ − µsN   = 0.

Substituting for N from (ii) we get:

  mg sin θ − µsmg cosθ = 0.

  ∴ tanθ = µs.

So, at this angle θ the car is just about to slide

If   µs = 0.70, then     θ = tan−1(0.70) = 35".

Note:  it is independent of the mass of the car and has 
nothing to do with the “strength” of the brakes!

    
! w = m! g 

    
! 
f s

x

y
    
! 

N 

θ



θ

What happens after the car just starts to slide?

The net force on the car in the x-direction after it begins to 
slide is:  

  Fx = mg sin θ − fk, where   fk = µkN.  

But   µk < µs, so   fk < fs, which means that after the car 

begins to slide,   Fx > 0, i.e., there is now a net force in the 

x-direction.  By Newton’s 2nd Law the car will accelerate 
in the same direction as that force, i.e., down the incline.

Let us calculate the acceleration assuming   µk = 0.50.

    
! w = m! g 

    
! 
f s

x

y
    
! 

N 

    
! w = m! g 

    
! 
f k

x

y
    
! 

N 

Before   After

    
! w = m! g 

    
! 
f k

x

y
    
! 

N 

θ

After the car starts to move we replace     
! 
f s by     

! 
f k and by 

Newton’s 2nd Law, the net force is   max, where   ax is the 

acceleration of the car.
So:

forces along x:    mg sin θ − fk = ma x ... ... (iii)

with   fk = µkN.

forces along y:  N   −mg cosθ = 0 (unchanged)

Then (iii) becomes:    max = mg sin θ − µkmg cosθ.

i.e.,   ax = g(sin θ − µk cosθ).
In this case (with   µk = 0.50):

    ∴ax = 9.81 m/s2( ) × (sin 35" − 0.50cos35")

  = 1.61 m/s2. 



Wheels on surfaces:

Two possibilities:

• rolling wheel - no slipping - STATIC FRICTION
• locked wheel - skidding - KINETIC FRICTION

Since   µk < µs then   fk < fs and so there is less frictional 

force in a skid ⇒ you travel further!

Look at the web-site ⇒ anti-lock (abs) brakes

Question 5.5: The driver of a 1200 kg car moving at 

  15.0 m/s is forced to slam on the brakes.  The car skids to 
a halt after traveling a distance of 25.5 m.

(a) What is the coefficient of kinetic friction between 
the road and the tires?

(b) How long did it take the car to stop?

(c) If the car had been fitted with an anti-skid control 
system (ABS) and the coefficient of static friction 
between the road and the tires was   µ = 0.65, how far 
would the car have traveled before it came to a 
complete stop?



(a) Find the acceleration.  We have      0 = v!
2 + 2a(x − x!), 

i.e., 
    
a = −

v!2

2ℓ
= −

(15.0 m/s)2

2(25.5 m)
= −4.41 m/s2.

The only force in the x-direction is the kinetic frictional 
force, that is the net force, so, by Newton’s 2nd Law: 

  −fk = ma = −µkN   = −µkmg

  
∴µk =

−a
g

=
−(−4.41 m/s2)

9.81 m/s2 = 0.45.

Note that the result is independent of the mass of the car!

(b)  We have     v = v! + at, 

i.e., 
    
t =

v − v!
a

=
−15.0 m/s
−4.41 m/s2 = 3.40 s. 

  fk

  mg

N 

    x!   x

    v!

  ℓ

  v = 0

(c) In part (a) we found 
    
a = −

v!2

2ℓ
.

Also   −fk = ma = −µsN   = −µsmg ,

i.e., 
    
a = −µsg = −

v!2

2ℓ
.

    
∴ℓ =

v!2

2µsg
=

(15.0 m/s)2

2(0.65)(9.81 m/s2)
= 17.6 m.

This distance is 7.9 m less, i.e., 31% less, than the result in 
part (b).  The moral is when coming to a stop, try not to 
skid!



Question 5.6:  In the figure above,   m1 = 4 kg and the 

coefficient of static friction between the block and the 
inclined surface is 0.40.  (a) Find the range of possible 

values of   m2 for which the blocks are stationary, i.e., in 

equilibrium.  (b) What is the frictional force on   m1 if 

  m2 = 1 kg and in which direction does it act?

We need to analyze two scenarios; [1] when   m1 is about to 

move up the slope, and [2] when   m1 is about to move down 

the slope.  WHY??  

[1] Assume   m1 is just about to move up the slope:

    Fx1∑ = T + (−fs) + (−m1gsin30! ) = 0 ... (1)

  Fy1∑ = N     + (−m1gcos30! ) = 0 ... ... ... (2)

  Fy2∑ = T + (−m2g) = 0 ... ... ... ... ... (3)

With   m1 = 4 kg and   µs = 0.40, eq (2) gives N   = 34.0 N.

But    fs = µsN   = 0.40 × 34.0 N = 13.6 N.

From (1):      T = fs + m1gsin30!

  = 13.6 N + 4 kg × 9.81 m/s2 × 0.50( ) = 33.2 N,

so from (3):
  
m2 =

T
g
=

33.2 N
9.81 m/s2 = 3.39 kg.

T

  m2g

y

x
N

  fs

x
y

  m1g

T



[2] Assume   m1 is just about to move down the slope:

Now:

    Fx1∑ = T + fs + (−m1gsin 30! ) = 0 ... ... (4)

  Fy1∑ = N     + (−m1gcos30! ) = 0 ... (2) unchanged.

  Fy2∑ = T + (−m2g) = 0 ... ... ... (3) unchanged.

With   m1 = 4 kg and   µs = 0.40, eq (2) gives N   = 34.0 N.  

But   fs = µsN   = 0.40 × 34.0 N = 13.6 N.

From (4):      T = −fs + m1gsin 30!

  = −13.6 N + 4 kg × 9.81 m/s2 × 0.50( ) = 6.0 N.

so from (3):  
  
m2 =

T
g
=

6.0 N
9.81 m/s2 = 0.61 kg.

Thus,   m1 remains stationary if    0.61 kg < m2 < 3.39 kg. 

T

  m2g

y

x
N

  fs

x
y

  m1g

T

(b)  

If   m2 = 1 kg, eq (3) gives,   T = m2g = 9.81 N.  

Since   0.6kg < m2 < 3.39kg,   m1 is stationary.  The net force 

acting on   m1 is:

    Fx∑ = T ± fs + (−m1gsin 30!) = 0,

i.e.,     T ± fs = m1gsin30!

  = 4 kg × 9.81 m/s2 × 0.50 = 19.62 N.

But, in which direction is the static frictional force   fs?  

Since   T = 9.81 N then   fs = 9.81 N, so they act in the same 

direction, i.e.,   fs is directed up the slope and together they 

‘balance’ the component of the weight     m1gsin 30!( ) acting 

down the slope.

N
  fs

x
y

  m1g

T
N

  fs

x
y

  m1g

T

 1  2 



DISCUSSION PROBLEM [5.1]:

Equal downward forces (  F = Mg) are applied to each 
string.  In case (a) the force is supplied by a hanging 
mass M, in case (b) the force is supplied by a hand 
pulling the string.  If the coefficient of static friction is 
  <1, the blocks on the table will accelerate.  In which 
case is the acceleration of the block on the table greater?

A:  Case (a).
B:  Case (b).
C:  Neither ... it’s the same in both cases.

M 

M 

M 

Mg 

(a) (b) 

Question 5.7:  (Similar to question 4.6 in the previous 
chapter but with friction added.)  To prevent a box from 
sliding down an inclined plane, physics student Anna 
pushes on the box horizontally with just enough force so 
that the box is stationary.  If the mass of the box is 2.00 

kg, the slope of the incline is     35! and the coefficient of 

static friction between the box and the incline is 

  µs = 0.160, what is the magnitude of the minimum force 

she has to apply?

    35!

Anna 



Draw the free body diagram for the box:

The components of the weight force along x and along y 
are   −mg sin θ( ) and   −mg cosθ( ), respectively.  The 

components of the force Anna applies   (FA ) along x and y  

are   FA cosθ and 

  −FA sinθ( ), respectively.  

Summing the forces in the 
x- direction, we have

  Fx∑ = 0

i.e.,   FA cosθ + fs − mg sin θ ... ... ... (1) 

with   fs = µsFN.  

In the y-direction we have:

  −FA sinθ + FN − mg cosθ = 0,

i.e.,   FN = mg cosθ +FA sin θ.

θ

  FA
θ

  FA sinθ

  FA cosθ

  FN

  mg

  mgcosθ

  mgsinθ

  FA

θ

  x
  y  fs

Substituting for   FN in eq (1), we get

  FA cosθ + µs mg cosθ + FA sin θ( ) − mg sin θ = 0.
Solving for   FA, we find

  FA cosθ + µsFA sinθ = mg sin θ − µsmg cosθ,

i.e.,
  
FA =

mg sin θ − µs cosθ( )
cosθ + µs sin θ( ) .

Inserting the given values

  
FA =

2.00 kg × 9.81 m/s2 × 0.574 − 0.160 × 0.819( )
0.819 + 0.160 × 0.574( )

  = 9.54 N.
In chapter 4, without friction (  µs = 0) we found 

  FA = mg tanθ = 13.7 N.

AT HOME: show that to get the box to just start moving up 
the incline, Anna would need to apply a horizontal force of 
  19.0 N.



Question 5.8: Two people (A and B) are tugging at each 
other.  By Newton’s 3rd law the force that A applies on 
B is equal to the force that B applies on A.  How come 
one of them can win this tug-of-war?  

 A  B 

Identify the forces acting on each person.    FAB and 

  FBA are an A/R pair.  

  ∴FAB = FBA .

Note that the (frictional) forces are one part of A/R 

pairs also, i.e.,   FGA = FAG  and    FGB = FBG 

Since   FAB and   FBA cancel each other the result 

depends on the frictional forces   FGA and   FGB.

•  If   FGA > FGB then A wins!

•  If   FGB > FGA then B wins!

If   f = µsN  for both people then the person with 

greater mass should win!  Note that if there’s no 
friction (e.g., on ice) then   FGA = FGB = 0 so no one 

wins!

 A  B 

  FGA = fA
  FBA

  FGB = fB
  FAB



CIRCULAR MOTION 
In chapter 3, we found that in 
the case of an object traveling 
with a constant speed v in a 
circle of radius r, the object 
experiences a centripetal 

acceleration directed towards the center of the circle.  The 
magnitude of the acceleration is

  
a r =

v2

r
.

The corresponding radial force acting on the object is

  
Fr = ma r = m

v2

r
,

which is called the centripetal force.  In the absence of this 
force, the object would continue in a straight line 
(Newton’s 1st Law).  Examples of centripetal force include 
the action of the tension in a string spinning a stone in a 
circle and the gravitational force between the Earth and 
Moon. 

  v

  r

  m
  Fr

However, there is a difference between  horizontal and 
vertical circular motion.

[1] Horizontal circular orbit 

The weight force (mg) is always perpendicular to the plane 
of the motion and so it cannot produce the centripetal 
force.  It is the   x −component (horizontal) of the tension 
that produces the centripetal force.

i.e.,
  
Tx = Tsin θ = Fr = m

v2

r
.

Horizontal circular orbit
conical pendulum

T

 v   mg

θ

x

y

  mg

T

θ

  Tx
  r



[2] Vertical circular orbit 

The weight force (mg) and normal force (N) of the seat 

on the pilot combine to produce the centripetal force on 
the pilot.  Note that the direction of the normal force 
changes around the loop.

R 

Example of a vertical
circular orbit

looping-the-loop

    m
! g 

    
! 

N 

Top 
    m
! g     

! 
N t

Bottom  

    m
! g 

    
! 

N b

Question 5.9:  A stone, of mass 0.75 kg, is attached to a 
string and whirled in a horizontal circle of radius 35 cm 
(like a conical pendulum).  If the string makes an angle of 

    30! with the vertical, find (a) the tension in the string, (b) 

the speed of the stone and (c) the time for one revolution, 
i.e., the orbital period.



(a)

In the   y −direction:      Tcos30! + (−mg ) = 0 ... (i)

In the   x −direction:      Tsin30! = ma x ... ... (ii)

From earlier, the centripetal acceleration   ax = v2
r .

From (i):  
    
T =

mg
cos30!

= 8.50 N.

(b) From (ii):  
    
ax =

Tsin 30!

m
= 5.66 m/s2 = v2

r .

  ∴v = rax = 1.41 m/s.

(c) Orbital time   =
2πr

v = 1.56 s.

centripetal force

y

x

  mg

T    30!    30!T
0.35m

v

  m

 Analysis of the forces acting on a pilot during a loop.

1.  At the top (inside the loop)

At the top the two forces 
acting on the pilot are the 
normal force (     ) due 
to the seat, and the 
gravitational force (mg) due to 
the Earth.  In executing the 
maneuver, the net downward 
force produces the centripetal 
force, i.e., 

  
Ftop =     + mg =

mv2

R
.

So, the magnitude of the force of the seat on the pilot, 
i.e., the nomal force, is:

  
=

mv2

R
− mg .

R 

Top 
    m
! g     

! 
N t     

! 
N t

Nt

Nt



Since  Nt  
  
=

mv2

R
− mg ,

there are two possibilities to consider:

• If 
  
mv2

R
≥ mg , i.e.,   v ≥ gR , then Nt   > 0, so the 

seat applies a force on the pilot, but it is less than his true 
weight (mg).  By Newton’s 3rd Law this is the same as 
the force exerted by the pilot on the seat.  Therefore, the 

pilot experiences an apparent weight (N t) that is less 

than mg.

• If 
  
mv2

R
< mg , i.e.,   v < gR , then Nt   < 0, so the 

pilot will ‘fall’ from the seat unless restrained by a seat-
belt!  (The seat can only provide a positive force.)

Thus, if unrestrained, whether or not the pilot remains in 
the seat depends on the speed of the airplane.

2.  At the bottom (inside the loop):

At the bottom, the free 
body diagram tells us the 
centripetal force is:

  
mv2

R
=      − mg .

So, the magnitude of the 
force exerted by the seat 
on the pilot is  

Nb  
  
= mg +

mv2

r

which is, clearly, greater than mg, the true weight of the 

pilot.  But, by the 3rd Law, Nb is also the magnitude of 

the force the pilot exerts on the seat, i.e., the apparent 
weight of the pilot.  Thus, his apparent weight is greater 
than his true weight.

R 

Bottom  

    m
! g 

    
! 

N b

Nb



3.  At some angle (inside the loop):

In the radial direction we have

  
FR∑ =

mv2

R
=  N   +  mg sinθ,

where v is the instantaneous speed.  After re-arranging, 
we obtain

N 
  
= m

v2

R
− gsinθ

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ .

Note, if we put     θ = 90! (top) and     θ = 270! (bottom) we 

obtain the previous results.

    m
" g sinθ    m

" g cosθ
    m
" g 

components of 
the pilot’s weight

R 

  O
θ

    m
" g 

    
" 

N 

Analysis of the forces acting on the riders on a roller 
coaster ride doing a loop:

3.  At the top (inside the loop)

The analysis is the same as case #1, i.e., the centripetal 
force experienced by the rider is  

  
mv2

R
=    + mg , 

and so the force applied by the seat on the rider is

N 
  
=

mv2

R
− mg .

  !   !
  v

  R
  mgN 

N



So, if 
  
mg >

mv2

R
, N   < 0, and the riders will “fall” from 

their seat (as a seat can only provide a positive force!)  

Consequently, there is a minimum speed (  vmin) for a roller 

coaster to carry out this maneuver safely, i.e.,

  vmin = Rg.

With a speed less than this value, the riders will fall from 
their seats unless restrained.  (Note, it does not depend on 
the rider’s mass, i.e., it is the same for all riders!)

In fact, if   vmin < Rg, the roller coaster cars will fall also 

unless the track is designed to hold onto the cars!

4.  At the top (outside the loop)

The free body diagram gives:

  
mv2

R
= mg −  N,

so the force applied by the seat on the rider is

N 
  
= mg −

mv2

R
.

Providing   v < Rg, then N   > 0, so the rider remains in 

their seat.  However, if   v > Rg, then N   < 0 and the rider 

“flies” from their seat (unless restrained)!  Thus, there is a 
maximum speed for this maneuver to be safely executed.

  v

  R

  mg
N



Question 5.10:  A curve in the road, with a radius of 

  70.0 m, is banked at an angle of     15!.  If the coefficient of 

friction between the road and car tires is 0.70, what is the 
maximum speed a car can make the corner without 
sliding?

Hint: eliminate the normal force.

Figures (a) and (b) show the real life scenario; (c) is the 
free body diagram of (a).  Note that the frictional force   fs 

is a static frictional force as there is no relative motion 
between the tire and the road, i.e., no skidding or wheel 
spin.  Take radial (x) and vertical (z) components in (c).  
Note: the net radial force is the centripetal force. In (a),

x-direction:  N    sin15! + fs cos15! = mv2
r  .

z-direction: N    cos15! − mg − fs sin15! = 0.

But   fs = µsN.  So, re-arranging these equations we get:

x-direction: N    sin15! + µsN    cos15! = mv2
r .

z-direction: N    cos15! − µsN    sin15! = mg.

  v

•  70m

  (b)
Vertical 

N 

θ  fs

  mg
  (a)

  fs
  mg

    15!

N 
    15!

  z

  x

  (c)



Hence N    sin15! + µs cos15!( ) = mv2
r ... ... [1]

and N    cos15! − µs sin15!( ) = mg ... ... ... [2].

Dividing eq. [1] by eq. [2] to cancel N, we get

    

sin15! + µs cos15!

cos15! − µs sin15!
=

v2

gr
.

i.e., 
    
v2 = gr

tan15! + µs
1− µs tan15!
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

  
= 9.81 m/s2 × 70 m( ) 0.268 + 0.70

1− (0.70 × 0.268)
⎛ 
⎝ ⎜ 

⎞ 
⎠ ⎟ .

  = 818.2 (m/s)2   ⇒ v = 28.6 m/s.

Note that the result is independent of the mass of the car!

At home, show that: 
(1) if   θ = 0 and   µs = 0.70, i.e., no banking but 

static friction, then   v = 21.9 m/s.

(2) if     θ = 15! and   µs = 0, i.e., banked corner but 

zero static friction (like ice), then   v = 13.6 m/s.

DRAG FORCES

Different from “ordinary” friction because it depends on 
speed and type of “flow”:

• at low speed (non-turbulent or laminar flow)  

  FD = kv

• at high speed (turbulent flow)  

  FD = bv2

The constants depend on shape, size, etc.  For example:

  v
fluid

resistance

  FD

Large b (large area) Small b (small area) 

v v

v

  FD

v

  FD



Sky diving

The downward acceleration of a sky diver is gradually 
reduced because of the upward resistance force due to 
drag (  FD), which increases with velocity.  The net force 
on the sky-diver is:  

  Fnet = w − FD   (= mg − bv2 )    = ma,

hence   g ≥ a ≥ 0.  When   FD = w there is no net force so 

  a = 0, and the terminal velocity is:

  
vt =

mg
b

.

NOTE: this is not “free fall” ... WHY NOT ??   

Time (s) 

Velocity (m/s) 

~ 70 m/s
~ 155 mph

~ 15-20 s 

Terminal velocity 

  
dv

dt = g

  w (= mg)

  FD (= bv2)

 g 
 acceleration (a) 

 time 

 with drag

 no drag

 velocity (v)  terminal velocity

 time 

 with drag

 no drag

 displacement (y) 

 time 

 with drag

 no drag

  w (= mg)

  FD (= bv2)

  mg− bv2 = ma y.

  
∴a y = mg− bv2

m
.

From rest:

    
(y − y!) = 1

2
a yt2

  
= 1

2
g− b

m
v2⎛ 

⎝ ⎜ 
⎞ 
⎠ ⎟ t2.



DISCUSSION PROBLEM [5.2]:

If a feather and a baseball are dropped from a great 
height - so they each reach terminal velocity - the 
baseball strikes the ground first.  Which object 
experiences the greater drag force?

A: The feather.
B: The baseball.
C: They experience the same drag force.


