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Abstract. This work is concerned with high order polynomial approximation of stable and
unstable manifolds for analytic discrete time dynamical systems. We develop ‘a-posteriori’ theorems
for these polynomial approximations which allow us to obtain rigorous bounds on the truncation
errors via a computer assisted argument. Moreover we represent the truncation error as an an-
alytic function, so that that the derivatives of the truncation error can be bound using classical
estimates of complex analysis. As an application of these ideas we combine the approximate mani-
folds and rigorous bounds with a standard Newton-Kantorovich argument in order to obtain a kind
of ‘analytic-shadowing’ result for connecting orbits between fixed points of discrete time dynamical
systems. Examples of the manifold computation are given for invariant manifolds which have dimen-
sion between two and ten. Examples of the a-posteriori error bounds and the analytic shadowing
argument for connecting orbits are given for dynamical systems in dimension three and six.

1. Introduction. Suppose that f : Rn → Rn is real analytic in some neighbor-
hood N ⊂ Rn of a hyperbolic fixed point p ∈ N . Then f is a local real analytico-
morphism of N . Let ns, nu ∈ N denote respectively the dimension of the stable and
unstable eigenspaces of Df(p), and note that ns + nu = n. It follows from the stable
manifold theorem [24] that there are νs, νu, > 0 and analytic chart maps

P : Bνu(0) ⊂ Rnu → Rn and Q : Bνs(0) ⊂ Rns → Rn

for the local unstable and stable manifolds at p, so that

P [Bνu(0)] = Wu
loc(p) and Q[Bνs(0)] = W s

loc(p).

The Parameterization Method, developed by Cabré, de la Llave, and Fontich in [9, 10,
11] (and reviewed in Sections 2 and 2.3), provides an efficient method for computing
N -th order power series approximations PN and QN for the chart maps P and Q, as
well as a general framework for establishing the convergence of such series.

In the present work we assume that the differential Df(p) is diagonalizable and
denote by Λs the ns×ns diagonal matrix of stable eigenvalues and by Λu the nu×nu
diagonal matrix of unstable eigenvalues. The parameterization method is based on
the fact that the chart maps P and Q satisfy the functional equations

f [P (θ)] = P (Λu θ) and f [Q(φ)] = Q(Λs φ) (1.1)

for any θ ∈ Bνu(0) ⊂ Rnu and φ ∈ Bνs(0) ⊂ Rns . The fact that the chart maps
satisfy functional equations is essential in the development of both the formal series
approximations PN and QN , and in the convergence analysis of the formal series.

The main technical result of the present work is Theorem 4.1, which provides
rigorous bounds on the truncation error QN − Q (and similarly for the unstable
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manifolds). The estimates are ‘a-posteriori’ in the sense that the bounds we obtain
are of the form

sup
θ∈Bνs

|Q(θ)−QN (θ)| ≤ C(N) sup
θ∈Bνs

|f [QN (θ)]−QN (Λsθ)| , (1.2)

where C(N) → 0 as N → ∞. The explicit form of C(N) is given in Theorem 4.1.
Since all terms on the righthand side of the Inequality (1.2) are explicitly know, and
since the supremum on the righthand side of the inequality can be estimated using
rigorous numerical methods, Theorem 4.1 can be used to obtain mathematically rigor-
ous computer assisted bounds on the truncation errors associated with the polynomial
approximations PN and QN .

While the a-posteriori bounds obtained in Theorem 4.1 are interesting in their own
right, we also show how they can be applied to the problem of computer assisted proof
of the existence connecting orbits in discrete time dynamical systems. This leads to a
scheme, presented in Section 5, which is best thought of as an a-posteriori validation
method for the method of projected boundary conditions. The method of projected
boundary conditions was developed for numerical approximation of heteroclinic and
homoclinic orbits by Beyn and Kleinkauf in [7, 8]. The idea is as follows.

Suppose for the moment that f : Rn → Rn is invertible (see however Remark 1.1
below). Define the homoclinic operator equation F : Rnk → Rnk by

F (θ, x1, x2, . . . , xk−2, xk−1, φ) =



f−1(x1)− P (θ)
f−1(x2)− x1

f−1(x3)− x2

...
f−1(xj)− xj−1

f(xj)− xj+1

...
f(xk−2)− xk−1

f(xk−1)−Q(φ)


(1.3)

where θ ∈ Rnu , φ ∈ Rns , and xi ∈ Rn for each 1 ≤ i ≤ k − 1. Here j is some fixed
integer with 1 ≤ j ≤ k − 1. Then xj is a point whose inverse iterates lie on the local
unstable manifold, and whose forward iterates lie on the local stable manifold. Let
x̃ = (θ̃, x̃1, . . . , x̃k−1, φ̃) denote a zero of F , then O = {P (θ̃), x̃1, . . . , x̃k−1, Q(φ̃)} is
an orbit segment which begins on the local unstable manifold of p and ends, after k
iterates, on the local stable manifold of p. It follows that orbit(q) is homoclinic to p
for any q ∈ O.

Now, if PN and QN are polynomial approximations of the chart maps P and Q,
then one defines FN in analogy with Equation 1.3 by replacing the the exact chart
maps with their polynomial approximations. The method of projected boundary
conditions consists of numerically solving FN (x) = 0 using a Newton Scheme, and
enables fast and accurate numerical computation of connecting orbits.

Now suppose that x̂ is an approximate zero of FN , computed numerically as just
described. Then it is natural to try to invoke the Newton-Kantorivich Theorem (Thm
4.3) in order to prove the existence of an exact zero x̃ near x̂ of the full map F . The
possibility of this kind of computer assisted proof of the existence of a connecting
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orbit is in fact mentioned in [7, 8]. Note that the map F is on Rnk so that the
Newton-Kantorovich argument finite dimensional.

The difficulty in implementing this argument is the fact that we only know ex-
plicitly the map FN , yet we want to prove the existence of a zero of the map F . In
order to overcome this difficulty we require;

(i) rigorous bounds on the truncation errors in the approximations P ≈ PN and
Q ≈ QN , so that we can bound the true residual ‖F (x̂)‖.

(ii) rigorous bounds on the derivative of the truncation errors at the approximate
solution x̂, so that we can bound the derivative of F at x̂.

(iii) rigorous uniform bounds on the second derivative of the truncation errors in
a neighborhood of the approximate solution x̂, so that we can bound DF in
a neighborhood of x̂.

We note that these are precisely the difficulties overcome by our a-posteriori results on
the parameterization truncation errors. Once we use Theorem 4.1 in order to bound
the truncation error (as an analytic function) we obtain the necessary bounds on the
first and second derivatives of the truncation using a c Cauchy Type Bound from
KAM theory.

Remarks 1.1 (EXTENSIONS).
1. The homoclinic operator equation given by Equation 1.3 can easily be modi-

fied to define an equation whose solution is a heteroclinic orbit between two
distinct hyperbolic fixed points p1 and p2. This is done by taking P and Q to
be respectively the parameterizations of the nu dimensional unstable manifold
at p1 and the ns dimensional stable manifold at p2. As long as the manifolds
satisfy the usual non-degeneracy conditions, namely ns+nu = n, then map F
is non-degenerate and the method of projected boundary conditions is valid.

2. If f is not invertible, but p is a hyperbolic fixed point, then the local stable and
unstable sets can still be defined and the stable manifold theorem generalizes
as in [41]. Since p is hyperbolic, f is a local analyticomorphism and the
parameterization method can still be used to compute the local manifolds. Of
course the usual care must be take in globalizing the local stable manifold due
to the non-existence of a unique inverse map. See [31, 32] for more complete
discussion. At any rate, our a-posteriori scheme for computer assisted proof
of the existence of connecting orbits can be applied to non-invertible maps
as well. In the case that f is non-invertible, the parameterizations must be
restricted to suitable neighborhoods of their fixed points, so that the image
of the approximations PN and QN do not intersect the singularity set of Df .

3. In the non-invertible case it is also natural to take i = 1 in the operator
Equation 1.3 (or it’s heteroclinic equivalent). That way only one application
of an inverse map is needed. Of course the choice of inverse maps is dictated
by the specific problem at hand (i.e. the approximate orbit whose existence
is to be validated). For a more complete discussion of connecting orbits for
non-invertible maps we refer to [42].

4. Finally note that the requirement that the map is real analytic can be lessened
to piecewise real analytic (liner, polynomial, etc) and the methods presented
here apply so long as all of the points x̂i, x̃i, 1 ≤ i ≤ k− 1 are bounded away
from the singularity set of Df .

The remainder of the paper is organized as follows. In Section 2 we discuss the
background material used throughout the present work. We begin with a brief review
of the parameterization method literature and a short discussion of the literature
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on computer assisted proof for the existence of connecting orbits in discrete time
dynamical systems. In Section 2.2 we introduce the example dynamical systems used
for the applications later in the paper.

In Section 2.3 we review the basic notions of the Parameterization Method for
Stable and Unstable manifolds of fixed points of a local diffeomorphism f , including
a brief discussion of the computation of the coefficients of the chart maps. Section
3 focuses on numerical issues for parameterization such as performance results for
the numerical computation of the rigorous interval enclosure of the parameterization
coefficients for a dimension dependent family of example maps which always have a one
dimensional unstable manifold and a co-dimension one stable manifold. This allows
us to examine the computational costs of computing the chart maps for invariant
manifolds of dimension between two and ten. We also discuss a qualitative measure
of the truncation error. (We note that while this error indicator is only qualitative,
it is an essential input into the computer assisted arguments given later).

Section 4 is devoted to the proof of Theorem 4.1, the main technical result of
the present work. The section is organized as follows. In Section 4.1 we review
the functional analytic and complex variables theory which is needed for the proof
of Theorem 4.1, and in Section 4.2 we sketch the proof while introducing a series
of Lemmas. In Seciton 4.3 we prove the lemmas in order to complete the proof of
Theorem 4.1. Section 4.4 shows how to obtain one of the bounds in the hypothesis of
Theorem 4.1 if the case that f is polynomial.

In Section 5 we apply the a-posteriori estimates of Theorem 4.1 to the Newton-
Kantorovich problem associated with zeros of Equation 1.3. The main result is The-
orem 5.1; our analytic shadowing theorem. The proof of Theorem 5.1 is a straight
forward application of the Newton-Kantorivich theorem and is given in Section 5.2

In Section 6 we present the results of several computer assisted proofs of the
existence of transverse homoclinic orbits in the three dimensional Lomeĺı Map. Here
the stable and unstable manifolds are one and two dimensional respectively. We
provide examples of the use of high order approximations to the manifold (useful
when proving the existence of many distinct homoclinic orbits at a single parameter
set) and low order approximation of the manifold (useful when continuing a single
orbit over a range of parameters). In order to demonstrate that the algorithms can be
applied in dimensions higher than three, we also provide a six dimensional example
computation for a pair of coupled Lomeĺı Maps. Here the proof involves establishing
the existence of a transverse homoclinic orbit in the intersection of a four dimensional
unstable manifold and a two dimensional stable manifold.

2. Background.

2.1. Previous Work. The so called Parameterization Method of [9, 10, 11]
provides a theoretical framework for studying the convergence of formal power series
expansions of stable and unstable manifolds associated with fixed points of discrete
and continuous time dynamical systems, under mild non-resonance conditions.

In [9] an existence theorem ([9] Theorem 1.1) is proved which gives, under quite
general hypotheses, the existence of Ck chart maps for local stable and unstable
manifolds of Ck local diffeomorphisms on Banach spaces. The proof is constructive
and, as noted by the authors in the beginning of [9] Section 3, lends itself to a-posteriori
analysis and computer assisted proof.

[11] gives a number of applications of the parameterization method, including
some elementary proofs of theorems about invariant manifolds in the analytic cat-
egory, C0 invariant manifold theorems, and a rigorous treatment of “slow invariant
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manifolds”. The proofs in [11] rely on the use of the implicit function theorem. As
a consequence they are not constructive (with the exception of [11] Theorem 5.4 on
the existence of stable and unstable manifolds of hyperbolic periodic orbits of vector
fields. This theorem is proven using the contraction mapping theorem, and explicit
a-posteriori bounds are given). [10] develops optimal regularity results for the param-
eterization method with respect to system parameters in the Ck category.

In addition the parameterization method has been extend into a general method
for studying a wide variety of invariant manifolds in dynamical systems theory. For
example in [22, 23] a method is developed for computing invariant tori and their stable
and unstable manifolds in quasiperiodic discrete time dynamical systems. In [28] the
parameterization method is used to study KAM tori in symplectic maps without the
use of the so called action/angle coordinates. In [30] the parameterization method is
used to prove the existence of certain ‘mixed-stability’ invariant manifolds associated
with hyperbolic fixed points of symplectic and volume preserving diffeomorphisms.
These manifolds have some stable and some unstable directions and are not defined
in terms of asymptotic behavior of the orbits. (Rather they are made up of orbits
which ‘spend a long time’ near the fixed point before moving away). Some extensions
to invariant tori of infinite dynamical systems are given in [18]. That the parame-
terization method can be extended to the study of center manifolds (at least in the
case of a single eigenvalue of one) is shown in [5], while for example [21, 35, 6, 12, 13]
give numerical applications of the theory. All of the work mentioned in the present
paragraph are based on constructive arguments and can in principle be adapted for
use in computer assisted proof.

The matter of obtaining enclosures of stable and unstable invariant manifolds
using rigorous numerics has been investigated by a number of authors. The first re-
sults that we know of appear in [36], where one dimensional local stable and unstable
manifolds are computed rigorously and used to give a proof of chaotic dynamics in the
standard map. [49, 14, 19, 20] develop and implement general methods for validating
the existence of hyperbolic invariant sets, and prove topological shadowing theorems
for discrete and continuous time dynamical systems in an arbitrary number of finite
dimensions. These methods study coverings of the invariant manifold by parallelo-
grams satisfying some cone conditions. If the parallelograms and cones are mapped
across one another by the dynamics the correct way then the existence of the hyper-
bolic invariant manifold is established. The efficiency and accuracy of these methods
depends on the number and size of the parallelograms. Numerous applications of
these methods can be found in [4, 2, 3, 48, 46, 15]

Methods for studying invariant manifolds using higher order representations and
data structure know as Taylor Models has been developed and implemented by [37, 47].
A Taylor Model is a polynomial with floating point coefficients which approximates
the invariant manifold combined with an interval remainder which bounds the C0

error associated with the polynomial approximation. In practice once a polynomial
approximation has been computed a topological argument similar in spirit to those
of [49] must be employed in order to obtain rigorously the size of the error interval.
In [37] this argument is implemented for one dimensional taylor models of the stable
and unstable manifolds of the Hénon map using a covering argument which exploits
nonlinear parallelogram coverings of the image of the polynomial approximation. In
(CITE ALEX) the covering argument is extended to two dimensional manifolds, and
rigorous enclosures of the so called Lorenz maniffold are given.

A functional analytic argument for bounding the truncation errors associated
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with the parameterization method is developed and implemented in [6] for differential
equations. A similar technique, which exploits majorant methods of complex analysis
rather than fixed point arguments in function space, is developed and implemented for
differential equations in [25] (such majorant arguments were used by Poincare, as is
mentioned in [9]). In the present work we generalize the methods of [6] to discrete time
dynamical systems. (The techniques of [25] could be adapted for studying discrete
time systems as well).

Most of the methods described above can be used to obtain computer assisted
proofs of the existence of connecting orbits. See for example [36, 37, 48, 6, 46] for
examples of explicit computations. There are also rigorous shadowing methods for the
computer assisted study of connecting orbits which exploit the theory of exponential
dichotomies rather than computing first the stable and unstable manifolds. See for
example [16, 39, 45] and the references therein.

2.2. Example Systems. For the numerical work in this paper we consider sev-
eral generalizations of the classical Hénon map. The delayed Hénon Map is introduced
in [44], and defined by

f(x1, . . . , xn) =


1− a x2

1 + b xn
x1

...
xn−1

 . (2.1)

The map is useful for producing examples of invariant manifolds of arbitrarily high
dimension. The map has two fixed points p1, p2 ∈ Rn where

p1,2 = (x±, . . . , x±) with x± = b− 1±
√

(1− b)2 + 4a

2a
.

We take a = 1.6 and b = 0.1 as in [44], so that p1 has a one dimensional unstable
manifold and an n−1-dimensional stable manifold for any phase space dimension n.

We also consider the five parameter family of (quadratic) volume preserving dif-
feomorphisms f : R3 → R3 given by

f(x, y, z) = fα,τ,a,b,c(x, y, z) =

 z +Qα,τ,a,b,c(x, y)
x
y

 , (2.2)

where Q is the quadratic function

Qα,τ,a,b,c(x, y) = α+ τx+ ax2 + bxy + cy2, with a+ b+ c = 1. (2.3)

The family of maps was introduced in [33], as a volume preserving analog of the
two dimensional area preserving Hénon map. We refer to the dynamical system
determined by Equation (2.3) as the Lomeĺı Map.

In the present work we use the Lomeĺı map in order to find homoclinic orbits which
make ‘long’ excursions. By a long excursion we mean a homoclinic orbit which, once
it leaves a fixed fundamental domain on the local unstable manifold requires a large
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number of iterates before returning to a fixed fundamental domain for the local stable
manifold. While this notion of a long excursion depends on the choice of fundamental
domains (so that it would more correctly be called “long with respect to some choice of
fundamental domains”), in the sequel the natural choice will be to consider maximal
fundamental domains with respect to the parameterization polynomial error. Finding
long orbits for the Lomeĺı Map by continuation is easy as there is a parameter which
effects the length of the shortest excursion (see [17, 34]). Long orbits are good for
testing how far our computer assisted arguments can be pushed before breaking down.

There is an extensive body of numerical evidence which suggests that the Lomeĺı
map admits chaotic motions for many parameter values. See for example Figures 7,
8, 22, and 28 in [17]. The numerical studies in [34] suggest that the mechanism for
much of this chaos is that a there is a homoclinic tangle associated with each of the
two fixed points of the Lomeĺı Map. We rigorously establish the existence of such
tangles for the Lomeĺı Map in Section 5.

Finally, in Section 6 we couple two Lomeĺı maps

f1(x1, y1, z1) ≡ fα1,τ1,a1,b1,c1(x1, y1, z1)
and

f2(x2, y2, z2) ≡ fα2,τ2,a2,b2,c2(x2, y2, z2)

in order to obtain the six-dimensional dynamical system G : R6 → R6 given by

G(x1, y1, z1, x2, y2, z2) ≡
[
f1(x1, y1, z1) + εg2(y2, )
f2(x2, y2, z2) + εg1(y1)

]
, (2.4)

where

g1(y1) ≡ (y1 − x+
1 )(y1 − x−1 ) and g2(y2) ≡ (y2 − x+

2 )(y2 − x−2 ).

Here x±1,2 denotes a coordinate of the fixed points in the f1,2 systems (the fixed points
are on the x = y = z line so that it is enough to specify only the x coordinate of the
fixed point. See [33]). Note that this coupling does not move the fixed points in the
f1,2 systems, but does change the eigenspaces. When ε is small we can approximate a
connecting orbit forG by taking the product of connecting orbits for f1,2. This coupled
map is useful for demonstrating that our methods are viable for higher-dimensional
systems.

2.3. Overview of the Parameterization Method. In this section we review
the Parameterization Method of [9, 10, 11]. We focus on the case where the map f is
real analytic, the differential is diagonalizable, and there are no resonances between
eigenvalues of like stability (these assumptions will be formalized below). For the
general situation general reader should consult [9, 10, 11].

In order to formalize the discussion we take p ∈ Rn to be a hyperbolic saddle for
the real analytic map f : Rn → Rn. We assume that f is a local real analyticomor-
phism and uniformly bound on Bρ(p) ⊂ Rn for some ρ > 0. We also assume that
that Df(p) is diagnolizable over C. Then Df(p) has ns distinct stable eigenvalues
{λs1, . . . , λsns} with |λsi | < 1, and nu distinct unstable eigenvalues {λu1 , . . . , λunu} with
|λui | > 1, and ns + nu = n as p is a saddle. We choose eigenvectors {ξs1, . . . , ξsns} and
{ξu1 , . . . , ξunu} associated with the stable and unstable eigenvalues respectively. For
the moment we leave the lengths of the eigenvectors unspecified.
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As mentioned in the introduction, the stable manifold theorem gives that W s(p)
and Wu(p) are ns and nu dimensional manifolds, respectively tangent to span{ξnsi }
and span{ξnui } at p. The goal of the parameterization method is to determine real
analytic mappings Q : B(0, νs) ⊂ Rns → Rn and P : B(0, νu) ⊂ Rnu → Rn which pa-
rameterize the local stable and unstable manifolds W s

loc(p) and Wu
loc(p) respectively

at p. For the moment we focus our attention on the development for Q (the situation
for P is similar, as discussed at the end of the section).

We simplify our notation a little by letting Bs ≡ B(0, νs) ⊂ Rns , and Λ denote
the ns × ns matrix with λsi in the i-th diagonal entry and zeros elsewhere (this was
called Λs above). Then Q[Bs] is a local stable manifold for p if and only of Q satisfies
the following functional equation with initial data

1. Q(0) = p,
2. DQ(0) = [ξs1| . . . |ξsns ],
3. and

f [Q(θ)] = Q(Λθ), (2.5)

for all θ ∈ Bs.
To see this note that for any Q satisfying these conditions, image(Q) is an immersed
ns-disk containing p and is tangent to span{ξnsi } at p. Moreover Equation (2.5)
implies that (f ◦ Q)(Bs) = Q[ΛBs] ⊂ Q(Bs), so that the ω-limit set of image(Q)
under f is p. Then

Q(Bs) = W s
loc(p),

by definition.
In general it is impossible to compute Q in closed form. Instead, we note that Q

satisfies a (functional) initial value problem with analytic data. Then it is natural to
seek a power series expansion for Q of the form

Q(θ) =
∑
|α|≥0

aαθ
α an ∈ Rn, θ ∈ Rns , α ∈ Nns (2.6)

convergent on Bs. Note that the first order constraints on Q demand that a(0,...,0) = p
and aei = ξsi (here ei is the multi-index with one in the i-th component and zeros
elsewhere). Then the problem is to try to determine the unknown coefficients aα for
|α| ≥ 2.

Remark 2.1. [Uniqueness] Note that the choice of the lengths of the eigenvectors
ξi is free in the above formulation. This corresponds to the freedom in the choice of
scaling of the parameterization of any manifold. Nevertheless, it is shown in [9] (and
we will see again in Section 4) that the solution of Equation 2.5 is unique once the
scale of the eigenvectors is fixed.

A formal solution of Equation (2.5) can be obtained by inserting the power series
given by Equation (2.6) into Equation (2.5), expanding f as a power series, and
computing recurrence relations for the coefficients of Q by matching like powers of θ.
This approach, which is discussed further in Section 3 is sometimes called automatic
differentiation and works well when f is built up out of elementary functions. See [34]
for explicit derivation of the recurrence relations for the power series coefficients of Q
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for the Lomeĺı Map. Iterative approaches for solving Equation 2.5 are discussed in [9],
and numerical implementations of such iterative algorithms are found in [35, 47, 37].

Finally, we note that the parameterization P of the local unstable manifold for f
at p parameterizes the local stable manifold for f−1 at p, so that P must satisfy the
functional equation

f−1 ◦ P = P ◦ Ω−1, (2.7)

where Ω is the matrix of unstable eigenvaules of Df(p). But if we right compose
Equation (2.7) with Ω and left compose with f then we obtain

P ◦ Ω = f ◦ P,

which is identical to Equatoin 2.5. Then P and Q solve the same functional equation,
modulo the appropriate choose of linear map Λ or Ω.

3. Parameterization Method Numerics.

3.1. Computation of the Power Series Coefficients. If P : B ⊂ Rk → Rn
parameterizes a k dimensional (either stable or unstable) invariant manifold of f :
Rn → Rn and, using the notation of Section 2.3, we suppose that

P (θ) =
∑
|α|>0

aαθ
α,

then a formal computation shows that for any |α| ≥ 2 coefficient aα satisfies the so
called homological equation

[Df(p0)− ΛαI]aα = s(α′). (3.1)

Here

Λα = λα1
1 · . . . · λ

αk
k ∈ C,

and s is a function of the coefficients aα′ with |α′| < |α|. The form the function s
depends only on the the nonlinearity of the function f . Then, for a fixed function f ,
computing the coefficient aα requires only the local information p0, Df(p0), and Λ,
as well as the recursive computation of all the lower order coefficients.

The homological equation is discussed abstractly in [9], and is derived for the
concrete example of the Lomeĺı Map in [35, 34] (in particular the explicit form of s is
derived). The function s can be derived in a similar way for all the examples studied
in this paper. See also [6] for similar developments for the Gray-Scott differential
equation.

Consider the set {λ1, . . . , λk} of either all stable or all unstable eigenvalues (de-
pending on wether we are parameterizing the stable or unstable manifold). Let µ−
and µ+ denote the magnitudes of the eigenvalues which are closet to and farthest
from the unit circle respectively. Equation (3.1) shows that the coefficient aα is well
defined as long as

λα1
1 · . . . · λ

αk
k 6= λi
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for any 1 ≤ i ≤ k. Then it is sufficient to directly check this condition for each
multi-index α with

2 ≤ |α| ≤ ln(µ−)

ln(µ+)
,

in order to rule out resonances at all orders. Since this gives a finite number of condi-
tions we conclude that a generic set of eigenvalues will be non-resonant. Nevertheless,
in practice we check this finite set of non-resonance conditions using rigorous interval
arithmetic. The preceding discussion gives an algorithm for computing the coefficients
of a generic chart map P to any desired finite order.

In the remainder of this section we study the computational costs associated with
determining the coefficients for the Delayed Hénon map described in Section 2.2. All
computations are carried out using the IntLab implementation of interval arithmetic
in MatLab. The IntLab package is equipped with subroutines for computing rigorous
interval enclosures of the usual elementary functions, eigenvalues and eigenvectors of
n × n matrices, and solutions of linear systems of equations. See [40] for a more
thorough discussion.

We compute the coefficients of the parameterization of the n−1 dimensional stable
manifold at p1 in dimensions n = 3 through n = 11 to various orders for a = 1.6 and
b = 0.1. We obtain an interval enclosure of x1 ⊂ B(0.557857598881097, 2.221e − 16)
for the fixed point p1 = (x1, . . . , x1).

First we consider the cost of computing parameterizations of the two dimensional
stable manifold with varying polynomial order. We obtain interval enclosures of the
stable eigenvalues

λ1
s ⊂ B(−0.25570156572582, 2.221e−16) and λ2

s ⊂ B(0.22314485443973, 1.388e−16).

and eigenvectors

ξ1
s ⊂ B

 −0.06321850901795
0.24723551785264
−0.96689090327176

 , 1.67e− 16


and

ξ2
s ⊂ B

 0.04854109103645
0.21753175155361
0.97484547470201

 , 1.67e− 16


Table 3.1 reports the performance data for computations with orders between N = 2
and N = 60. Each coefficient is a vector in R3 (the solution of the homological
equation, which is a 3× 3 linear system) so each non-zero coefficient consists of three
intervals. Also given are the resulting computation times and the size of the largest
containment interval of any coefficient.

We also compute the parameterization to third order for phase space dimensions
4 through 11 (manifold dimensions 3 through 10). The results are given in Table
3.1. Each increase in dimension leads to an increase in computation time of roughly
a factor of four. The interval enclosure radii are related to the enclosure radii of
the eigenvalues and eigenvectors, which get more difficult to enclose as the dimension
increases. In every case all eigenvalues and eigenvectors are enclosed in balls with
radii of no more than 5× 10−16.
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Order Number Non-Zero Coeff Comp Time Largest Interval Rad
2 6 0.064 sec 3.61e− 16
3 10 0.143 sec 3.61e− 16
4 15 0.257 sec 3.61e− 16
5 21 0.396 sec 3.61e− 16
10 66 1.41 sec 3.61e− 16
15 136 3.80 sec 3.61e− 16
20 231 8.35 sec 3.61e− 16
30 496 32.01 sec 3.61e− 16
60 1756 395.51 sec 3.61e− 16

Table 3.1
Coefficient Computation Performance: Two-Dimensional Manifold; Three Dimensional Phase

Space.

Phase Space Dim Number Non-Zero Coeff Comp Time Largest Interval Rad
4 (3-D manifold) 20 0.478 sec 4.11e− 16
5 (4-D manifold) 35 0.555 sec 4.61e− 16
6 (5-D manifold) 56 0.820 sec 5.46e− 16
7 (6-D manifold) 84 1.37 sec 5.88e− 16
8 (7-D manifold) 120 3.43 sec 6.98e− 16
9 (8-D manifold) 165 10.92 sec 6.96e− 16
10 (9-D manifold) 220 52.72 sec 9.11e− 16
11 (10-D manifold) 286 292.83 sec 6.95e− 16

Table 3.2
Coefficient Computation Performance: Third order approximation of co-dimension one mani-

fold in n-dimensional phase space.

3.2. Numerical Radius of Validity for Formal Solutions. Suppose that
we have recursively solved the homological equations for the parameterization of a k
dimensional (stable or unstable) manifold up to a fixed finite order N as discussed in
the previous section. Then we have a polynomial approximation

PN (θ) =
∑

0≤|α|≤N

aαθ
α

to the true parameterization P . While any truncated approximation PN is entire (as
PN is a polynomial), we do not expect that PN is a good approximation to P for all
θ. Instead, we would like to determine a fixed domain on which the approximation is
“good”. The following definition makes this precise;

Definition 3.1. Let ε > 0 be a prescribed tolerance, ν > 0, and B = B(0, ν) ⊂
Rk. We call the number ν an ε-numerical radius of validity for the approximation PN
if

Errorν(PN ) ≡ sup
θ∈B
‖f [PN (θ)]− PN (Λ θ)‖ ≤ ε. (3.2)

Remark 3.2.
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• In practice, numerical experimentation is enough to select a good ν. Nu-
merical examples and algorithm performance information for local manifold
computations for the Lomeĺı map can be found in Section 5 and Appendix A
of [35]

• We have the usefull bound

Errorν(PN ) ≤
∑

0≤|α|

|Cα −Dα|ν|α| (3.3)

where Cα, Dα are the power series coefficients of f [PN ] and PN (Λ θ) respec-
tively. (The inequality is due to the maximum modulus principle). When
f is a polynomial, all but finitely many of Aα, and Bα are zero. Then the
sum is finite and Equation (3.2) is easy to rigorously bound numerically using
interval arithmetic.

• Theorem 4.1 shows that under certain conditions which are easy to validate
numerically, we actually have ‖P−PN‖ν ≤ Cε where C is an explicitly known
constant. This provides a mathematically rigorous a-posteriori bound on the
truncation error made in approximating P by PN .

4. A-Posteriori Validation of the Formal Series. In this section we prove an
a-posteriori validation theorem for parameterizations of stable and unstable manifolds
for discrete time dynamical systems. From a theoretical view it is preferable to work
with analytic functions defined on Cn. For the sake of readability we re-state our
assumptions.

A1 Let p ∈ Cn, ρ > 0 and assume that that f : B(p, ρ) ⊂ Cn → Cn is a bounded
analytic function, so that there is K0 > 0 so that

‖f‖ρ ≤ K0.

A2 Assume thatDf(p) is non-singular, diagonalizble, and hyperbolic. Let {λs1, . . . , λsns}
and {ξ2

1 , . . . , ξ
s
ns} denote the stable eigenvalues (which are distinct as Df(p)

is diagonalizable) and a choice of stable eigenvectors respectively. Let Λ de-
note the ns × ns diagonal matrix of stable eigenvalues and Q0 = [ξs1| . . . |ξsns ]
denote the matrix whose columns are the stable eigenvectors.

A3 Assume that PN : B(0, ν) ⊂ Cns → Cn is an N -th order polynomial, with
N ≥ 2, which for each θ ∈ B(0, ν) solves the equation

f [PN (θ)] = PN (Λθ)

exactly to N -th order (in the sense that the power series coefficients of the
function on the left are equal to the power series coefficients of the function
on the right to N -th order).

Then we have the following definition.
Definition 4.1. [Validation values for discrete dynamical systems] The collection

of positive constants ν, εtol, C1, C2, K1, ρ, ρ′, µ∗ and µ∗ are validation values for PN
if

1. ‖f ◦ PN − PN ◦ Λ‖Σ,ν ≤ εtol;
2. ‖PN‖Σ,ν ≤ ρ′ < ρ;
3. 0 < µ∗ ≤ min1≤i≤ns |λsi | ≤ max1≤i≤ns |λsi | ≤ µ∗ < 1;
4.

‖Df [Pn]−1‖Σ,ν ≤ C1µ
−1
∗ + C2(ν);

12



where, as we will see in the proof, we take C1 to be any constant with

‖Q0‖‖Q−1
0 ‖ ≤ C1,

and C2 to be any bound on the theta dependent terms of Df [PN (θ)]−1 on
Bν .

5.

max
β ∈ Zn
|β| = 2

max
1≤j≤n

‖∂βfj‖ρ ≤ K1(ρ).

The bounds in the validation theorem are improved if we take into account only
the of non-zero second partials of f . Then we will define

Nf = max
1≤j≤n

#{β ∈ Zn : |β| = 2 and ∂βfj 6= 0}, (4.1)

and of course have that Nf ≤ n2. However for a given map Nf may be smaller than
this.

Theorem 4.1 (A-posteriori manifold validation). Given validation values ν,
εtol , K1, C1, C2, ρ, ρ′, µ∗ and µ∗, assume that N and δ satisfy the three inequalities

N + 1 >
ln(µ∗)− ln(C1 + µ∗C2)

ln(µ∗)
; (4.2)

δ < min

(
[µ∗ − (C1 + µ∗C2)(µ∗)N ]

2neπNf (C1 + µ∗C2)K1
, (ρ− ρ′)e−1

)
(4.3)

δ >
2(C1 + µ∗C2)εtol

µ∗ − (C1 + µ∗C2)(µ∗)N
(4.4)

Then there is a unique parameterization function P : B(0, ν) ⊂ Cns → Cn solving
Equation 2.5. Additionally, the truncation error is bounded by

‖P − PN‖ν ≤ δ

and the parameterization coefficients aα ∈ Cn decay as

|aα| ≤
δ

ν|α|
for |α| > N.

Remark 4.2. [The Resonance Condition] While the meanings of the conditions
given by Equations 4.2, 4.3, and 4.4 will become clear in the Sections 4.2 and 4.3,
when we discuss the proof of Theorem 4.1, it is appropriate to make a small remark
about Equation 4.2 presently. Note that the right hand side of Equation 4.2 is the
natural logarithm of the ratio of the smallest to the largest eigenvalue of Df(p) (the
spectral gap) minus a correction term which reflects the nonlinearity of f at p. The
condition given by Equation 4.2 guarantees that N is so large enough that there is no
possibility of resonances in the coefficients of the remainder P − PN .
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4.1. Analytic Preliminaries. If x ∈ R, then we use |x| to denote the usual
absolute value. Similarly, for z = a+ ib ∈ C we use the usual “Euclidian” norm |z| =√
a2 + b2. We endow Rn and Cn with the so called sup or infinity norms generated

by the real or complex absolute value functions, so that for x = (x1, . . . , xn) ∈ Rn
and z = (z1, . . . , zn) ∈ Cn we have

|x| = max
1≤i≤n

|xi|, and |z| = max
1≤i≤n

|zi|

where in each case the | · | on the right is either the absolute value for R or C, and
the sup is taken over components. These norms are well suited for numerical work,
as they are easy to evaluate and introduce no rounding errors.

For fixed ẑ ∈ Cm and ν > 0 let Bν(ẑ) ⊂ Cm be the ball (or poly-disk) of radius ν
about ẑ generated by the sup-norm, so

Bν(ẑ) ≡ {(h1, . . . , hm) ∈ Cm : |ẑi − hi| < ν for each 1 ≤ i ≤ m}.

A function g : Bν(ẑ) ⊂ Cm → C is analytic on the poly-disk Bν(ẑ) if g has a power
series expansion

g(z) =
∑
|α|≥0

aα(ẑ − z)α α ∈ Nm aα ∈ C,

which converges for all z ∈ Bν(ẑ). Here we use the usual multi-index notation, so that
if α = (α1, . . . , αm) ∈ Nm and z ∈ Cm then |α| = α1 + . . .+αm and zα = zα1

1 · . . . ·zαmm .
We say that f : Bν(ẑ) ⊂ Cm → Cn is analytic on Bν(ẑ) if f = (f1, . . . , fn) and

each fj : Bν(0) ⊂ Cm → C, 1 ≤ j ≤ n is analytic in the sense just described. Such
an f can also be expressed in power series form as

f(z) =
∑
|β|>0

bβ(ẑ − z)β β ∈ Nm bβ ∈ Cn

which converges for all z ∈ Bν(ẑ). The space of bounded analytic functions on Bν(ẑ)
forms a Banach space under the norm

‖f‖Bν(ẑ),Σ ≡
∑
|α|≥0

|bα|ν|α|.

Of course the bounded analytic functions are also a Banach space under the usual C0

norm, and that the two norms are related by

‖f‖Bν(ẑ) ≡ max
1≤j≤n

max
1≤i≤m

sup
|zi−ẑi|≤ν

|fj(z1, . . . , zm)| ≤ ‖f‖Bν(ẑ),Σ.

In theoretical arguments we often use the C0 norm ‖ · ‖Bν(ẑ), while in numerical
applications it is often convenient to use the sigma-norm ‖ · ‖Bν(ẑ),Σ in conjunction
with the above inequality. Also, by the maximum modulus principle we have that if
f is uniformly bounded and analytic on (the open set) Bν(ẑ), then
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‖f‖Bν(ẑ) = max
1≤j≤n

sup
|zi−ẑi|=ν

|fj(z1, . . . , zm)|,

so that f is in fact bounded on the closed ball. It follows that f is continuous on
∂Bν(ẑ). If the ball in question is centered at the origin, i.e. is a ball of the form Bν(0)
then we sometimes use the notation ‖ · ‖ν,Σ and ‖ · ‖ν for ‖ · ‖Bν(0),Σ and ‖ · ‖Bν(0)

respectively.
Suppose that A is an n×m-matrix with entries aij ∈ C. Then when we consider

a A as a linear operator A : Cm → Cn we employ the usual operator norm

‖A‖M = sup
|η|=1

|A · η|,

where η ∈ Cm and · is matrix-vector multiplication. Since | · | is the sup-norm on
components we have that

‖A‖M ≤ sup
1≤i≤n

m∑
j=1

|aij | ≤ m sup
1≤i≤n

sup
1≤j≤m

|aij |. (4.5)

Given a fixed ẑ ∈ Ck and ν > 0, suppose that g : Bν(ẑ) ⊂ Ck → Cm is an analytic
function and suppose that the entries of the n×m matrix A are themselves analytic
functions aij : Bν(ẑ) ⊂ Ck → C. We can define the norm of the non-constant matrix
A to be

‖A‖M,Bν(ẑ) ≡ max
1≤i≤n

m∑
j=1

‖aij‖Bν(ẑ)

Then the non-constant matrix vector product A · g : Bν(ẑ) ⊂ Ck → Cn is an analytic
function and we have the bounds

‖A · g‖Bν(ẑ) ≤ ‖A‖M,Bν(ẑ)‖g‖Bν(ẑ) ≤ m‖g‖Bν(ẑ),Σ max
1≤i≤n

max
1≤j≤m

‖aij‖Bν(ẑ),Σ,

the last bound being particularly useful for numerical applications.
The family of analytic functions which are zero to N -th order play an important

in the arguments to follow. We say that h : Bν(0) ⊂ Cm → Cn is an analytic N-tail
if h is analytic on Bν(0) and

h(0) = 0, Dh(0) = 0, . . . Dαh(0) = 0, for |α| ≤ N.

Then an analytic N -tail h always has power series representation

h(z) =
∑
|β|>N

bβz
β β ∈ Nm bβ ∈ Cn
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converging for each |z| < ν. With m, n, and ν > 0 fixed we define HN to be the set
of bounded analytic N -tials on Bν(0) ⊂ Cm taking values in Cn (n, m, and ν will
always be clear from context).

We use freely the following well known facts about analytic functions and N -tails.
Lemma 4.2.
1. If ẑ ∈ Cm, ν > 0, f : Bν(ẑ) → Cn is analytic and ‖f‖ν ≤ M , then one has

for each β ∈ Nm the Cauchy Estimates

|bβ | ≤
M

ν|β|
.

2. Let h be a bounded analytic N -tail on Bν(0) ⊂ Cm and λ1, . . . , λm ∈ Cbe
non-zero complex numbers with 0 < |λj | < 1, for 1 ≤ j ≤ m. Suppose that Λ
is the m×m matrix with λj in the j-th diagonal entry and zeros in the non-
diagonal entries, and that 0 < µ∗ ≡ supj |λj | < 1. Then h ◦ Λ is a bounded
analytic N -tail on Bν(0) and

‖h ◦ Λ‖ν ≤ (µ∗)N+1‖h‖ν .

3. If g : Bν(0) ⊂ Cm → C is analytic and ẑ ∈ Cm has |ẑ| < ν, then g is analytic
on the poly-disk Bs(ẑ), s = ν − |ẑ| and for any η ∈ Bs(ẑ), g can be expanded
as

g(ẑ + η) = g(ẑ) +Dg(ẑ) · η +Rẑ(η)

where

‖Rẑ‖s ≤ NgKs2.

Here Ng is the number of non-zero second partial derivatives of of g at ẑ (so
Ng ≤ m2) and K is any constant having

sup
|β|=2

‖∂βg‖s ≤ K.

If f is analytic on Bν(0) ⊂ Cm with values in Cn then the result can be
applied to f component by component.

4. If f : Bν(ẑ) ⊂ Cm → Cn is analytic and z1, z2 ∈ Bν(ẑ) then

|f(z1)− f(z2)| ≤ ‖Df‖M,Bν(ẑ)|z1 − z2|.

For (1) see any standard text on complex analysis (for example [1]). The elemen-
tary proof of (2) is in [6]. (3) is the Lagrange form of the Taylor remainder theorem
(also for example in [1]), while (4) is the mean value theorem combined with our norm
definitions.

In the following letX be a Banach space, L(X) be the Banach space of all bounded
linear operators on X, and A ∈ L(X). Then

‖A‖L(X) ≡ sup
x∈X,‖x‖X=1

‖Ax‖X = M <∞.

We make use of the following standard theorems from non-linear analysis.
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• Contraction Mapping Theorem Let x ∈ X,

Br(x) = {y ∈ X : ‖x− y‖X ≤ r},

and suppose that Φ : Br(x) → Br(x) is continuous. If in addition there is a
0 < κ < 1 so that for any x1, x2 ∈ Br(x) we have

‖Φ(x1)− Φ(x2)‖X ≤ κ‖x1 − x2‖X

then there is a unique x̂ ∈ Br(x) so that Φ(x̂) = x̂.
• Neumann Series If I : X → X is the identity map and A : X → X is a

bounded linear operator with ‖A‖L(X) ≤ 1 then I−A is boundedly invertible
and

[I −A]−1 =

∞∑
k=0

Ak,

from which it follows that

‖(I −A)−1‖L(X) ≤
∞∑
k=0

‖A‖kL(X) ≤
1

1−M
.

Our “analytic homoclinic shadowing theorem” (Theorem 5.1) is based on the Newton-
Kantorovich Theorem [26, 27].

Theorem 4.3 (Newton-Kantorovich Method). Let X,Y be Bancah spaces and
F : X → Y be a differentiable mapping. Assume that there as an x̂ ∈ X and an r > 0
such that

(i) DF (x̂) has bounded inverse, and
(ii) ‖DF (x)−DF (y)‖B(X,Y ) ≤ κ‖x− y‖ for all x, y ∈ Br(x̂).

If
(I)

εNK ≥ ‖DF (x̂)−1 F (x̂)‖X ,

(II)

εNK ≤
r

2
,

and
(III)

4εNK κ ‖DF (x̂)−1‖B(X,Y ) ≤ 1,

then the equation

F (x) = 0

has a unique solution in B(r, x̂).

For an english language exposition of the proof, see also [38]

Finally we require the following bounds for derivatives of analytic functions. The
Lemma 4.3 tells us how to bound the derivatives of an analytic function in terms of
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a bound on the function itself, so long as we are willing to give up some portion of
the domain of analyticity. The estimates are considered “standard” in KAM theory.
(For example they are left as an exercise in [29], and are similar to the bounds for
Fourier series found in Section 2.5.7 of [?]. Similar, but less optimal, estimates are in
[?, 6]) We include a brief proof in order to obtain explicitly the constants, as we must
apply the bounds in the context of computer assisted arguments. Our aim is to give
an elementary and brief computation and we note that our constants are obviously
not sharp. On the other hand we do take care to obtain the optimal order in the loss
of domain parameter σ.

Lemma 4.3 (Cauchy Bounds). Suppose that f : Bν(0) ⊂ Cm → Cn is bounded
and analytic. Then for any 0 < σ ≤ 1 we have that

‖∂if‖νe−σ ≤
2π

νσ
‖f‖ν so that ‖Df‖νe−σ ≤

2πm

νσ
‖f‖ν , (4.6)

as well as

‖∂i∂jf‖νe−σ ≤
4π2

ν2σ2
‖f‖ν and ‖D2f‖νe−σ ≤

4π2m2

ν2σ2
‖f‖ν . (4.7)

Proof: Consider first the one dimensional case, where ν > 0 and f : Bν(0) ⊂ C→ C
is analytic. Let 0 < σ ≤ 1. Then using Cauchy’s formula [1] we have that for any
z ∈ Bνe−σ (0)

f ′(z) =
1

2πi

∫
|ξ|=ν

f(ξ)

(ξ − z)2
dξ.

Note that the denominator is bounded precisely because |z| ≤ νe−σ, i.e. because we
are taking z in a reduced domain. (Choosing to reduce the domain by an amount
exponential in σ gives the optimal 1/σ dependance in the final estimate, as will be
seen in the proof). We parameterize the path |ξ| = ν by ξ(θ) = νeiθ and take norms
to obtain

|f ′(z)| = 1

2π

∣∣∣∣∫ 2π

0

f [νeiθ]iνeiθ

(νeiθ − z)2
dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

ν‖f‖ν
|νeiθ − z|2

dθ

≤ ‖f‖ν
2πν

∫ 2π

0

1

|eiθ − e−σ|2
dθ, (4.8)

where the last inequality is due to the fact that |z| ≤ νe−σ, so that the denominator
is minimized when |z| = νe−σ. Since the integrand is radially symmetric once we
take the norm of f , we are free to take z = νe−σ, and then factor a ν2 out of the
denominator of the integrand.

Noting that eσ ≥ 1 + σ for all real σ, we have that σ/(1 + σ) ≤ 1 − e−σ for all
σ > −1. Then for 0 < σ ≤ 1 we have
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σ/2 ≤ σ

1 + σ
≤ 1− e−σ ≤ |eiθ − e−σ|, (4.9)

for all 0 ≤ θ ≤ 2π. Naive application of Eq (4.9) to Eq (4.8) would yield |f ′(z)| ≤
4‖f‖ν/σ2. However a slightly more subtle argument yields an estimate which is only
inverse proportional to σ. Eq (4.8) can be re-written as

‖f‖ν
2πν

∫ 2π

0

1

|eiθ − e−σ|2
dθ

=
‖f‖ν
2πν

(∫ σ
2

−σ2

1

|eiθ − e−σ|2
dθ +

∫ 2π−σ2

σ
2

1

|eiθ − e−σ|2
dθ

)
(4.10)

For the first of the integrals on the right in Eq (4.10) we exploit Eq (4.9) to obtian

∫ σ
2

−σ2

1

|eiθ − e−σ|2
dθ ≤

∫ σ
2

−σ2

1

|σ2 |2
dθ ≤ 4

σ
. (4.11)

On the other hand, since |eiθ − e−σ| ≥ sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/4, the second
integral on the right in Eq (4.10) satisfies the bound

∫ 2π−σ2

σ
2

1

|eiθ − e−σ|2
dθ ≤ 4

∫ π
2

σ
2

π2

4θ2
≤ 2π2

σ
(4.12)

Racalling that z ∈ Bνe−σ (0) we note that Eq (4.11) and Eq (4.12) are uniform in z
and combine them with Eq (4.10) to obtain

‖f ′‖νe−σ ≤
1

2πν

(
4

σ
+

2π2

σ

)
‖f‖ν ≤

2π

νσ
‖f‖ν . (4.13)

If f : Bν(0) ⊂ Cm → Cn then each fk(z1, . . . , zi, . . . , zm), 1 ≤ i ≤ m, 1 ≤ k ≤ n
is analytic in the i-th variable (with the other variables held fixed), so that we obtain

∣∣∣∣ ∂∂zi fk(z)

∣∣∣∣ ≤ 2π

νσ
‖f‖ν ,

for any |z| ≤ νe−σ by applying the same argument to the Cauchy integral of ∂/∂zifk(z).
Since this is uniform in i, k and z we apply the estimate given by Equation (4.5) in
order to obtian

‖Df‖νe−σ ≤
2πm

νσ
‖f‖ν ,

as desired. The same estimates can be applied to the Cauchy type integral
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∂

∂zi

∂

∂zj
f(z) =

1

(2πi)2

∫
|ξi|=ν

∫
|ξj |=ν

f(z1, . . . , ξi, . . . , ξj , . . . , zm)

(ξi − zi)2 (ξj − zj)2
dξi dξj

to obtain in a similar fashion that

‖D2f‖νe−σ ≤
4π2m2

ν2σ2
‖f‖ν ,

as desired.

�

4.2. Proof of the Validation Theorem. We seek an analytic N -tail h : Bν →
Rn so that P = PN +h and having ‖h‖ν ≤ δ as small as possible (note that δ bounds
the truncation error in the approximation PN ). The key observation is that h itself
solves a certain functional equation. To see this let P = PN + h so that Equation 2.5
becomes

f [PN + h] = [PN + h](Λ).

Since f is analytic in Bρ ⊂ Rn, and since ‖PN‖ν ≤ ρ′ ≤ ρ, f has a Taylor expansion
about PN (θ) for each θ ∈ Bs. Then let θ ∈ Bs so that

f [PN (θ) + h(θ)] = f [PN (θ)] +Df [PN (θ)]h(θ) +RPN (θ)(h(θ)), (4.14)

where for any |z| ≤ ρ′, Rz is the Taylor remainder of f expanded at z. Again, since
f is analytic on ρ > ρ′ we have that Rz(η) is analytic on a disk of radius s = ρ− ρ′.
Let

E(θ) = f [PN (θ)]− PN (Λθ) (4.15)

and note that E is an analytic N -tail by the assumption that PN solves Equation 2.5
exactly to N -th order. Then using Equations 4.14 and 4.15 in Equation 2.5 we have
a new operator equation in terms of h

h[Λθ]−Df [PN (θ)]h(θ) = E(θ) +RPN (h). (4.16)

In order to re-write Equation 4.16 as a fixed point equaiton on HN , the Banach
Space of all analytic N -tails from B into Cn, consider the linear operator L : HN →
HN defined by the left hand side of Equation 4.16. So for any p, q ∈ HN we define
L[q] to be

L[q](θ) = q[Λθ]−Df [PN (θ)]h(θ),

and our first task is to study the equation L[q] = p. He have that
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Lemma 4.4. Let C1, C2, µ∗ and µ∗ be validation values as in Definition 4.1.
Suppose that N satisfies the assumption given by Equation 4.2 of Theorem 4.1. Then
the linear operator L is boundedly invertible on HN , so that for any p ∈ H there exists
a unique solution to the equation

L[q] = p.

Moreover we have the bound

‖L−1‖ ≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N
.

Using Lemma 4.4 we apply L−1 to both sides of Equation 4.16 to see that if P = PN+h
then

h = L−1 [E(θ) +RPN [h(θ)].]

Define the non-linear operator Φ : HN → HN to be

Φ(h) = L−1 [E(θ) +RPN [h(θ)]] . (4.17)

The preceding discussion makes it clear that P = PN + h is an exact solution of
Equation 2.5 if and only if h is a fixed point of Equation 4.17. What remains is to
show that if the assumptions given by Equations 4.2, 4.3 and 4.4 are satisfied, then Φ
admits a unique fixed point h. A natural strategy is to employ the Banach Contraction
Mapping Theorem. In fact, as we will see in the next section, the assumptions given
by Equations 4.3 and 4.4 are exactly the conditions which make Φ a local contraction
near PN .

Lemma 4.5. Under the hypotheses of Theorem 4.1 Φ is a contraction on the ball
Uδ = {h ∈ HN : ‖h‖ν ≤ δ}. Hence there is a unique fixed point h of Φ on Uδ so that
PN + h is an exact solution of Equation 2.5.

Then Theorem 4.1 is true as soon as the lemmas are proved. Note that on an
heuristic level, it is natural to expect that Φ is a contraction as E is a small constant
(with respect to h), and RPN should depend “quadratically” on h.

4.3. Proofs of the Lemmas. Now we complete the proof of Theorem 4.1 by
providing the proofs of the lemmas.

Proof of Lemma 4.4: Let p and q be bounded analytic N -tails on Bν and consider
the equation

L[q](θ) ≡ q[Λθ]−Df [PN (θ)]q(θ) = p(θ). (4.18)

If we let p̄(θ) ≡ −Df [PN (θ)]−1p(θ) then this is equivalent to

q(θ)−Df [PN (θ)]−1q(Λθ) = p̄(θ),
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which upon defining the linear operator

A[q](θ) ≡ Df [PN (θ)]−1q(Λθ)

becomes

(I −A)[q](θ) = p̄(θ).

Now consider the norm

‖A‖HN ≡ sup
‖η‖ν=1

‖A[η](θ)‖ν

= sup
‖η‖ν=1

‖Df [PN ](η ◦ Λ)‖ν

≤ sup
‖η‖ν=1

(C1µ
−1
∗ + C2)|Λ|N+1‖η‖ν

≤ µ−1
∗ (C1 + µ∗C2)(µ∗)N+1,

where we have used the bound from Equation 4.19 and Estimate 2 of Lemma 4.2.
Then we apply the assumption given by Equation (4.2) of Theorem 4.1 and see that

‖A‖HN ≤
(C1 + µ∗C2)(µ∗)N+1

µ∗
< 1.

It follows from the Neumann Theorem that (I −A) is boundedly invertible, and that
we have the bound

‖(I −A)−1‖HN ≤
∞∑
i=0

‖A‖iHN =
1

1− C1(µ∗)N+1

µ∗

.

From the bounded invertability of (I − A) we obtain a unique solution to Equaiton
4.18 in the form

q(θ) = (I −A)−1[p̄](θ) = −(I −A)−1Df [PN (θ)]−1p(θ).

Since p and q were arbitrary we have

‖L−1‖HN ≤ ‖(I −A)−1‖HN ‖Df [PN ]−1‖Σ,ν

≤ 1

1− (C1+µ∗C2)(µ∗)N+1

µ∗

(µ−1
∗ C1 + C2)
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≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
,

as desired.

�

Proof of Lemma 4.5: Since we hypothesized Equation 4.2, we can apply Lemma
4.4 and have that L−1 is a well defined bounded linear operator. Then the operator

Φ[h](θ) ≡ L−1
[
E(θ) +RPN (θ)[h](θ)

]
is well defined. To employ the Banach Fixed Point Theorem we must establish that
when Uδ = {h ∈ HN : ‖h‖ν ≤ δ} is a δ-neighborhood in the space of analytic N -tails
and δ satsfies the hypotheses of Theorem 4.1 and then

(i) Φ maps Uδ into itself.
(ii) there is a 0 < κ < 1 so that for any h1, h2 ∈ Uδ one has ‖Φ(h1)− Φ(h2)‖ν ≤

κ‖h1 − h2‖ν .

In order to establish (i) we first note that for any z, η ∈ Cn with |z| ≤ ρ′ and
|η| ≤ s ≡ ρ− ρ′ we have that

|Rjz(η)| ≤ NfK1s
2

by straightforward application of the Lagrange Form of the Taylor Remainder to each
of the 1 ≤ j ≤ n components of Rz(η) (this estimate is carried out explicitly in [6] see
Equaiton (75)). Then since ‖PN‖ν ≤ ‖PN‖Σ,ν ≤ ρ′ by by the definition of validation
values (def 4.1) and δ < se−1 < s we have for each θ ∈ Bν

|RPN (θ)(h(θ))|] ≤ |Rz(h(θ))| ≤ ‖Rz‖δ ≤
δ2

s2
‖Rz‖s ≤ NfK1δ

2.

Then

‖Φ(h)‖ν ≤ ‖L−1‖ (‖E‖ν + ‖RPN (h)‖ν)

≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1

(
εtol +NfK1δ

2
)

But

C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
εtol ≤

δ

2

and

C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
NfK1δ

2 ≤ δ

2
,
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as we see by applying the hypotheses given by Equations 4.3 and 4.4 respectively.
Then Φ does in fact map into Uδ, as desired.

To establish (ii) we begin by considering the differential of the remainder term.
Then let θ ∈ Bν and z = PN (θ) and note that |z| ≤ ρ′ (due to the definition of
validation values, see Def (4.1)). Since δ < se−1 < s we choose a 0 < σ ≤ 1 and let
ω = δ/se−σ so that for any and h ∈ Uδ we have the bound

‖DRz(h(θ))‖δ = ‖DRz ◦ ω‖se−σ

≤ ω‖DRz‖se−σ

≤ δ

se−σ
2πnσ−1

s
‖Rz‖s

≤ 2nπeσNfK1

σ
δ,

≤ 2neπNfK1δ.

Here we have used the Taylor Estimate of Lemma 4.2, the Cauchy Bounds of Estimate
4.3, the N -tail scaling estimate of Lemma 4.2, the fact that σ−1eσ is minimized at
σ = 1, and the assumption that that δ < e−1s.

Then for any h1, h2 ∈ Uδ we have

|Rjz(h1(θ))−Rjz(h2(θ))| ≤ 2neπNfK1δ‖h1 − h2‖ν

by the mean value theorem. So

‖Φ(h1)− Φ(h2)‖ν =
∥∥L−1[E −RPN (h1)]− L−1[E −RPN (h2)]

∥∥
ν

= ‖L−1[RPN (h1)−RPN (h2)‖ν

≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
2neπNfK1δ‖h1 − h2‖ν

≤ κ‖h1 − h2‖ν ,

where

κ ≡ 2neπNf (C1 + µ∗C2)K1

[µ∗ − (C1 + µ∗C2)(µ∗)N+1]
δ < 1,

as δ satisfies the hypothesis given by Equation (4.3) of Theorem (4.1).

�
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4.4. The Bounds C1 and C2 when f is polynomial. In this section we de-
scribe how to obtain the bounds on the non-constant matrix Df [PN (θ)]−1 required
in the definition of validation values. We focus on the case where f is a polynomial.
This is the only part of the validation argument that makes the polynomial assump-
tion. We note that if f is a general analytic function then we can use the Taylor
expansion of f to obtain that f is polynomial plus a remainder as small as we wish.
The argument given here can be modified to work in this more general case as well.
We do not pursue the details here.

By the inverse function theorem we have

Df [PN (θ)]−1 = Df−1[f ◦ PN (θ)],

which can be used to compute an analytic expression for Df [PN ]−1 as long as f−1 is
known explicitly. Then we let

Df(x)−1 =

M−1∑
|β|≥0

Bβx
β

where each Bβ is an n× n matrix, and M is the order of f . Recall also that

PN (θ) =
∑

0≤|α|≤N

aαθ
α.

Then if N̄ = N(M − 1) we have that Df [PN (θ)]−1 is an N̄ -th order polynomial with
matrix coefficients. Then we let

Df [PN (θ)]−1 =
∑

0≤|α|≤M̄

Cαθ
α

where the coefficients Cα, depend on the Bβ and cα, can be worked out via Cauchy
Products.

Let Q0ΣQ−1
0 = Df(p) be the eigenvector/eigenvalue decomposition of the differ-

ential and note that

C0 = Df [PN (0)]−1 = Df(p)−1 = Q−1
0 Σ−1Q0.

Then

‖Df [PN ]−1‖Σ,ν ≤

∥∥∥∥∥∥Q−1
0 Σ−1Q0 +

∑
1≤|α|M̄

Cαθ
α

∥∥∥∥∥∥
Σ,ν

≤ ‖Q0‖‖Q−1
0 ‖µ−1

∗ +

N̄∑
|α|=1

‖Cα‖ν|α|.
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Then we define C1 and C2 to be any bounds of the form

‖Q0‖‖Q−1
0 ‖ ≤ C1,

and

N̄∑
|α|=1

‖Cα‖ν|α| ≤ C2.

Note that since these expressions involve bounding finite sums of known quantities,
both C1 and C2 are easily found using interval arethmetic. Finally we have that

‖Df [PN ]‖Σ,ν ≤ C1µ
−1
∗ + C2. (4.19)

as needed in the definition of the validation values.

Of course if f is not a polynomial map it is possible to make a similar argument
using at M -th order Taylor expansion by including a remainder term. This is a
technicality not needed in the present work but which could be easily added to the
scheme. In this case C2 would simply have to incorporate as well the truncation error
on the ball of radius ρ′.

5. Rigorous Computation of Transverse Homoclinic Orbits. Throughout
this section we make the following definitions and assumptions.

P1: Let p ∈ Rn be a hyperbolic fixed point of the analyticomorphism f : Rn →
Rn. Assume that Df(p) is diagonalizable, and that ns, nu > 0, the number
of stable and unstable eigenvalues respectively, have nu + ns = n.

P2: Let PN be theN -th order polynomial approximate parameterization ofWu(p).
In addition let νu, εu, Cu1 , Cu2 , ρ, ρ′, and µ∗, µ

∗ be validation values for PN .
Assume that these validation values satisfy the hypotheses of Theorem (4.1)
applied to f−1, so that the is a unique analytic N -tail h with ‖h‖νu ≤ δu so
that P = PN + h is a parameterization of Wu

loc(p).
P3: Similarly, letQN be theN -th order polynomial approximate parameterization

of W s(p) and νs, εs, C
s
1 , Cs2 , ρ, ρ′, and µ−, µ+ be validation values for QN

and assume that these validation values satisfy the hypotheses of Theorem 4.1
so that the is a unique analytic N -tail g with ‖g‖νu ≤ δs so that Q = QN + g
is a parameterization of W s

loc(p).

Then we can write the homoclinic functional equation (Equation 1.3) in the form

F (θ, x1, x2, . . . , xk−2, xk−1, φ) =
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f−1(x1)− PN (θ)− h(θ)
f−1(x2)− x1

f−1(x3)− x2

...
f−1(xj)− xj−1

f(xj)− xj+1

...
f(xk−2)− xk−1

f(xk−1)−QN (φ)− g(φ)


≡ FN (θ, x1, . . . , xk−1, φ) +H(θ, φ), (5.1)

where again we stress that PN and QN are explicitly know polynomials and h, and g
are unknown analytic N -tails for which we have the mathematically rigorous bounds
given in P3. We call FN the discretized homoclinic functional equation.

Heuristically our validation scheme is as follows. Assume that there is x̂ = (θ̂, x̂1,

. . . , x̂k−1, φ̂) ∈ Rnk with θ̂ ∈ B◦u and φ̂ ∈ B◦s having that x̂ is an approximate zero of
the discretized homoclinic equation, i.e. assume that

‖FN (x̂)‖ ≈ 0.

If in addition δs and δu are small, then we have that x̂ is also an approximate zero
of F , so that orbit(x̂j) is approximately homoclinic to p for each 1 ≤ j ≤ k − 1. Our
goal is to apply the Newton-Kantorovich Theorem (Thm 4.3) in order to conclude
that there exists a true solution x∗ of the full homoclinic functional equation near x̂.
These notions are formalized in the next section.

5.1. Validation of Homoclinic Connections. We now formalize the heuristic
scheme just described. Assume, in addition to P1, P2 and P3, that we have computed,
or are otherwise given, the following “quasi-local” data, which we refer to as homoclinic
validation values.

Definition 5.1 (Homoclinic validation values). We say that the vector x̂ =

(θ̂, x̂1, . . ., x̂k−1, φ̂) ∈ Rnk, and positive constants AN , MN , Cβ, CP , κ, δ̂, ε̂, and r
are validation values for the homoclinic functional equation if the following conditions
are met:

1. Define the point x0 ∈ Rnk to be given by x0 = (0nu , p, . . . , p, 0ns) where p is
the fixed point of f described in P1−P3 and 0nu and 0ns are the zero vectors
in Rnu and Rns . Assume that x0 is not in the poly-disk Br(x̂) ⊂ Rnk.

2. x̂ = (θ̂, x̂1, . . . , x̂k−1, φ̂) ∈ Rnk is an ε̂-approximate solution of F = 0, in the
sense that

|DFN (x̂)−1 FN (x̂)| ≤ ε̂.

3. DFN (x̂) is non-singular and the positive constantAM has that ‖DFN (x̂)−1‖M ≤
AN .

4. |θ̂| < νu and |φ̂| < νs so that we can define what we will call the first order
loss of domain parameters

σ̂s = − ln

(
|θ̂|
νs

)
, and σ̂u = − ln

(
|φ̂|
νu

)
.
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5. The positive constant MN has that max
1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

 2πnu
νuσ̂u

δu+

 max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 2πns
νsσ̂s

δs ≤MN .

6. The positive constant δ̂ has that max
1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

 δu +

 max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 δs. ≤ δ̂.

7. The parameters θ̂, φ̂ and the positive constant r also satisfy |θ̂|+ r < νu and

|φ̂|+r < νs so that we can define the second order loss of domain parameters

σs = − ln

(
|θ̂|+ r

νs

)
, and σu = − ln

(
|φ̂|+ r

νu

)
.

8. The positive constant Cβ has that

max
1≤j≤k−1

max
1≤i≤n

max
|β|=2

{
‖∂βfi‖Br(x̂j), ‖∂

βf−1
i ‖Br(x̂j)

}
≤ Cβ .

9. The positive constant CP has

max

(
‖D2PN‖Br(θ̂) +

2π2n2

ν2
uσ

2
u

δu, ‖D2QN‖Br(φ̂) +
2π2n2

ν2
sσ

2
s

δs

)
≤ CP .

10. Finally, κ is positive constant having

NfCβ + CP ≤ κ,

where Nf is the max of the number of non-zero second partials of f and f−1.

We sometimes write Cβ(r), CP (r) and κ(r) to emphasize that these constants
should be thought of as depending on the radius r of the Rnk poly-disk about x̂.
In other words they are the members of a validation values set which carry global
information about the ball Br(x̂) ⊂ Rnk. In the next section we will prove the
following a-posteriori result for F , which is based on a standard Newton-Kantorivich
argument combined with the rigorous a-posteriori bounds on the parameterizations.

Theorem 5.1 (A-posteriori validation of a homoclinic connection). Given as-

sumptions [P1]− [P3] let x̂, AN , MN , Cbeta, CP , κ, δ̂, ε̂, and r be a set of homoclinic
validation values as in Def 5.1. We call εNK a “Newton-Kantorovich Epsilon” if

1

1−MN

(
ε̂+ δ̂

)
≤ εNK . (5.2)

With εNK fixed suppose that
A. 0 < MN < 1,
B. 2εNK ≤ r,
C. AN

1−MN
4κεNK ≤ 1.
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Then there is a unique x∗ ∈ Br(x̂) ⊂ Rnk which is a non-trivial solution of the
equation F (x∗) = 0. Such an x∗ clearly has that

|x∗ − x̂| ≤ r.

Moreover, if for all x ∈ Br(x̂) ⊂ Rnk we have both that DFN (x)−1 exists, and that

‖DFN (x)−1DH(x)‖M,Br(x̂) < 1, (5.3)

then it follows that W s(p)∩Wu(p), which is non-empty due to the existence of x∗, is
also transverse.

5.2. Proof of Theorem 5.1. The proof consists of two parts. First we use
Theorem 4.3 to show that the hypotheses of Theorem 5.1 combined with the definition
of homoclinic validation values imply the existence of a non-trivial zero of F in Br(x̂).
Then we study the form of the differential in order to establish the transversality. The
subtly throughout is that while FN (x̂) and DF−1

N (x̂) are known, it is F and DF which
must be explicitly bound.

In order to apply the Newton-Kantorovic Theorem (thm 4.3) we must show that
(i) DF (x̂) has bounded inverse,
(ii) DF is Lipschitz on Br(x̂) with Lipschitz constant κ,
(I) |DF (x̂)−1F (x̂)| ≤ εNK ,

(II) εNK ≤ r/2,
(III) 4εNKκ‖DF (x̂)−1‖M ≤ 1.

Here the roman numerals refer to the nomenclature established in the statement of
Theorem 4.3.

Let [DF−1
N (x̂)](a:b), with a < b ∈ N, denote the submatrix of DF−1

N (x̂) composed
of columns a through b. We begin by noting that

DF−1
N (x̂)DH(x̂) = DF−1

N (x̂)


Dθh(θ̂) 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . Dφg(φ̂)


=
[
[DF−1

N (x̂)](1:n)Dh(θ̂) | 0 | . . . | 0 | [DF−1
N (x̂)](nk−n+1:nk)Dg(φ̂)

]
,

so that

‖DF−1
N (x̂)DH(x̂)‖M ≤

nu max
1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

 ‖Dh‖νue−σ̂u
+

ns max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 ‖Dg‖νse−σ̂s
≤MN

< 1,
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by part 5 of Definition 5.1, The Cauchy bounds of Lemma (4.3), and Assumption A of
the present Theorem. It follows from the Neumann Series Theorem that the matrix
I +DF−1

N (x̂)DH(x̂) is invertible and that

∥∥[I +DF−1
N (x̂)DH(x̂)]−1

∥∥
M
≤ 1

1−MN
. (5.4)

Then we have that

DF (x̂)−1 = [DFN (x̂) +DH(x̂)]−1

=
[
DFN (x̂)

(
I +DFN (x̂)−1DH(x̂)

) ]−1

= [I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1 (5.5)

exists, and obtain the bound

‖DF (x̂)−1‖M ≤
AN

1−MN
. (5.6)

This establishes (i) of Theorem 4.3.

In order to investigate the Lipschitz condition on the differential DF we define the
real valued functions gij : Br(x̂) ⊂ Rnk → R where 1 ≤ i, j ≤ nk by the expressions

gij(z) = ∂jFi(z).

Then for x, y ∈ Br(x̂) we have that

|gij(x)− gij(y)| ≤ ‖∇gij‖M,Br(x̂)|x− y|

≤
nk∑
`=1

‖∂`gij‖Br(x̂)|x− y|

≤

(
nk∑
`=1

‖∂`∂jFi‖Br(x̂)

)
|x− y|, (5.7)

by the Mean Value Theorem. Then

‖DF (x)−DF (y)‖M ≡ sup
v ∈ Rnk
|v| = 1

|[DF (x)−DF (y)]v|

≤ max
1≤i≤nk

∑
1≤j≤nk

|[DF (x)−DF (y)]ij |

= max
1≤i≤nk

∑
1≤j≤nk

|∂jFi(x)− ∂jFi(y)|

≤

 max
1≤i≤nk

nk∑
j=1

nk∑
`=1

‖∂`∂jFi‖Br(x̂)

 |x− y|, (5.8)
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where we have used the estimate of Inequality 5.7.

Note that from 7 of Definition 5.1 and the Cauchy Bounds of Lemma 4.3 we have
that for any 1 ≤ i ≤ n

‖∂`∂jhi‖Br(x̂) = ‖∂`∂jhi‖Br(θ̂)

≤ ‖∂`∂jhi‖νue−σu

≤ 2π2

ν2
uσ

2
u

δu,

and similarly

‖∂`∂jgi‖Br(x̂) ≤
2π2

ν2
sσ

2
s

δs.

Using these estimates and considering the second partial derivatives of F one compo-
nent at a time we recall 8, 9, and 10 of Definition 5.1 and obtain that

max
1≤i≤nk

nk∑
j=1

nk∑
`=1

‖∂`∂jFi‖Br(x̂) ≤ NfCβ + CP = κ.

Combining this with Inequality (5.8) gives (ii) of Theorem 4.3.

For (I) of Theorem 4.3 we use the notation [DF−1
N (x̂)](a:b) as above and have that

∣∣DF−1
N (x̂)H(x̂)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
DF−1

N (x̂)


h(θ̂)

0
...
0

g(φ̂)



∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣[DF−1

N (x̂)](1:n) h(θ̂) + [DF−1
N (x̂)](nk−n+1:nk) g(φ̂)

∣∣∣
≤

 max
1≤i≤nk

n∑
j=1

∣∣[DF−1
N (x̂)]ij

∣∣ ‖h‖νu
+

 max
1≤i≤nk

nk∑
j=nk−n+1

∣∣[DF−1
N (x̂)]ij

∣∣ ‖g‖νs
≤ δ̂, (5.9)

where we have used 6 of Definition 5.1. Then, recalling Equation 5.5 and Inequality
5.6 we have
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∣∣DF (x̂)−1F (x̂)
∣∣ ≤ ∣∣[I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1F (x̂)

∣∣
=
∣∣[I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1 (FN (x̂) +H(x̂))

∣∣
≤ 1

1−MN

(∣∣DF−1
N (x̂)FN (x̂)

∣∣+
∣∣DF−1

N (x̂)H(x̂)
∣∣)

≤ 1

1−MN

(
ε̂+ δ̂

)
≤ εNK , (5.10)

where we have used 2 of Definition 5.1, the Estimate given by Inequality 5.9, and the
the defintion of εNK given by Equation 5.2. This establishes condition (I) of Theorem
4.3. Finally note that (III) of Theorem 4.3 follows directly from assumption C of
the present theorem and Inequality 5.6, while (II) of Theorem 4.3 is assumption B
of the present Theorem.

Then the conditions of Theorem 4.3 are satisfied and we obtain the existence of
a unique x∗ ∈ Br(x̂) so that F (x∗) = 0. Note that since x∗ 6= x0 by 1 of Definition
5.1, we obtain a non-trivial homoclinic orbit.

Now we turn to the question of transversality of the intersection at x∗. An
argument similar to the one used to derive Equation 5.5, except with x̂ replaced by
a variable x ∈ Br(x̂) shows that DF (x) is invertible for all x ∈ Br(x̂) as long as
DFN (x) is invertible for all x ∈ Br(x̂) and the condition given by Equation 5.3 is
met. Since we have assumed that both of these conditions are met, it follows that
DF (x∗) is non-singular.

What remains is to show is that the non-singularity of DF (x∗) implies that the
homoclinic orbit is transverse. Assume for the moment that k = 1, so that the local
manifolds Wu

loc(p) = P [Bνu(0)] and W s
loc(p) = Q[Bνs(0)] intersect at x∗. In this case

the operator F reduces to

F (θ, φ) = P (θ)−Q(φ).

and we have a solution x∗ = (θ∗, φ∗) ∈ Br(x̂). Since DF (x∗) is non-singular, the
columns of

DF (x∗) = [DθP (θ∗)| −DφQ(φ∗)]

span Rn. But the columns ofDθP (θ∗) andDφQφ∗ span TP (θ∗)W
u(p) and TQ(φ∗)W

s(p)
respectively. It follows that TP (θ∗)W

u(p) and TQ(φ∗)W
s(p) span Rn, which is to say

that x∗ is a point of transverse intersection.

Now suppose K > 1, and x∗ ∈ Rnk is the solution of F = 0. Since any f -iterate
of a local unstable manifold is again a local unstable manifold, and any f -iterate
of a homoclinic point is another homoclinic point, we have that the local unstable
manifold fk[Wu

loc(p)] = fk[P (Bnu(0))] intersects W s
loc(p) = Q[Bνs(0)] at the phase

space point Q(φ∗) = fk[P (θ∗)]. Then we are in exactly the same situation as above,
and the intersection is transverse if and only if the matrix

[−Dθf
k[P (θ∗)] |DφQ(φ∗)] = [−Dxf

k[P (θ∗)]DθP (θ∗)|DφQ(φ∗)]
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is non-singular. Note that Dxf
k(x) is non-singular for any x ∈ Rn as f is a diffeo-

morphism.
Now, by hypothesis the matrix

DF (x∗) =

 −DθP (θ∗) 0
... A

...
0 −DφQ(φ∗)

 ,

is non-singular, so that if we construct the non-singular matrix

B =

(
Dxf

k[P (θ∗)] 0
0 Idn(k−1)×n(k−1)

)
and multiply, we have that the product

BDF (x∗) =

 −Dxf
k[P (θ∗)]DθP (θ∗) 0

... C
...

0 −DφQ(φ∗)


is the product of non-singular matrices hence is itself non-singular (here the actual
form of C is unimportant to us). Since BDF (x∗) is non-singular, it has linearly
independent columns. Exploiting this linear independence gives that the columns of

[−Dθf
k[P (θ∗)] |DφQ(φ∗)] = [−Dxf

k[P (θ∗)]DθP (θ∗)|DφQ(φ∗)],

span Rn, which is to say that the local manifolds W s
loc(p) = Q[Bνs(0)] and Wu

loc(p) =

fk[P (Bνu(0)] intersect transversally, as desired.

�

6. Computer Assisted Proofs of Transverse Homoclinic Orbits and
Chaos. We begin by considering a Lomeĺı Map with parameters a = 0.5, b = −0.5,
c = 1, α = −5.34, and τ = 0.8. These correspond to Dullin-Meiss parameters of ā = 1,
b̄ = 0.5, c̄ = 0.5, µ = −2.4 and ε = 5.5. For these parameters values there is a hy-
perbolic fixed point at p = (x−, x−, x−) with x− = −2.745207879911715. Then Df(p)
has unstable complex conjugate eigenvalues−0.402451645443971±i2.035392592347574
and stable eigenvalue 0.232299350932085. Table 6 illustrates the results of the param-
eterization computations, which are carried out using the rigorous interval arithmetic
library IntLab (which runs under Matlab).

The table records the dimension of the manifolds, the approximation order N used
in each case, the time taken to compute the coefficients of the polynomial approx-
imations PN and QN , the time taken to a-posteriori validated the approximations,
the magnitudes of the resulting bounds on the truncation errors ‖h‖νu = δu and
‖g‖νs = δs, the size of the parameter domain radii νu and νs, the size of the eigen-
vector scaling, and finally a rigorous bound on the size of the local manifolds in the
sigma-norm.
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Dim Order Approx Time Valid Time Validated Error Radius |ξ| ‖ · ‖ν,Σ
1 50 5.16 sec 0.40 sec 8.71× 10−13 0.9 2 1.96
2 25 1.68 min 2.84 sec 5.67× 10−12 0.4 1.5 1.21

Table 6.1
Manifold Validation Performance: Example 1 (ε = 5.5, µ = −2.4)

K x̂1 r
6 (−1.648314148155201,−3.605864990373435,−2.750773367689280) 1.1× 10−11

6 (−1.692334813290302,−3.652591337627915,−2.718741184627647) 1.06× 10−11

Table 6.2
Primary Intersection Validation (ε = 5.5, µ = −2.4): 3.21 sec for proof of both orbits. Chaos

confirmed in both cases.

We then use a classical, numerical Newton scheme to find an approximate numer-
ical solution to the discretized homoclinic functional equaiton FN (x) = 0 with k = 6
and of course n = 3. This leads to an approximate zero

x̂ =



θ̂
x̂1

x̂2

x̂3

x̂4

x̂5

φ


=



(−0.337379322019076, 0.088431234641040)
(−1.648314148155201,−3.605864990373435,−2.750773367689280)
(1.979508268106647,−1.648314148155201,−3.605864990373435)
(−1.054666610773029, 1.979508268106647,−1.648314148155201)
(−2.313572985270695,−1.054666610773029, 1.979508268106647)

(−2.642742570718999,−2.313572985270695,−1.054666610773029)
0.228218016117584


Using Theorem 5.1 we can validate that there is a true solution of the homoclinic
functional equation in a polydisk Br(x̂) with r = 1.1 × 10−11. Table 6 gives compu-
tation data for the proof just described, and also for the proof of a second distinct
solution of the homoclinic operator equation for k = 6. In each case only the x̂1 data
is recorded. Figure 6.1 shows the time series data for the x component of the first of
these two orbits. Black dots represent points in x̂. Red points represent iterates on
the local manifolds.

We note that in these first two proofs is that the time taken to compute the
rigorous interval enclosures of the coefficients for the two variable polynomial PN is
1 minute 68 seconds, while the validation of the two homoclinic orbits takes only
3.21 seconds. Since we can use the same polynomial approximations PN and QN in
any homoclinic functional equation, regardless of the size of k, we compute 32 more
distinct homoclinic orbits with k varying. The results are tabulated in Table 6, and
again only x̂1 components are recorded. Note that the time required to validate all 34
of orbits is a little less than the time needed to compute the rigorous approximation
of the stable manifold. This suggests that high order approximation of the manifolds
is most useful when computing many distinct homoclinic orbits at a given parameter
set. Figures 6.2 and 6.3 show time series data for the x-component of the shortest
and longest homoclinic orbits validated.

We note that in the previous example the dynamics is “fast” in the sense that as
few as 6 iterates are needed in order to transition from the local unstable to the local
stable manifold. In order to compute orbits with longer ‘time of flight’ (higher k) we
consider a Lomeĺı map with parameters a, b, c, and τ as before, but with α = −0.04.
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K x̂1 r time
8 (−1.878269557294666− 3.704360821688669− 2.644177124855255) 1.0× 10−11 3.13 sec
· (−1.598486534326447− 3.712394711133192− 2.715338895232408) 1.1× 10−11 ·
9 (−1.693365888596068− 3.516449414154529− 2.776271298390562) 1.05× 10−11 4.95 sec
· (−2.033965491062911− 3.691036738831221− 2.607784382423848) 1.05× 10−11 ·
· (−3.649752275192224− 2.876479215542708− 2.487231377447373) 1.00× 10−11 ·
11 (−1.724921906236488− 3.503098391735548− 2.773685700840596) 1.06× 10−11 10.1 sec
· (−2.089900084565888− 3.686144425839955− 2.594568562106802) 1.0× 10−11 ·
· (−3.634873256589227− 2.906134859387798− 2.482573305537549) 1.0× 10−11 ·
· (−3.620917995724487− 2.915222901577827− 2.483676082433866) 1× 10−11 ·
· (−2.114585182128023− 3.679401143907701− 2.591096188024756) 1.03× 10−11 ·
· (−1.768297176557754− 3.496683655844906− 2.765421447288818) 1.05× 10−11 ·
12 (−1.613946132963925− 3.601054205346514− 2.761528716808955) 1.1× 10−11 6.8 sec
· (−1.672093712060165− 3.527103879468739− 2.777334962197874) 1.06× 10−11 ·
· (−2.122097145983667− 3.674130503709248− 2.591708802528494) 1.04× 10−11 ·
· (−1.822510500455057− 3.571768208555173− 2.720873332899369) 1.1× 10−11 ·
13 (−3.644121861531430− 2.872709464400592− 2.489856336907984) 1× 10−11 10.35 sec
· (−1.720320939862523− 3.656391590596805− 2.709687450800172) 1.0× 10−11 ·
· (−1.972320520664557− 3.693712699582179− 2.623618282117915) 1.0× 10−11 ·
· (−3.647170226591191− 2.867372482172479− 2.490553201321108) 1× 10−11 ·
· (−1.582489566947040− 3.527839146851471− 2.799122415227350) 1.07× 10−11 ·
· (−1.574224069064366− 3.529792848481951− 2.800384605320380) 1.1× 10−11 ·
20 (−1.931148725862011− 3.707646666557216− 2.627909579872393) 1.0× 10−11 4.01 sec
· (−3.638326627639060− 2.901176380906034− 2.483107270172258) 1.0× 10−11

21 (−3.690719490424216− 2.823690393936636− 2.490880594199791) 1× 10−11 16.44 sec
· (−1.957194765763665− 3.705297800511473− 2.621878341459779) 1.05× 10−11 ·
· (−1.729640666364290− 3.510087223951199− 2.769773329564600) 1.06× 10−11 ·
· (−1.690639165363386− 3.669844178437995− 2.711227287037635) 1.1× 10−11 ·
· (−1.950380561442004− 3.705777860019821− 2.623527619587280) 1.1× 10−11 ·
· (−3.702924845715120− 2.791265552326865− 2.496202529149488) 1.0× 10−11 ·
· (−3.708117158393551− 2.774277602263187− 2.499173703371658) 0.98× 10−11 ·
· (−1.932029291989042− 3.707691973193318− 2.627641932935536) 1.04× 10−11 ·
· (−3.616786394029812− 2.918973341522530− 2.483676503055390) 1× 10−11 ·

Table 6.3
Secondary Homoclinic Orbits (ε = 5.5, µ = −2.4): Total Time for Proofs: 55.0 sec. Transver-

sality confirmed in all cases.

This corresponds to a Dullin-Meiss value of ε = 0.2 with all other parameters as
above. At these parameter values we study the fixed point p = (x−, x−, x−) with
x− = −0.847213595499957. The differential Df(p) has unstable complex conjugate
eigenvalues of −0.150742620101308 ± i1.205183554810613 and a stable eigenvalue of
0.677878442452638. The data for the parameterization computations is given in Table
6, with format identical to before. Table 6 gives data for the results of the homoclinic
validation computations for five different orbits with values of k varying between 75
and 121. Figures 6.3 and 6.4 show time series data for the shortest and longest
of these homoclinic orbits (x-component in both cases). Note that for the orbit
with k = 121 the discretized homoclinic functional equation FN : Rnk → Rnk has
nk = 121× 3 = 363.

Finally we cary out a similar computation for the map G : R6 → R6 obtained
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Fig. 6.1. x-axis projection of the validated homoclinic; k = 6, ε = 5.5.
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Fig. 6.2. x-axis projection of the validated homoclinic; k = 21, ε = 5.5.

by a coupling a pair of Lomeĺı maps as discussed in Section 2.2. We take parameters
a1 = a2 = 0.5, b1 = b2 = −0.5, c1 = c2 = 1, τ1 = τ2 = 0.8, α1 = −5.339999999999998
and α2 = −5.939999999999998 (corresponding to Dullin-Meiss parameters of ε1 = 5.5
and ε2 = 6.1). The maps are coupled with a strength of ε = 5 × 10−7. The reason
for the small coupling strength is that we obtain a numerical guess by continuing
away from the product system having ε = 0. The coupled system is quite sensitive to
this parameter, and a tangency develops for coupling strengths much larger than this.
However our proof does not in any way depend on the use of the small parameter, other
than that it is helpful for locating an initial guess for a homoclinic in coupled system.
We have made no attempt at an exhaustive study of the six dimensional system. The
coupled system only serves to illustrate that the computations go through in higher
dimensions.

We study the fixed point p = (x1
−, x

1
−, x

1
−, x

2
−, x

2
−, x

2
−) with x1

− = −2.74507879911714
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Dim Order Approx Time Proof Time Validated Error Radius |ξ| ‖ · ‖ν
1 50 4.95 sec 0.45 sec 2.71× 10−11 0.9 1.5 5.63
2 25 1.66 min 2.94 sec 4.30× 10−13 0.4 0.5 0.32

Table 6.4
Manifold Validation Performance: Example 2 (ε = 0.2, µ = −2.4)

K x̂1 r time
75 (−0.717248519714197− 1.043252947479510− 0.860812112677259) 1.04× 10−7 6.32 sec
76 (−1.107394504655081− 0.745731963636135− 0.642025567084575) 1.4× 10−7 6.15 sec
111 (−1.104148108665029− 0.729631044649217− 0.648872760710501) 1.05× 10−7 15.04 sec
118 (−1.087535686140795− 0.715568561563514− 0.669111490970251) 1.3× 10−7 16.11 sec
121 (−0.995810895350469− 0.972045779061998− 0.671276957464922) 1.04× 10−7 18.6 sec

Table 6.5
Homoclinic Orbits (ε = 0.2, µ = −2.4): Transversality confirmed in all cases.

and x2
− = −2.869817807045693. The differential DG(p) has two pair of unsta-

ble complex conjugate eigenvalues −0.428678184042694 ± i2.076458156435394 and
−0.402451645448668 ± i2.035392592342751, and a pair of real distinct stable eigen-
values 0.232299350933555 and 0.222447464570467. Then fixed point has a four dimen-
sional unstable manifold and a two dimensional stable manifold. We show that these
manifolds intersect transversally using the arguments developed above. The results
of the computer assisted proofs are recorded in Tables 6.6 and 6.7. Note that since
we are only doing one proof, we use lower order approximations and smaller param-
eter domains. In fact we choose the lowest order for the four dimensional manifolds
allowed by the non-resonance condition. This helps minimize the cost, in seconds, of
computing the higher dimensional manifold.

7. Conclusions.
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