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Abstract. We present a new computer assisted proof scheme for rigorously establishing the
existence of transverse homoclinic orbits in discrete time dynamical system. The novelty of the
scheme is that it requires only a Newton-Kantorovich argument in finite dimensions. In order to
apply the Newton-Kantorivich Theorem in this setting it is necessary to obtain explicit rigorous
bounds on the truncation errors in the numerical approximation of the stable/unstable manifolds, as
well as bounds on the first and second derivatives of the truncation errors. These bounds are the main
technical contribution of the present work. We note that the bounds are obtained in the analytic
category, so that the scheme provides a kind of “analytic shadowing” theorem for homoclinic orbits.
Since the estimates of the truncation errors and their derivatives are interesting and potentially useful
outside the context of computer assisted proof for connecting orbits, we give a complete and self-
contained exposition. The main tool in these arguments is the so called Parameterization Method
for invariant manifolds. We present applications of our numerical scheme for example systems in
dimensions three and six.

1. Introduction. Suppose that f : Rn → Rn is a real analytic mapping with
real analytic inverse and that p is a hyperbolic saddle point for f . Let ns, nu ∈ N
denote respectively the dimension of the stable and unstable eigenspaces of Df(p),
and note that ns + nu = n. It follows from the stable manifold theorem [29] that
there are νs, νu, > 0 and analytic chart maps

P : Bνu(0) ⊂ Rnu → Rn and Q : Bνs(0) ⊂ Rns → Rn

for the local unstable and stable manifolds at p, so that

P [Bνu(0)] = Wu
loc(p) and Q[Bνs(0)] = W s

loc(p).

Define the homoclinic operator equation F : Rnk → Rnk by

F (θ, x1, x2, . . . , xk−2, xk−1, φ) =



f−1(x1)− P (θ)
f−1(x2)− x1

f−1(x3)− x2

...
f−1(xj)− xj−1

f(xj)− xj+1

...
f(xk−2)− xk−1

f(xk−1)−Q(φ)


(1.1)

where θ ∈ Rnu , φ ∈ Rns , xi ∈ Rn for each 1 ≤ i ≤ k−1, and 1 < j < k−1 (so that xj
is a point whose inverse iterates lie on the local unstable manifold, and whose forward
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iterates lie on the local stable manifold). Let x̃ = (θ̃, x̃1, . . . , x̃k−1, φ̃) denote a zero of
F , then O = {P (θ̃), x̃1, . . . , x̃k−1, Q(φ̃)} is an orbit segment which begins on the local
unstable manifold of p and ends, after k iterates, on the local stable manifold of p. It
follows that orbit(q) is homoclinic to p for any q ∈ O.

Now, if PN and QN are polynomial approximations of the chart maps P and Q,
then one defines FN in analogy with Equation 1.1 by replacing the the exact chart
maps with their polynomial approximations. Numerically solving FN (x) = 0 using
a Newton Scheme leads to the method of projected boundary conditions of Beyn and
Kleinkauf [7, 8], and enables fast and accurate numerical computation of homoclinic
orbits.

Suppose that x̂ is an approximate zero of FN (perhaps, but not necassarily, com-
puted numerically using the method of projected boundary conditions just described).
Then it is natural to try to invoke the Newton-Kantorivich Theorem (thm 4.3) in or-
der to prove that there is an exact zero x̃ of F (Equation 1.1) near x̂. This approach
to computer assisted proof of the existence of a connecting orbit presents the following
difficulties; one must obtain

(i) rigorous bounds on the truncation errors in the approximations P ≈ PN and
Q ≈ QN ,

(ii) rigorous bounds on the derivative of the truncation errors at the approximate
solution x̂,

(iii) rigorous uniform bounds on the second derivative of the truncation errors in
a neighborhood of the approximate solution x̂.

To overcome difficulties (i), (ii), (iii), and implement a computer assisted version
of the Newton-Kantorivich argument for the homoclinic operator equation (Equation
1.1) is the main goal of the present work. The tool which we use in order to obtain the
necessary bounds is the so called Parameterization Method of Cabré, de la Llave, and
Fontich [9, 10, 11]. By making a small modification to the arguments in [9, 11] we are
able to prove the existence of an analytic function which represents the truncation
error and obtain explicit bounds on this function. Then we obtain the necessary
bounds on the first and second derivatives of the truncation function using the Cauchy
Bounds of KAM theory.

The remainder of the paper is organized as follows. In Section 2 we discuss the
background material used throughout the present work. We begin in Section 2.1 with
a brief discussion of the computer assisted proof literature for existence of homoclinic
orbits in discrete time dynamical systems. In Section 2.2 we establish the definitions
and notation which will be used throughout the paper. In Section 2.3 we introduce
the main class of examples, the Lomeĺı map, which we will work with later in the
applications section.

In Section 3 we review the basic notions of the Parameterization Method for Stable
and Unstable manifolds of fixed points of a diffeomorphism f . We illustrate in some
detail the formal computation of the powerseries coefficients for the the one dimen-
sional stable and unstable manifolds of the Lomeĺı map, explain how the computations
generalize in higher dimensions, and discuss numerical aspects of the method.

Section 4 is devoted to the proof of Theorem 4.1, the main technical result of
the present work. The section is organized as follows. In Section 4.1 we review
the functional analytic and complex variables theory which is needed for the proof
of Theorem 4.1, and in Section 4.2 we sketch the proof while introducing a series
of Lemmas. In Seciton 4.3 we prove the lemmas in order to complete the proof of
Theorem 4.1. Section 4.4 shows how to obtain one of the bounds in the hypothesis of
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Theorem 4.1 if the case that f is polynomial.
In Section 5 we apply the a-posteriori estimates of Theorem 4.1 to the Newton-

Kantorovich problem associated with zeros of Equation 1.1. The main result is The-
orem 5.1; our analytic shadowing theorem. The proof of Theorem 5.1 is a straight
forward application of the Newton-Kantorivich theorem and is given in Section 5.2

In Section 6 we present the results of several computer assisted proofs of the
existence of transverse homoclinic orbits in the three dimensional Lomeĺı Map. Here
the stable and unstable manifolds are one and two dimensional respectively. We
provide examples of the use of high order approximations to the manifold (useful
when proving the existence of many distinct homoclinic orbits at a single parameter
set) and low order approximation of the manifold (useful when continuing a single
orbit over a range of parameters). In order to demonstrate that the algorithms can be
applied in dimensions higher than three, we also provide a six dimensional example
computation for a pair of coupled Lomeĺı Maps. Here the proof involves establishing
the existence of a transverse homoclinic orbit in the intersection of a four dimensional
unstable manifold and a two dimensional stable manifold.

2. Background.

2.1. Relation to the Existing Literature. In 1965 Smale showed that non-
degenerate connecting orbits give rise to complicated behavior in discrete time dynam-
ical systems [47]. Since then substantial effort has been directed toward the the dual
problems of using computers to (i) detect, and (ii) prove the existence of transverse
connecting orbits and complicated/‘chaotic’ behavior in specific nonlinear dynamical
systems. The present work focuses on (ii); using the computer to prove the existence
of transverse homoclinic orbits, once a suitable numerical approximation has been
found.

We mention only the work of [7, 8] on numerical computation of approximate
homoclinic orbits (as this work is closely related to ours) and then take for granted
the entire classical numerical literature. However we will attempt a brief survey of
existing methods for computer assisted proof of connecting/horseshoe dynamics for
discrete time dynamical systems. We focus on so called a-posteriori methods of proof.
These are methods which allow one to conclude from the existence of a “good enough”
numerical approximation of an orbit, that there exists a true orbit nearby. We also
give a brief discussion of the parameterization method literature, as this is the main
tool which we use in order to control the local stable and unstable manifolds in the
remainder of the paper.

C0 A-Posteriori Techniques for Topological Horseshoes: There exist several
computer assisted proof schemes which make use of only topological information and
pass directly from floating point or combinatorial approximations of connecting orbits
to the existence of horseshoe dynamics. These methods bypass the question of whether
or not connecting orbits between fixed/periodic points actually exist. The methods
can be classified in terms of how the phase space near the approximate connecting orbit
is represented. This choice of representation will in turn influence which topological
tools are used to give the a-posteriori results.

For example, if the phase space is discretized by combinatorial complexes (sim-
plicial or cubical) then it is natural to use theorems of combinatorial topology in the
a-posteriori analysis. The Discrete Conley Index is a powerful tool in this setting,
and was used for example in [39, 40] to prove the existence of horseshoe dynamics
for a Poincare section of the Lorenz system. [49] shows how to obtain a-posteriori
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verification of the existence of a horseshoe from the existence of a combinatorial ap-
proximation to a connecting orbit in a quite general setting. The arguments make use
of a Lefschitz fixed point theorem for topological index pairs. These methods were
used recently in [19] to obtain entropy bounds in the Hénon map.

On the other hand it is sometimes desirable to discretize the phase space by
parallelograms which are aligned with the expanding and contracting directions of the
system. [23, 24] have developed an a-posteriori technique based on covering relations
in order to prove the existence of horseshoe dynamics. The a-posteriori argument
uses the notion of local Brower degree. This method is exploited for example in [2, 3]
in order to establish chaotic dynamics in the Restricted Three Body Problem and
the Hénon-Heiles Hamiltonian respectively. Similar windowing methods have been
developed by [32, 33] and also by [46]. These methods have been used for example to
validate numerical experiments for the standard map [25].

Lipschitz-C2 A-Posteriori Techniques for Invariant Manifolds and Trans-
verse Homoclinic Orbits: If one wants to prove statements about connecting orbits
(orbits with prescribed asymptotic behavior at the fixed/periodic points) then it is
necessary to exploit some regularity near the fixed/periodic point. On the other hand,
even if one is only interested in establishing the existence of chaotic dynamics, some
degree of regularity is needed in order to apply analytic rather than topological ar-
guments. We note that while the methods described here make some assumptions on
the differentiability of f , none of them require (or exploit) more than two derivatives.

There are many Lipschitz/low regularity methods for a-posteriori analysis of the
local stable and unstable manifolds of fixed points. For example [54] develops an
a-posteriori stable/unstable manifold theorem based on covering relations and cone
conditions. This can be combined with the C0 windowing methods mentioned above
in order to obtain an a-posteriori scheme for heteroclinic and homoclinic connecting
orbits. Such a strategy is used for example in [4] to study heteroclinic and homoclinic
orbits in Hénon-Heiles, in [53] to study heteroclinic and homoclinic orbits and obtain
entropy bounds for the Hénon map, and in [51] to study connecting dynamics on the
Rossler attractor.

Covering-relation-plus-cone-condition methods have been extended in order to
prove the existence of more general hyperbolic invariant sets in [14]. This generaliza-
tion has been used recently by [15] to prove the existence of a center manifold in a
celestial mechanics problem.

We also mention here the work of [41], where a rigorous box covering method for
planar maps with real distinct eigenvalues is developed. The method is used to study
homoclinic chaos in the standard map, by proving directly that the globalized stable
and unstable manifolds intersect transversally.

Another method, which is similar to the methods developed in the present work
in that it exploits high-order polynomial approximations of the stable and unstable
manifold, is developed in [52]. Here the invariant manifolds are approximated by
‘Taylor Models’. Existence of the manifolds and a-posteriori bounds on the Taylor
Model errors are proved via a nonlinear-box covering argument, which is topological
rather than analytical. The method has been used in [42] to study connecting orbits
and obtain entropy bounds for the Hénon map.

Finally we mention another thread in the literature which is base on analytical
a-posteriori (or shadowing) arguments rather than topological methods. The main
tool here is the so called method of exponential dichotomies. In [48], an a-posteriori
method is developed for proving the existence of a horseshoe given the existence of two
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numerically computed periodic orbits which pass near one another at a point. The a-
posteriori argument is used to prove the existence of a horseshoe in the Hénon map. An
extension of the method is given in [44] which allows exponential dichotomy arguments
to be applied to homoclinic and heteroclinic orbits. The method is implemented in
[17] and used to prove the existence of transverse hetero and homoclinic orbits in both
the dissipative and area preserving Hénon map, as well as in the Cremona map.

Remarks 2.1.

a. While our method is closely related to the work of [44] we mention some
differences. The methods of [44] require only C2 assumptions, and as such
they apply to a larger family of maps than the Cω tools developed here.
On the other hand, exponential dichotomy arguments require a delicate local
analysis near the fixed point (tail of the homoclinic orbit) in order to be able
to apply a Newton-Kantorovich argument on an infinite dimensional sequence
space. It is reasonable to think that if the dynamical systems of interest is in
fact analytic, then the use of analytic tools could provide some simplification
of the arguments.
We will show that this is the case; that when the dynamical system is Cω

we can replace the asymptotic segments of the orbit with a suitable approxi-
mation of the local stable and unstable manifolds, and then work with finite
orbit segments which transition between the local manifolds. The resulting
operator equation is finite dimensional, so that in the (often studied) case
that the dynamics are analytic, we obtain a simplification of the a-posteriori
argument.
In addition, using high order approximations of the local stable and unstable
manifolds lets us work with orbit segments which begin and end farther from
the fixed point. This allows us to avoid considering iterates of the map near
the fixed point, where the dynamics are slow (and well understood). In
principe this should allow for the study of orbits which spend a long time in
transition from the local stable to the local unstable manifolds.

b. One could criticize our method on the grounds that it cannot be applied to
differential equations, as Poincare and time-τ maps of analytic vector fields
need not be analytic. We answer this criticism by pointing to the recent work
of [6], which shows how the techniques developed here can applied also in the
continuous time case.
The main idea in [6] is to work with an operator equation defined in the full
phase space, rather than with a first return or time-τ map. The validated
approximation to the connecting orbits obtained using this method are piece-
wise analytic arcs in phase space with rigorous error bounds along the entire
arc (rather than only at the mesh or return points). We note also that the
methods of [6] do not require rigorous integration of the system.

Cω A-Posteriori Techniques in KAM Theory and Celestial Mechanics: Since
the techniques developed in the present work are tailored for real analytic dynamical
systems, our methods have much in common with the tools used by the numerical
KAM and rigorous normal form communities, where working in the analytic category
is common. For example a key component in the work of [50] is the use of a rigor-
ous, high-order normal form about the equilibria at the origin of the Lorenz system.
Since the normal form is used not simply as a computational tool, but rather as a
critical ingredient in a computer assisted proof, it is necessary for the author to rig-
orously bound the truncation error associated with the coordinate change as well as
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its derivative and inverse (see [50] Proposition 3.1 as well as Lemmas 3.2 and 3.3).
Similar techniques are used in numerical KAM theory. See for example [16, 22]

where stability of solar system astroids is studied by computing high-order normal
forms about invariant tori in n-body problems. Again, since the authors are interested
in computer assisted proofs they are required to rigorously bound the truncation errors
in their expansions. In numerical KAM problems these bounds are usually obtained
using analytical rather than topological methods. For a more thorough discussion of
the numerical KAM literature see [35] and also [16].

Remark 2.1. Rigorous normal form and KAM computations typically involve
the so called small divisors which arise due to resonant terms in the formal expan-
sions. Overcoming the small divisors and proving the convergence of the formal series
of KAM theory requires the use of powerful functional analytic tools (Nash-Moser
quadratic convergence schemes, delicate majorant arguments, etc.) However small
divisors do not arise in the formal expansions of stable and unstable manifolds, and
this greatly simplifies the a-posteriori analysis.

The Parameterizatoin Method for Invariant Manifolds: The so called Param-
eterization Method of [9, 10, 11] provides a theoretical framework for studying the
convergence of formal power series expansions of stable and unstable manifolds as-
sociated with fixed points of discrete and continuous time dynamical systems, under
mild non-resonance conditions.

In [9] an existence theorem ([9] Theorem 1.1) is proved which gives, under quite
general hypotheses, the existence of Ck chart maps for local stable and unstable
manifolds of Ck diffeomorphisms on Banach spaces. The proof is constructive and,
as noted by the authors in the beginning of [9] Section 3, lends itself to a-posteriori
analysis and computer assisted proof.

[11] gives a number of applications of the parameterization method, including
some elementary proofs of theorems about invariant manifolds in the analytic cat-
egory, C0 invariant manifold theorems, and a rigorous treatment of “slow invariant
manifolds”. The proofs in [11] illustrate the use of the implicit function theorem. As
a consequence they are not constructive (with the exception of [11] Theorem 5.4 on
the existence of stable and unstable manifolds of hyperbolic periodic orbits of vector
fields. This theorem is proven using the contraction mapping theorem, and explicit
a-posteriori bounds are given).

[10] develops optimal regularity results for the parameterization method with
respect to system parameters in the Ck category.

In recent years the parameterization method has been extend into a general
method for studying a wide variety of invariant manifolds in dynamical systems the-
ory. For example in [27, 28] a method is developed for computing invariant tori
and their stable and unstable manifolds in quasiperiodic discrete time dynamical sys-
tems. In [34] the parameterization method is used to study KAM tori in symplectic
maps without the use of the so called action/angle coordinates. Some extensions to
invariant tori of infinite dynamical systems are given in [21], while in [36] the param-
eterization method is used to prove the existence of certain ‘mixed-stability’ invariant
manifolds associated with hyperbolic fixed points of symplectic and volume preserving
diffeomorphisms. That the parameterization method can be extended to the study of
center manifolds (at least in the case of an eigenvalue of one) is shown in [5], while
for example [26, 38, 12, 13] give numerical applications of the theory. All of the work
mentioned in the present paragraph are based on constructive arguments and can in
principle be adapted for use in computer assisted proof.
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Remarks 2.2.
(I) While the present work focuses on the development of tools for analytic sys-

tems, the ideas presented here could be modified to work with the Ck theory
developed in [9].

(II) The main result of the present work is Theorem 4.1, which gives a-posteriori
bounds on the truncation errors in the polynomial approximations to the local
stable and unstable manifolds. We note that Theorem 4.1 is less general than
Theorem 1.1 of [9] in the sense that we make both stronger non-resonance
and regularity assumptions. On the other hand, Theorem 4.1 is specifically
designed for a-posteriori application in computer assisted proof. For this
reason we develop estimates which take into account explicitly the order of the
polynomial approximation, and give explicit expressions for all the constants
appearing in the proof. We also note that an analog of our Theorem 4.1 for
local stable and unstable manifolds of equilibria of vector fields is given in [6].

2.2. Stable/Unstable Manifolds and Homoclinic Connections. In this
section we establish some basic dynamical systems notation and terminology which we
use throughout the remainder of the paper. Let f : Rn → Rn be a Ck diffeomorphism
with k ∈ N, k = ∞ or k = ω, and let p ∈ Rn be a hyperbolic fixed point of f . Then
there are stable and unstable eigenvalues {λsi}

ns
i=1, {λui }

nu
i=1, ⊂ C with ns + nu = n.

Let {ξsi }
ns
i=1 and {xiui }

nu
i=1 denote some choice of associated eigenvectors and let Es =

span({λsi}) and Eu = span({λui }) denote the stable and unstable eigenspaces. Let
W (p)u and W (p)u denote the stable and unstable sets of p respectively, i.e.

W s(p) = {x ∈ Rn : lim
n→∞

fn(x) = p} and Wu(p) = {x ∈ Rn : lim
n→∞

f−n(x) = p}.

The sets W s(p) and Wu(p) are immersed Ck invariant ns,u-disks tangent to Es,u
respectively at p, by the celebrated Stable Manifold Theorem (see [29]).

Let N ⊂ Rn be an open neighborhood of about p. The local stable and unstable
manifolds of p relative to N are

W s
loc(p) = {x ∈ Rn : fn(x) ∈ N for all n ∈ N}

and

Wu
loc(p) = {x ∈ Rn : f−n ∈ N for all n ∈ N},

(we suppress the N dependance in this notation). W s,u

loc
are embedded Ck ns,u-disks

and submanifolds of W s,u(p) respectively. Moreover one has that

W s(p) =

∞⋃
n=0

f−n[W s
loc(p)] and Wu(p) =

∞⋃
n=0

fn[Wu
loc(p)]

for any local stable and unstable manifolds.
Let νs, νu > 0 and Q : Bνs(0) ⊂ Rns → Rn and P : Bνu ⊂ ⊂Rnu → Rn be

chart maps for neighborhoods on W s,u(p) which map the origin in Rns,u to p ∈ Rn.
This means that image(P ) and image(Q) are local unstable and stable manifolds
respectively.
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Let Λs denote the ns×ns matrix which has the stable eigenvalues {λsi} as diagonal
entries and zero entries elsewhere, and similarly for Λu. Suppose that S ⊂ Bνs(0)
is a topological ns − 1-sphere having that ΛsS ∩ S = ∅, and that A is the annulus
whose boundary is S ∪ ΛsS. Then W s

fd(p) = Q(A) is called a fundamental domain

for W s(p). Note that f [W s
fd(p)] ∩W s

fd(p) = Q[ΛsS] and

W s(p) =

∞⋃
i=0

f−n[W s
fd(p)],

so that the stable manifold is generated by iterates of a fundamental domain, and
these iterates intersect only at their boundaries. In practice S is often take to be
a sphere or an ellipsoid in parameter space whose principle axes are determined by
the magnitudes of the stable eigenvalues. Similarly, a fundamental domain for Wu(p)
can be defined by taking a topological sphere in Bνu(0) which does not intersect its
own image under Λ−1

u and letting A be the annulus whose boundary is determined by
these spheres.

A point q ∈ Rn is said to be homoclinic to the fixed point p if q 6= p and

fn(q)→ p as n→ ±∞.

Clearly q is homoclinic to p if and only if q 6= p and

q ∈Wu(p) ∩W s(p),

so that locating homoclinic points is equivalent to locating intersections of the stable
and unstable manifolds.

2.3. An Example System: The Lomeĺı Map. Consider the five parameter
family of (quadratic) volume preserving diffeomorphisms f : R3 → R3 given by

f(x, y, z) = fα,τ,a,b,c(x, y, z) =

 z +Qα,τ,a,b,c(x, y)
x
y

 , (2.1)

where Q is the quadratic function

Qα,τ,a,b,c(x, y) = α+ τx+ ax2 + bxy + cy2, with a+ b+ c = 1. (2.2)

The family of maps was introduced in [37], as an analog of the two dimensional area
preserving Hénon map. We will refer to this as the Lomeĺı Family, or simply the
Lomeĺı Map when it is understood that the parameters are fixed.

We note the following elementary facts;
1. When τ2 − 4α > 0 the map has a pair of (real) distinct fixed points p± ∈ R3

p± =

 x±
x±
x±

 ,
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where

x± =
−τ ±

√
τ2 − 4α

2
.

These are the only possible fixed points of the family.
2. The map is volume preserving, i.e. |det(Df(p))| = 1, for all p ∈ R3. Then,

for example, at either of the fixed points p± the generic stability situation
will be either two unstable and one stable eigenvalues, or vice verse (as the
product of the three is required to be 1). The two eigenvalues with the same
stability type (stable or unstable) are generically either real and distinct, or
a complex conjugate pair.

3. At various points in the sequel it is useful to have an analytic expression for
the inverse mapping. One can work out that f−1 is given explicitly by

f−1(x, y, z) = f−1
α,τ,a,b,c(x, y, z) =

 y
z

x−Q−1
α,τ,a,b,c(y, z)

 ,

where Q−1
α,τ,a,b,c is the quadratic function

Q−1 = α+ τy + ay2 + byz + cz2.

4. The Jacobian differential of the Lomeĺı family is

Df(x, y, z) =

 2ax+ by + τ 2cy + bx 1
1 0 0
0 1 0

 .

Moreover, the inverse function theorem states thatDf(x, y, z)−1 = Df−1[f(x)]
and allows us to write the inverse of the differential explicitly as

Df(x, y, z)−1 =

 0 1 0
0 0 1
1 −τ − 2ax− by −bx− 2cy

 .

An affine change of variables puts the Lomeĺı map in the form

g(x, y, z) =

 x+ y
y + z − ε+ µy + P (x, y)
z − ε+ µy + P (x, y)

 , (2.3)

where P (x, y) = āx2 + b̄xy+ c̄z2. We call this the “Dullin-Meiss” form of the map [20],
and it has the advantage that the two fixed points are located on the z-axis at ±

√
ε/ā.

Nevertheless, we will use the standard form of the Lomeĺı map in our numerical
applications, largely so that we can exploit the computational tools developed in [38].

Given a set of parameters in Dullin-Meiss form, it is possible to transform to a
Lomeĺı Map with the parameters
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a = c̄

c = c̄+ ā− b̄
b = b̄− 2c̄

τ =
2ā(3 + µ)

2ā− b̄

α =
(9 + 6µ+ µ2)ā− 4εā2 + 4εāb̄− εb̄2

(2ā− b̄)2
.

These transformations allow us to relate the numerical studies carried out in this
work, where we work with the Lomelíı form of the map, with the numerical studies
in [20].

In Section 6 we consider the six-dimensional dynamical system G : R6 → R6

formed by coupling two Lomeĺı maps

f1(x1, y1, z1) ≡ fα1,τ1,a1,b1,c1(x1, y1, z1)
and

f2(x2, y2, z2) ≡ fα2,τ2,a2,b2,c2(x2, y2, z2)

in the following way;

G(x1, y1, z1, x2, y2, z2) ≡
[
f1(x1, y1, z1) + εg2(y2, )
f2(x2, y2, z2) + εg1(y1)

]
, (2.4)

where

g1(y1) ≡ (y1 − x+
1 )(y1 − x−1 ) and g2(y2) ≡ (y2 − x+

2 )(y2 − x−2 ).

Here x±1,2 denotes a coordinate of the fixed points in the f1,2 systems (recall that
the fixed points are on the x = y = z line so that it is enough to specify only the
x coordinate of the fixed point). Note that this coupling does not move the fixed
points in the f1,2 systems, but does change the eigenvalues and eigenvectors. When
ε is small we can approximate a connecting orbit for G by taking the product of
connecting orbits for f1,2.

3. Parameterization Method. In this section we review the Parameterization
Method of [9, 10, 11]. We focus on the case where the map f is real analytic, the
differential is diagonalizable, and there are no resonances between eigenvalues of like
stability (these assumptions will be formalized below). For a more complete reference
to the Parameterization method, the reader should consult [9, 10, 11].

Recalling the notation of Sectoin 1 we take p ∈ Rn to be a hyperbolic saddle
for the real analytic diffeomorphism f : Rn → Rn. We assume that f is uniformly
bounded on B(0, ρ) ⊂ Rn and that Df(p) is diagnolizable over C. Then Df(p) has
ns distinct stable eigenvalues {λs1, . . . , λsns} with |λsi | < 1, and nu distinct unstable
eigenvalues {λu1 , . . . , λunu} with |λui | > 1, and ns + nu = n as p is a saddle. We choose
eigenvectors {ξs1, . . . , ξsns} and {ξu1 , . . . , ξunu} associated with the stable and unstable
eigenvalues respectively. For the moment we leave the lengths of the eigenvectors
unspecified.
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As mentioned in the introduction, the stable manifold theorem gives that W s(p)
and Wu(p) are ns and nu dimensional manifolds, respectively tangent to span{ξnsi }
and span{ξnui } at p. The goal of the parameterization method is to determine analytic
mappings Q : B(0, νs) ⊂ Rns → Rn and P : B(0, νu) ⊂ Rnu → Rn which parameterize
the local stable and unstable manifolds W s

loc(p) and Wu
loc(p) respectively at p. For

the moment we focus our attention on the development of Q, and consider P at the
end of the section.

We simplify our notation a little by letting Bs ≡ B(0, νs) ⊂ Rns , and Λ denote
the ns × ns matrix with λsi in the i-th diagonal entry and zeros elsewhere (this was
called Λs above). The Parameterization Method is built on the fact that; Q[Bs] is a
local stable manifold for p if Q satisfies

1. Q(0) = p,
2. DQ(0) = [ξs1| . . . |ξsns ],
3. and

f [Q(θ)] = Q(Λθ), (3.1)

for all θ ∈ Bs.
To see this note that for any Q satisfying these conditions, image(Q) is an immersed
ns-disk containing p and is tangent to span{ξnsi } at p. Moreover Equation (3.1)
implies that (f ◦ Q)(Bs) = Q[ΛBs] ⊂ Q(Bs), so that the ω-limit set of image(Q)
under f is p. Then

Q(Bs) = W s
loc(p),

by definition.
In general it is impossible to compute Q in closed form. Instead, we note that Q

satisfies a (functional) initial value problem with analytic data. Then it is natural to
seek a power series expansion for Q of the form

Q(θ) =
∑
|α|≥0

aαθ
α an ∈ Rn, θ ∈ Rns , α ∈ Nns (3.2)

convergent on Bs. Note that the first order constraints on Q demand that a(0,...,0) = p
and aei = ξsi (here ei is the multi-index with one in the i-th component and zeros
elsewhere). Then the problem is to try to determine the unknown coefficients aα for
|α| ≥ 2.

Remark 3.1. [Uniqueness] Note that the choice of the lengths of the eigenvectors
ξi is free in the above formulation. This corresponds to the freedom in the choice of
scaling of the parameterization of any manifold. Nevertheless, it is shown in [9] (and
we will see again in Section 4) that the solution of Equation 3.1 is unique once the
scale of the eigenvectors is fixed.

A formal solution of Equation (3.1) can be obtained by inserting the power series
given by Equation (3.2) into Equation (3.1), expanding f as a power series, and
computing recurrence relations for the coefficients of Q by matching like powers of
θ. This approach is works especially when f is a polynomial map of low to moderate
degree. Iterative approaches for solving Equation 3.1 are discussed in [9]. Numerical
implementations of iterative algorithms for solving Equation 3.1 can be found in
[38, 52, 42].
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Finally, we note that the parameterization P of the local unstable manifold for f
at p parameterizes the local stable manifold for f−1 at p, so that P must satisfy the
functional equation

f−1 ◦ P = P ◦ Ω−1, (3.3)

where Ω is the matrix of unstable eigenvaules of Df(p). But if we right compose
Equation (3.3) with Ω and left compose with f then we obtain

P ◦ Ω = f ◦ P,

which is identical to Equatoin 3.1. Then P and Q solve the same functional equation,
modulo the appropriate choose of linear map Λ or Ω.

3.1. Formal Computations for 1D Manifolds of the Lomeĺı Map. In or-
der to illustrate the flavor of the formal computation of the power series coefficients for
the stable/unstable manifold parameterizations we now consider the one-dimensional
case for the Lomeĺı map

f(x, y, z) =

 α+ τx+ z + ax2 + bxy + cy2

x
y

 .

Let p0 denote either one of the fixed points of the map and recall that generically p0

will have either a one dimensional stable eigenspace, or a one dimensional unstable
eigenspace. Let

P (θ) =

 P1(θ)
P2(θ)
P3(θ)

 =

 ∑∞
n=0 v

1
nθ
n∑∞

n=0 v
2
nθ
n∑∞

n=0 v
3
nθ
n

 , (3.4)

be the unknown parameterization function for the one dimensional stable or unstable
manifold, and let λ and ξ be the associated stable or unstable eigenvalue and eigen-
vector. Then (v1

0 , v
2
0 , v

3
0)T = p0, and (v1

1 , v
2
1 , v

3
1)T = ξ are the zero-th and first order

power series coefficients.
Substituting the power series into Equation 3.1 gives

f ◦ P =

 α+ τP1 + P3 + a[P1]2 + bP1P2 + c[P2]2

P1

P2


on the left, and

P (λθ) =

 ∑∞
n=0 v

1
n(λθ)n∑∞

n=0 v
2
n(λθ)n∑∞

n=0 v
3
n(λθ)n

 =

 ∑∞
n=0 v

1
nλ

nθn∑∞
n=0 v

2
nλ

nθn∑∞
n=0 v

3
nλ

nθn


on the right. Equating the second and third components of the left and right hand
sides gives
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∞∑
n=0

v1
nθ
n =

∞∑
n=0

v2
nλ

nθn,

and

∞∑
n=0

v2
nθ
n =

∞∑
n=0

v3
nλ

nθn.

Upon matching like powers this is

v1
n − v2

nλ
n = 0 v2

n − v3
nλ

n = 0. (3.5)

The first component equation is more involved. Expanding the left hand side of
the first component and utilizing the Cauchy product formula gives

α+ τ

∞∑
n=0

v1
nθ
n +

∞∑
n=0

v3
nθ
n

+a

[ ∞∑
n=0

v1
nθ
n

]2

+ b

[ ∞∑
n=0

v1
nθ
n

][ ∞∑
n=0

v2
nθ
n

]
+ c

[ ∞∑
n=0

v2
nθ
n

]2

= α+

∞∑
n=0

τv1
nθ
n +

∞∑
n=0

v3
nθ
n

+

∞∑
n=0

(
n∑
k=0

av1
kv

1
n−k

)
θn +

∞∑
n=0

(
n∑
k=0

bv1
kv

2
n−k

)
θn +

∞∑
n=0

(
n∑
k=0

cv2
kv

2
n−k

)
θn

=

∞∑
n=0

v1
nλ

nθn.

Equating like powers gives that for n ≥ 2 we have that

τv1
n + v3

n + 2av1
0v

1
n + bv2

0v
1
n + bv1

0v
2
n + 2cv2

0v
2
n

+

n−1∑
k=1

[
av1
kv

1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]

= λnv1
n,

13



where we have removed from the sum any terms containing v1
n, or v2

n. We isolate the
n-th order coefficients on the left hand side of the equality in order to obtain

(τ + 2av1
0 + bv2

0 − λn)v1
n + (bv1

0 + 2cv2
0)v2

n + v3
n

= −
n−1∑
k=1

[
av1
kv

1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]
Combining the three component equations in matrix form gives

An

 v1
n

v2
n

v3
n

 =

 sn
0
0


where

An =

 τ + 2av1
0 + bv2

0 − λn bv1
0 + 2cv2

0 1
1 −λn 0
0 1 −λn

 (3.6)

and

sn = −
n−1∑
k=1

[
av1
kv

1
n−k + bv1

kv
2
n−k + cv2

kv
2
n−k

]
.

Note that if we let yn = (sn, 0, 0)T , then the matrix equation has the form

[Df(p±)− λnI] vn = yn. (3.7)

This expression is seen to be correct by evaluating the formula for the Jacobian of the
Lomeĺı Map at p0 = (v1

0 , v
2
0 , v

3
0). Equation (3.7) is called the homological equation for

the one dimensional stable manifold.
Then the coefficient vn is well defined whenever An is invertible. But Equation 3.7

shows that An has the form of the characteristic matrix Df(p0)− τI of Df(p0), and
the characteristic matrix is invertible precisely when τ is not an eigenvalue of Df(p0).
Now, if λ is stable and the rest of the eigenvalues are unstable then |λ| < 1 < |λi|
so that |λn| < |λ| < |λi| for all n > 1 (a similar arguments holds if |λ| > 1 and the
remaining eigenvalues are stable). Then λn is never an eigenvalue of Df(p0) and the
series solution

∑
vnθ

n = P (θ) is formally well defined to all orders.
Remark 3.2.
• The computation above provides a numerical scheme for computing approx-

imations to the stable manifold. Namely, we can compute a polynomial PN
which approximates P to any desired finite order by recursively solving the
homological Equation (3.7) for 2 ≤ n ≤ N .

• The magnitude of ξ = v1 is free in the preceding discussion. This can be used
to control the growth of the coefficients of P in numerical computations.

• We treat the convergence of the formal series defined by Equations 3.4 and
3.7 in Theorem 4.1.
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3.2. Formal Computation of Two Dimensional Manifolds for the Lomeĺı
Map. In order to parameterize a two dimensional (stable or unstable) manifold asso-
ciated with a pair of real, distinct (stable or unstable) eigenvalues λ1, λ2, of Df(p0),
having |λ1|, |λ2| < 1, we choose associated eigenvectors ξ1 and ξ2 and assume that the
parameterization P : R2 → R3 has power series expansion

P (θ1, θ2) =

∞∑
n=0

∞∑
m=0

vmnθ
m
1 θ

n
2 ,

where vmn ∈ R3 are coefficients having

v00 = p±, v10 = ξ1 and v01 = ξ2.

The remaining vmn, m + n ≥ 2, are determined by requiring that P satisfy the
functional equation f ◦ P = P ◦ Λ which in this case is

f [P (θ1, θ2)] = P (λ1θ1, λ2θ2).

If we let vmn = (v1
mn, v

2
mn, v

3
mn)T , then a formal computation similar to the

one given in Section 3.1 shows that the coefficients for a two dimensional (stable or
unstable) manifold solve the homological equation

 τ + 2av1
00 + bv2

00 − λm1 λn2 bv1
00 + 2cv2

00 1
1 −λm1 λn2 0
0 1 −λm1 λn2

 v1
mn

v2
mn

v3
mn

 =

 −smn0
0

 , (3.8)

where

smn =

n∑
j=0

m∑
i=0

a v̄1
(m−i)(n−j)v̄

1
ij + b v̄1

(m−i)(n−j)v̄
2
ij + c v̄2

(m−i)(n−j)v̄
2
ij

and

v̄sk` =

{
0 if k = m and ` = n
vsk` otherwise

for s = 1, 2, 3.
Remark 3.3.

• If a fixed point of the Lomeĺı map has a complex conjugate pair of eigenvalues λ
and λ̄, then we complexify and proceed exactly as in the distinct real case. More
precisely we take P̄ to have the form

P̄ (x+ iy, x− iy) =
∑
n=0

∑
m=0

vmn(x+ iy)m (x− iy)n

with vmn ∈ C3, and impose that P̄ solves the invariance equation

f [P̄ (z1, z2)] = P̄ (λz1, λ̄z2).

Proceeding as in the case of two distinct real eigenvalues we see that in this case the
coefficients still solve the homological equation given by Equation (3.8) with λ1 = λ
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and λ2 = λ̄. The resulting complex coefficients have that v(m,n) = v(n,m), so that
P (x, y) = P̄ (x+iy, x−iy) is a real valued function. Then image(P ) is again a (real)
local stable manifold of p. A more thorough discussion of the complex conjugate
case is found in [38].

• Note that the homological equation for the power series coefficients of the two
dimensional stable/unstable parameterization has the form

[Df(p0)− λm1 λn2 I]vmn =

 −smn0
0

 ,

which is analogous to the one dimensional result. Then the coefficients of the
formal series exist uniquely for all m,n with m + n ≥ 2, so long as the following
non-resonance conditions is satisfied;

λm1 λ
n
2 6= λi (3.9)

for i = 1, 2.

Let µ− = min (|λ1|, |λ2|) and µ+ = max (|λ1|, |λ2|). Then it is sufficient to check the
non-resonance condition given by Equation (3.9) for each pair (m,n) ∈ N2 having

2 ≤ m+ n ≤ ln(µ−)

ln(µ+)
, (3.10)

as m+ n > ln(µ−)/ ln(µ+) implies that

|λ1|m|λ2|n ≤ (µ+)m+n ≤ µ− (3.11)

Then the non-resonance conditions given by Equation (3.9) reduce to a finite number
of conditions. In practice we check the non-resonance conditions using rigorous
interval arithmetic for each m,n given by Inequality (3.10). If we can confirm all
of these conditions, then Inequality (3.11) implies there are no resonances at higher
order.

• In fact the situation just describe is quite general. If P : B ⊂ Rk → Rn parameter-
izes a k dimensional (stable or unstable) invariant manifold of f : Rn → Rn and,
using the notation of Section 3, we suppose that

P (θ) =
∑
|α|>0

aαθ
α,

then a formal computation shows that the |α| ≥ 2 coefficients of the parameteriza-
tion P satisfy the homological equation

[Df(p0)− ΛαI]aα = s(α′)

where
Λα = λα1

1 · . . . · λ
αk
k ∈ C,

s depends only on coefficients α′ with |α′| < |α|, and the form of the function s
depends only on the form of the nonlinearity of the function f (this formal com-
putation is discussed in general in [9]). The coefficients aα are then formally well
defined as long as there are no resonances of the form

λα1
1 · . . . · λ

αk
k = λi

for any 1 ≤ i ≤ k and any |α| ≥ 2. In precise analogy with Inequalities 3.10 and
3.11 of the previous remark it is sufficient to check that there are no resonances for
each

2 ≤ |α| ≤ ln(µ−)

µ+
.

Again, this gives a finite number of conditions which can be checked rigorously using
interval arithmetic.
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3.3. Numerical Radius of Validity for Formal Solutions. Suppose that we
have recursively solved the homological equations for the parameterization of a k dimensional
(stable or unstable) manifold up to a fixed finite order N . Then we have a polynomial
approximation

PN (θ) =
∑

0≤|α|≤N

aαθ
α

to the true parameterization P . While any truncated approximation PN is entire (as PN is
a polynomial), we do not expect that PN is a good approximation to P for all θ. Instead, we
would like to determine a fixed domain on which the approximation is “good”. The following
definition makes this precise;

Definition 3.4. Let ε > 0 be a prescribed tolerance, ν > 0, and B = B(0, ν) ⊂ Rk. We
call the number ν an ε-numerical radius of validity for the approximation PN if

Errorν(PN ) ≡ sup
θ∈B
‖f [PN (θ)]− PN (Λ θ)‖ ≤ ε. (3.12)

Remark 3.5.

• In practice, numerical experimentation is enough to select a good ν. Numerical
examples and algorithm performance information for local manifolds computations
for the Lomeĺı map can be found in Section 5 and Appendix A of [38]

• We have the usefull bound

Errorν(PN ) ≤
∑

0≤|α|

|Cα −Dα|ν|α| (3.13)

where Cα, Dα are the power series coefficients of f [PN ] and PN (Λ θ) respectively.
(The inequality is due to the maximum modulus principle). When f is a polynomial,
all but finitely many of Aα, and Bα are zero. Then the sum is finite and Equation
(3.5) is easy to rigorously bound numerically using interval arithmetic.

• Theorem 4.1 shows that under certain conditions which are easy to validate numer-
ically, we actually have ‖P − PN‖ν ≤ Cε where C is an explicitly known constant.
This provides a mathematically rigorous a-posteriori bound on the truncation error
made in approximating P by PN .

4. A-Posteriori Validation of the Formal Series. In this section we prove
an a-posteriori validation theorem for parameterizations of stable and unstable manifolds
for discrete time dynamical systems. From a theoretical view it is preferable to work with
analytic functions defined on Cn. For the sake of readability we re-state our assumptions.

A1 Let p ∈ Cn, ρ > 0 and assume that that f : B(p, ρ) ⊂ Cn → Cn is a bounded
analytic function, so that there is K0 > 0 so that

‖f‖ρ ≤ K0.

A2 Assume thatDf(p) is non-singular, diagonalizble, and hyperbolic. Let {λs1, . . . , λsns}
and {ξ2

1 , . . . , ξ
s
ns} denote the stable eigenvalues (which are distinct as Df(p) is di-

agonalizable) and a choice of stable eigenvectors respectively. Let Λ denote the
ns × ns diagonal matrix of stable eigenvalues and Q0 = [ξs1| . . . |ξsns ] denote the
matrix whose columns are the stable eigenvectors.

A3 Assume that PN : B(0, ν) ⊂ Cns → Cn is an N -th order polynomial, with N ≥ 2,
which for each θ ∈ B(0, ν) solves the equation

f [PN (θ)] = PN (Λθ)

exactly to N -th order (in the sense that the power series coefficients of the function
on the left are equal to the power series coefficients of the function on the right to
N -th order).
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Then we have the following definition.
Definition 4.1. [Validation values for discrete dynamical systems] The collection of

positive constants ν, εtol, C1, C2, K1, ρ, ρ′, µ∗ and µ∗ are validation values for PN if

1. ‖f ◦ PN − PN ◦ Λ‖Σ,ν ≤ εtol;

2. ‖PN‖Σ,ν ≤ ρ′ < ρ;

3. 0 < µ∗ ≤ min1≤i≤ns |λsi | ≤ max1≤i≤ns |λsi | ≤ µ∗ < 1;

4.

‖Df [Pn]−1‖Σ,ν ≤ C1µ
−1
∗ + C2(ν);

where, as we will see in the proof, we take C1 to be any constant with

‖Q0‖‖Q−1
0 ‖ ≤ C1,

and C2 to be any bound on the theta dependent terms of Df [PN (θ)]−1 on Bν .

5.

max
β ∈ Zn
|β| = 2

max
1≤j≤n

‖∂βfj‖ρ ≤ K1(ρ).

The bounds in the validation theorem are improved if we take into account only the of
non-zero second partials of f . Then we will define

Nf = max
1≤j≤n

#{β ∈ Zn : |β| = 2 and ∂βfj 6= 0}, (4.1)

and of course have that Nf ≤ n2. However for a given map Nf may be smaller than this.
Theorem 4.1 (A-posteriori manifold validation). Given validation values ν, εtol , K1,

C1, C2, ρ, ρ′, µ∗ and µ∗, assume that N and δ satisfy the three inequalities

N + 1 >
ln(µ∗)− ln(C1 + µ∗C2)

ln(µ∗)
; (4.2)

δ < min

(
[µ∗ − (C1 + µ∗C2)(µ∗)N ]

2neπNf (C1 + µ∗C2)K1
, (ρ− ρ′)e−1

)
(4.3)

δ >
2(C1 + µ∗C2)εtol

µ∗ − (C1 + µ∗C2)(µ∗)N
(4.4)

Then there is a unique parameterization function P : B(0, ν) ⊂ Cns → Cn solving Equation
3.1. Additionally, the truncation error is bounded by

‖P − PN‖ν ≤ δ

and the parameterization coefficients aα ∈ Cn decay as

|aα| ≤
δ

ν|α|
for |α| > N.

Remark 4.2. [The Resonance Condition] While the meanings of the conditions given by
Equations 4.2, 4.3, and 4.4 will become clear in the Sections 4.2 and 4.3, when we discuss the
proof of Theorem 4.1, it is appropriate to make a small remark about Equation 4.2 presently.
Note that the right hand side of Equation 4.2 is the natural logarithm of the ratio of the
smallest to the largest eigenvalue of Df(p) (the spectral gap) minus a correction term which
reflects the nonlinearity of f at p. The condition given by Equation 4.2 guarantees that N is
so large enough that there is no possibility of resonances in the coefficients of the remainder
P − PN .
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4.1. Analytic Preliminaries. If x ∈ R, then we use |x| to denote the usual absolute
value. Similarly, for z = a + ib ∈ C we use the usual “Euclidian” norm |z| =

√
a2 + b2. We

endow Rn and Cn with the so called sup or infinity norms generated by the real or complex
absolute value functions, so that for x = (x1, . . . , xn) ∈ Rn and z = (z1, . . . , zn) ∈ Cn we
have

|x| = max
1≤i≤n

|xi|, and |z| = max
1≤i≤n

|zi|

where in each case the | · | on the right is either the absolute value for R or C, and the sup
is taken over components. These norms are well suited for numerical work, as they are easy
to evaluate and introduce no rounding errors.

For fixed ẑ ∈ Cm and ν > 0 let Bν(ẑ) ⊂ Cm be the ball (or poly-disk) of radius ν about
ẑ generated by the sup-norm, so

Bν(ẑ) ≡ {(h1, . . . , hm) ∈ Cm : |ẑi − hi| < ν for each 1 ≤ i ≤ m}.

A function g : Bν(ẑ) ⊂ Cm → C is analytic on the poly-disk Bν(ẑ) if g has a power series
expansion

g(z) =
∑
|α|≥0

aα(ẑ − z)α α ∈ Nm aα ∈ C,

which converges for all z ∈ Bν(ẑ). Here we use the usual multi-index notation, so that if
α = (α1, . . . , αm) ∈ Nm and z ∈ Cm then |α| = α1 + . . .+ αm and zα = zα1

1 · . . . · zαmm .
We say that f : Bν(ẑ) ⊂ Cm → Cn is analytic on Bν(ẑ) if f = (f1, . . . , fn) and each

fj : Bν(0) ⊂ Cm → C, 1 ≤ j ≤ n is analytic in the sense just described. Such an f can also
be expressed in power series form as

f(z) =
∑
|β|>0

bβ(ẑ − z)β β ∈ Nm bβ ∈ Cn

which converges for all z ∈ Bν(ẑ). The space of bounded analytic functions on Bν(ẑ) forms
a Banach space under the norm

‖f‖Bν(ẑ),Σ ≡
∑
|α|≥0

|bα|ν|α|.

Of course the bounded analytic functions are also a Banach space under the usual C0 norm,
and that the two norms are related by

‖f‖Bν(ẑ) ≡ max
1≤j≤n

max
1≤i≤m

sup
|zi−ẑi|≤ν

|fj(z1, . . . , zm)| ≤ ‖f‖Bν(ẑ),Σ.

In theoretical arguments we often use the C0 norm ‖ ·‖Bν(ẑ), while in numerical applications
it is often convenient to use the sigma-norm ‖ · ‖Bν(ẑ),Σ in conjunction with the above
inequality. Also, by the maximum modulus principle we have that if f is uniformly bounded
and analytic on (the open set) Bν(ẑ), then

‖f‖Bν(ẑ) = max
1≤j≤n

sup
|zi−ẑi|=ν

|fj(z1, . . . , zm)|,

so that f is in fact bounded on the closed ball. It follows that f is continuous on ∂Bν(ẑ).
If the ball in question is centered at the origin, i.e. is a ball of the form Bν(0) then we
sometimes use the notation ‖ · ‖ν,Σ and ‖ · ‖ν for ‖ · ‖Bν(0),Σ and ‖ · ‖Bν(0) respectively.

Suppose that A is an n ×m-matrix with entries aij ∈ C. Then when we consider a A
as a linear operator A : Cm → Cn we employ the usual operator norm

‖A‖M = sup
|η|=1

|A · η|,

19



where η ∈ Cm and · is matrix-vector multiplication. Since | · | is the sup-norm on components
we have that

‖A‖M ≤ sup
1≤i≤n

m∑
j=1

|aij | ≤ m sup
1≤i≤n

sup
1≤j≤m

|aij |. (4.5)

Given a fixed ẑ ∈ Ck and ν > 0, suppose that g : Bν(ẑ) ⊂ Ck → Cm is an analytic
function and suppose that the entries of the n×m matrix A are themselves analytic functions
aij : Bν(ẑ) ⊂ Ck → C. We can define the norm of the non-constant matrix A to be

‖A‖M,Bν(ẑ) ≡ max
1≤i≤n

m∑
j=1

‖aij‖Bν(ẑ)

Then the non-constant matrix vector product A·g : Bν(ẑ) ⊂ Ck → Cn is an analytic function
and we have the bounds

‖A · g‖Bν(ẑ) ≤ ‖A‖M,Bν(ẑ)‖g‖Bν(ẑ) ≤ m‖g‖Bν(ẑ),Σ max
1≤i≤n

max
1≤j≤m

‖aij‖Bν(ẑ),Σ,

the last bound being particularly useful for numerical applications.

The family of analytic functions which are zero to N -th order play an important in the
arguments to follow. We say that h : Bν(0) ⊂ Cm → Cn is an analytic N-tail if h is analytic
on Bν(0) and

h(0) = 0, Dh(0) = 0, . . . Dαh(0) = 0, for |α| ≤ N.

Then an analytic N -tail h always has power series representation

h(z) =
∑
|β|>N

bβz
β β ∈ Nm bβ ∈ Cn

converging for each |z| < ν. With m, n, and ν > 0 fixed we define HN to be the set of
bounded analytic N -tials on Bν(0) ⊂ Cm taking values in Cn (n, m, and ν will always be
clear from context).

We use freely the following well known facts about analytic functions and N -tails.

Lemma 4.2.

1. If ẑ ∈ Cm, ν > 0, f : Bν(ẑ)→ Cn is analytic and ‖f‖ν ≤M , then one has for each
β ∈ Nm the Cauchy Estimates

|bβ | ≤
M

ν|β|
.

2. Let h be a bounded analytic N-tail on Bν(0) ⊂ Cm and λ1, . . . , λm ∈ Cbe non-zero
complex numbers with 0 < |λj | < 1, for 1 ≤ j ≤ m. Suppose that Λ is the m ×m
matrix with λj in the j-th diagonal entry and zeros in the non-diagonal entries, and
that 0 < µ∗ ≡ supj |λj | < 1. Then h ◦ Λ is a bounded analytic N-tail on Bν(0) and

‖h ◦ Λ‖ν ≤ (µ∗)N+1‖h‖ν .

3. If g : Bν(0) ⊂ Cm → C is analytic and ẑ ∈ Cm has |ẑ| < ν, then g is analytic on
the poly-disk Bs(ẑ), s = ν − |ẑ| and for any η ∈ Bs(ẑ), g can be expanded as

g(ẑ + η) = g(ẑ) +Dg(ẑ) · η +Rẑ(η)

where

‖Rẑ‖s ≤ NgKs2.
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Here Ng is the number of non-zero second partial derivatives of of g at ẑ (so Ng ≤
m2) and K is any constant having

sup
|β|=2

‖∂βg‖s ≤ K.

If f is analytic on Bν(0) ⊂ Cm with values in Cn then the result can be applied to
f component by component.

4. If f : Bν(ẑ) ⊂ Cm → Cn is analytic and z1, z2 ∈ Bν(ẑ) then

|f(z1)− f(z2)| ≤ ‖Df‖M,Bν(ẑ)|z1 − z2|.

For (1) see any standard text on complex analysis (for example [1]). The elementary
proof of (2) is in [6]. (3) is the Lagrange form of the Taylor remainder theorem (also for
example in [1]), while (4) is the mean value theorem combined with our norm definitions.

In the following let X be a Banach space, L(X) be the Banach space of all bounded
linear operators on X, and A ∈ L(X). Then

‖A‖L(X) ≡ sup
x∈X,‖x‖X=1

‖Ax‖X = M <∞.

We make use of the following standard theorems from non-linear analysis.

• Contraction Mapping Theorem Let x ∈ X,

Br(x) = {y ∈ X : ‖x− y‖X ≤ r},

and suppose that Φ : Br(x) → Br(x) is continuous. If in addition there is a
0 < κ < 1 so that for any x1, x2 ∈ Br(x) we have

‖Φ(x1)− Φ(x2)‖X ≤ κ‖x1 − x2‖X

then there is a unique x̂ ∈ Br(x) so that Φ(x̂) = x̂.

• Neumann Series If I : X → X is the identity map and A : X → X is a bounded
linear operator with ‖A‖L(X) ≤ 1 then I −A is boundedly invertible and

[I −A]−1 =

∞∑
k=0

Ak,

from which it follows that

‖(I −A)−1‖L(X) ≤
∞∑
k=0

‖A‖kL(X) ≤
1

1−M .

Our “analytic homoclinic shadowing theorem” (Theorem 5.1) is based on the Newton-
Kantorovich Theorem [30, 31].

Theorem 4.3 (Newton-Kantorovich Method). Let X,Y be Bancah spaces and F : X →
Y be a differentiable mapping. Assume that there as an x̂ ∈ X and an r > 0 such that

(i) DF (x̂) has bounded inverse, and

(ii) ‖DF (x)−DF (y)‖B(X,Y ) ≤ κ‖x− y‖ for all x, y ∈ Br(x̂).

If

(I)

εNK ≥ ‖DF (x̂)−1 F (x̂)‖X ,
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(II)

εNK ≤
r

2
,

and

(III)

4εNK κ ‖DF (x̂)−1‖B(X,Y ) ≤ 1,

then the equation

F (x) = 0

has a unique solution in B(r, x̂).

For an english language exposition of the proof, see also [43]

Finally we require the following bounds for derivatives of analytic functions. The Lemma
4.3 tells us how to bound the derivatives of an analytic function in terms of a bound on the
function itself, so long as we are willing to give up some portion of the domain of analyticity.
The estimates are considered “standard” in KAM theory. (For example they are left as an
exercise in [35], and are similar to the bounds for Fourier series found in Section 2.5.7 of [16].
Similar, but less optimal, estimates are in [50, 6]) We include a brief proof in order to obtain
explicitly the constants, as we must apply the bounds in the context of computer assisted
arguments. Our aim is to give an elementary and brief computation and we note that our
constants are obviously not sharp. On the other hand we do take care to obtain the optimal
order in the loss of domain parameter σ.

Lemma 4.3 (Cauchy Bounds). Suppose that f : Bν(0) ⊂ Cm → Cn is bounded and
analytic. Then for any 0 < σ ≤ 1 we have that

‖∂if‖νe−σ ≤
2π

νσ
‖f‖ν so that ‖Df‖νe−σ ≤

2πm

νσ
‖f‖ν , (4.6)

as well as

‖∂i∂jf‖νe−σ ≤
4π2

ν2σ2
‖f‖ν and ‖D2f‖νe−σ ≤

4π2m2

ν2σ2
‖f‖ν . (4.7)

Proof: Consider first the one dimensional case, where ν > 0 and f : Bν(0) ⊂ C → C is
analytic. Let 0 < σ ≤ 1. Then using Cauchy’s formula [1] we have that for any z ∈ Bνe−σ (0)

f ′(z) =
1

2πi

∫
|ξ|=ν

f(ξ)

(ξ − z)2
dξ.

Note that the denominator is bounded precisely because |z| ≤ νe−σ, i.e. because we are
taking z in a reduced domain. (Choosing to reduce the domain by an amount exponential
in σ gives the optimal 1/σ dependance in the final estimate, as will be seen in the proof).
We parameterize the path |ξ| = ν by ξ(θ) = νeiθ and take norms to obtain

|f ′(z)| = 1

2π

∣∣∣∣∫ 2π

0

f [νeiθ]iνeiθ

(νeiθ − z)2
dθ

∣∣∣∣
≤ 1

2π

∫ 2π

0

ν‖f‖ν
|νeiθ − z|2 dθ

≤ ‖f‖ν
2πν

∫ 2π

0

1

|eiθ − e−σ|2 dθ, (4.8)

where the last inequality is due to the fact that |z| ≤ νe−σ, so that the denominator is
minimized when |z| = νe−σ. Since the integrand is radially symmetric once we take the
norm of f , we are free to take z = νe−σ, and then factor a ν2 out of the denominator of the
integrand.
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Noting that eσ ≥ 1 + σ for all real σ, we have that σ/(1 + σ) ≤ 1− e−σ for all σ > −1.
Then for 0 < σ ≤ 1 we have

σ/2 ≤ σ

1 + σ
≤ 1− e−σ ≤ |eiθ − e−σ|, (4.9)

for all 0 ≤ θ ≤ 2π. Naive application of Eq (4.9) to Eq (4.8) would yield |f ′(z)| ≤ 4‖f‖ν/σ2.
However a slightly more subtle argument yields an estimate which is only inverse proportional
to σ. Eq (4.8) can be re-written as

‖f‖ν
2πν

∫ 2π

0

1

|eiθ − e−σ|2 dθ

=
‖f‖ν
2πν

(∫ σ
2

−σ
2

1

|eiθ − e−σ|2 dθ +

∫ 2π−σ
2

σ
2

1

|eiθ − e−σ|2 dθ

)
(4.10)

For the first of the integrals on the right in Eq (4.10) we exploit Eq (4.9) to obtian∫ σ
2

−σ
2

1

|eiθ − e−σ|2 dθ ≤
∫ σ

2

−σ
2

1

|σ
2
|2 dθ ≤

4

σ
. (4.11)

On the other hand, since |eiθ − e−σ| ≥ sin θ ≥ 2θ/π for 0 ≤ θ ≤ π/4, the second integral on
the right in Eq (4.10) satisfies the bound∫ 2π−σ

2

σ
2

1

|eiθ − e−σ|2 dθ ≤ 4

∫ π
2

σ
2

π2

4θ2
≤ 2π2

σ
(4.12)

Racalling that z ∈ Bνe−σ (0) we note that Eq (4.11) and Eq (4.12) are uniform in z and
combine them with Eq (4.10) to obtain

‖f ′‖νe−σ ≤
1

2πν

(
4

σ
+

2π2

σ

)
‖f‖ν ≤

2π

νσ
‖f‖ν . (4.13)

If f : Bν(0) ⊂ Cm → Cn then each fk(z1, . . . , zi, . . . , zm), 1 ≤ i ≤ m, 1 ≤ k ≤ n is
analytic in the i-th variable (with the other variables held fixed), so that we obtain∣∣∣∣ ∂∂zi fk(z)

∣∣∣∣ ≤ 2π

νσ
‖f‖ν ,

for any |z| ≤ νe−σ by applying the same argument to the Cauchy integral of ∂/∂zifk(z).
Since this is uniform in i, k and z we apply the estimate given by Equation (4.5) in order to
obtian

‖Df‖νe−σ ≤
2πm

νσ
‖f‖ν ,

as desired. The same estimates can be applied to the Cauchy type integral

∂

∂zi

∂

∂zj
f(z) =

1

(2πi)2

∫
|ξi|=ν

∫
|ξj |=ν

f(z1, . . . , ξi, . . . , ξj , . . . , zm)

(ξi − zi)2 (ξj − zj)2
dξi dξj

to obtain in a similar fashion that

‖D2f‖νe−σ ≤
4π2m2

ν2σ2
‖f‖ν ,

as desired.

�
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4.2. Proof of the Validation Theorem. We seek an analytic N -tail h : Bν → Rn
so that P = PN + h and having ‖h‖ν ≤ δ as small as possible (note that δ bounds the
truncation error in the approximation PN ). The key observation is that h itself solves a
certain functional equation. To see this let P = PN + h so that Equation 3.1 becomes

f [PN + h] = [PN + h](Λ).

Since f is analytic in Bρ ⊂ Rn, and since ‖PN‖ν ≤ ρ′ ≤ ρ, f has a Taylor expansion about
PN (θ) for each θ ∈ Bs. Then let θ ∈ Bs so that

f [PN (θ) + h(θ)] = f [PN (θ)] +Df [PN (θ)]h(θ) +RPN (θ)(h(θ)), (4.14)

where for any |z| ≤ ρ′, Rz is the Taylor remainder of f expanded at z. Again, since f is
analytic on ρ > ρ′ we have that Rz(η) is analytic on a disk of radius s = ρ− ρ′. Let

E(θ) = f [PN (θ)]− PN (Λθ) (4.15)

and note that E is an analytic N -tail by the assumption that PN solves Equation 3.1 exactly
to N -th order. Then using Equations 4.14 and 4.15 in Equation 3.1 we have a new operator
equation in terms of h

h[Λθ]−Df [PN (θ)]h(θ) = E(θ) +RPN (h). (4.16)

In order to re-write Equation 4.16 as a fixed point equaiton on HN , the Banach Space
of all analytic N -tails from B into Cn, consider the linear operator L : HN → HN defined by
the left hand side of Equation 4.16. So for any p, q ∈ HN we define L[q] to be

L[q](θ) = q[Λθ]−Df [PN (θ)]h(θ),

and our first task is to study the equation L[q] = p. He have that
Lemma 4.4. Let C1, C2, µ∗ and µ∗ be validation values as in Definition 4.1. Suppose

that N satisfies the assumption given by Equation 4.2 of Theorem 4.1. Then the linear
operator L is boundedly invertible on HN , so that for any p ∈ H there exists a unique
solution to the equation

L[q] = p.

Moreover we have the bound

‖L−1‖ ≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N
.

Using Lemma 4.4 we apply L−1 to both sides of Equation 4.16 to see that if P = PN + h
then

h = L−1 [E(θ) +RPN [h(θ)].]

Define the non-linear operator Φ : HN → HN to be

Φ(h) = L−1 [E(θ) +RPN [h(θ)]] . (4.17)

The preceding discussion makes it clear that P = PN+h is an exact solution of Equation
3.1 if and only if h is a fixed point of Equation 4.17. What remains is to show that if the
assumptions given by Equations 4.2, 4.3 and 4.4 are satisfied, then Φ admits a unique fixed
point h. A natural strategy is to employ the Banach Contraction Mapping Theorem. In
fact, as we will see in the next section, the assumptions given by Equations 4.3 and 4.4 are
exactly the conditions which make Φ a local contraction near PN .

Lemma 4.5. Under the hypotheses of Theorem 4.1 Φ is a contraction on the ball Uδ =
{h ∈ HN : ‖h‖ν ≤ δ}. Hence there is a unique fixed point h of Φ on Uδ so that PN + h is an
exact solution of Equation 3.1.
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Then Theorem 4.1 is true as soon as the lemmas are proved. Note that on an heuristic
level, it is natural to expect that Φ is a contraction as E is a small constant (with respect
to h), and RPN should depend “quadratically” on h.

4.3. Proofs of the Lemmas. Now we complete the proof of Theorem 4.1 by pro-
viding the proofs of the lemmas.

Proof of Lemma 4.4: Let p and q be bounded analytic N -tails on Bν and consider the
equation

L[q](θ) ≡ q[Λθ]−Df [PN (θ)]q(θ) = p(θ). (4.18)

If we let p̄(θ) ≡ −Df [PN (θ)]−1p(θ) then this is equivalent to

q(θ)−Df [PN (θ)]−1q(Λθ) = p̄(θ),

which upon defining the linear operator

A[q](θ) ≡ Df [PN (θ)]−1q(Λθ)

becomes

(I −A)[q](θ) = p̄(θ).

Now consider the norm

‖A‖HN ≡ sup
‖η‖ν=1

‖A[η](θ)‖ν

= sup
‖η‖ν=1

‖Df [PN ](η ◦ Λ)‖ν

≤ sup
‖η‖ν=1

(C1µ
−1
∗ + C2)|Λ|N+1‖η‖ν

≤ µ−1
∗ (C1 + µ∗C2)(µ∗)N+1,

where we have used the bound from Equation 4.19 and Estimate 2 of Lemma 4.2. Then we
apply the assumption given by Equation (4.2) of Theorem 4.1 and see that

‖A‖HN ≤
(C1 + µ∗C2)(µ∗)N+1

µ∗
< 1.

It follows from the Neumann Theorem that (I − A) is boundedly invertible, and that we
have the bound

‖(I −A)−1‖HN ≤
∞∑
i=0

‖A‖iHN =
1

1− C1(µ∗)N+1

µ∗

.

From the bounded invertability of (I − A) we obtain a unique solution to Equaiton 4.18 in
the form

q(θ) = (I −A)−1[p̄](θ) = −(I −A)−1Df [PN (θ)]−1p(θ).

Since p and q were arbitrary we have

‖L−1‖HN ≤ ‖(I −A)−1‖HN ‖Df [PN ]−1‖Σ,ν

≤ 1

1− (C1+µ∗C2)(µ∗)N+1

µ∗

(µ−1
∗ C1 + C2)

≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
,

as desired.

25



�

Proof of Lemma 4.5: Since we hypothesized Equation 4.2, we can apply Lemma 4.4 and
have that L−1 is a well defined bounded linear operator. Then the operator

Φ[h](θ) ≡ L−1 [E(θ) +RPN (θ)[h](θ)
]

is well defined. To employ the Banach Fixed Point Theorem we must establish that when
Uδ = {h ∈ HN : ‖h‖ν ≤ δ} is a δ-neighborhood in the space of analytic N -tails and δ satsfies
the hypotheses of Theorem 4.1 and then

(i) Φ maps Uδ into itself.

(ii) there is a 0 < κ < 1 so that for any h1, h2 ∈ Uδ one has ‖Φ(h1) − Φ(h2)‖ν ≤
κ‖h1 − h2‖ν .

In order to establish (i) we first note that for any z, η ∈ Cn with |z| ≤ ρ′ and |η| ≤ s ≡
ρ− ρ′ we have that

|Rjz(η)| ≤ NfK1s
2

by straightforward application of the Lagrange Form of the Taylor Remainder to each of the
1 ≤ j ≤ n components of Rz(η) (this estimate is carried out explicitly in [6] see Equaiton
(75)). Then since ‖PN‖ν ≤ ‖PN‖Σ,ν ≤ ρ′ by by the definition of validation values (def 4.1)
and δ < se−1 < s we have for each θ ∈ Bν

|RPN (θ)(h(θ))|] ≤ |Rz(h(θ))| ≤ ‖Rz‖δ ≤
δ2

s2
‖Rz‖s ≤ NfK1δ

2.

Then

‖Φ(h)‖ν ≤ ‖L−1‖ (‖E‖ν + ‖RPN (h)‖ν)

≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1

(
εtol +NfK1δ

2)
But

C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
εtol ≤

δ

2

and
C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
NfK1δ

2 ≤ δ

2
,

as we see by applying the hypotheses given by Equations 4.3 and 4.4 respectively. Then Φ
does in fact map into Uδ, as desired.

To establish (ii) we begin by considering the differential of the remainder term. Then
let θ ∈ Bν and z = PN (θ) and note that |z| ≤ ρ′ (due to the definition of validation values,
see Def (4.1)). Since δ < se−1 < s we choose a 0 < σ ≤ 1 and let ω = δ/se−σ so that for
any and h ∈ Uδ we have the bound

‖DRz(h(θ))‖δ = ‖DRz ◦ ω‖se−σ
≤ ω‖DRz‖se−σ

≤ δ

se−σ
2πnσ−1

s
‖Rz‖s

≤ 2nπeσNfK1

σ
δ,

≤ 2neπNfK1δ.
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Here we have used the Taylor Estimate of Lemma 4.2, the Cauchy Bounds of Estimate 4.3,
the N -tail scaling estimate of Lemma 4.2, the fact that σ−1eσ is minimized at σ = 1, and
the assumption that that δ < e−1s.

Then for any h1, h2 ∈ Uδ we have

|Rjz(h1(θ))−Rjz(h2(θ))| ≤ 2neπNfK1δ‖h1 − h2‖ν
by the mean value theorem. So

‖Φ(h1)− Φ(h2)‖ν =
∥∥L−1[E −RPN (h1)]− L−1[E −RPN (h2)]

∥∥
ν

= ‖L−1[RPN (h1)−RPN (h2)‖ν

≤ C1 + µ∗C2

µ∗ − (C1 + µ∗C2)(µ∗)N+1
2neπNfK1δ‖h1 − h2‖ν

≤ κ‖h1 − h2‖ν ,
where

κ ≡ 2neπNf (C1 + µ∗C2)K1

[µ∗ − (C1 + µ∗C2)(µ∗)N+1]
δ < 1,

as δ satisfies the hypothesis given by Equation (4.3) of Theorem (4.1).

�

4.4. The Bounds C1 and C2 when f is polynomial. In this section we describe
how to obtain the bounds on the non-constant matrix Df [PN (θ)]−1 required in the definition
of validation values. We focus on the case where f is a polynomial. This is the only part
of the validation argument that makes the polynomial assumption. We note that if f is
a general analytic function then we can use the Taylor expansion of f to obtain that f is
polynomial plus a remainder as small as we wish. The argument given here can be modified
to work in this more general case as well. We do not pursue the details here.

By the inverse function theorem we have

Df [PN (θ)]−1 = Df−1[f ◦ PN (θ)],

which can be used to compute an analytic expression for Df [PN ]−1 as long as f−1 is known
explicitly. Then we let

Df(x)−1 =

M−1∑
|β|≥0

Bβx
β

where each Bβ is an n× n matrix, and M is the order of f . Recall also that

PN (θ) =
∑

0≤|α|≤N

aαθ
α.

Then if N̄ = N(M − 1) we have that Df [PN (θ)]−1 is an N̄ -th order polynomial with matrix
coefficients. Then we let

Df [PN (θ)]−1 =
∑

0≤|α|≤M̄

Cαθ
α

where the coefficients Cα, depend on the Bβ and cα, can be worked out via Cauchy Products.
Let Q0ΣQ−1

0 = Df(p) be the eigenvector/eigenvalue decomposition of the differential
and note that

C0 = Df [PN (0)]−1 = Df(p)−1 = Q−1
0 Σ−1Q0.

Then
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‖Df [PN ]−1‖Σ,ν ≤

∥∥∥∥∥∥Q−1
0 Σ−1Q0 +

∑
1≤|α|M̄

Cαθ
α

∥∥∥∥∥∥
Σ,ν

≤ ‖Q0‖‖Q−1
0 ‖µ

−1
∗ +

N̄∑
|α|=1

‖Cα‖ν|α|.

Then we define C1 and C2 to be any bounds of the form

‖Q0‖‖Q−1
0 ‖ ≤ C1,

and

N̄∑
|α|=1

‖Cα‖ν|α| ≤ C2.

Note that since these expressions involve bounding finite sums of known quantities, both C1

and C2 are easily found using interval arethmetic. Finally we have that

‖Df [PN ]‖Σ,ν ≤ C1µ
−1
∗ + C2. (4.19)

as needed in the definition of the validation values.

Of course if f is not a polynomial map it is possible to make a similar argument using
at M -th order Taylor expansion by including a remainder term. This is a technicality not
needed in the present work but which could be easily added to the scheme. In this case C2

would simply have to incorporate as well the truncation error on the ball of radius ρ′.

5. Rigorous Computation of Transverse Homoclinic Orbits. Throughout
this section we make the following definitions and assumptions.

P1: Let p ∈ Rn be a hyperbolic fixed point of the analyticomorphism f : Rn → Rn.
Assume that Df(p) is diagonalizable, and that ns, nu > 0, the number of stable
and unstable eigenvalues respectively, have nu + ns = n.

P2: Let PN be the N -th order polynomial approximate parameterization of Wu(p). In
addition let νu, εu, Cu1 , Cu2 , ρ, ρ′, and µ∗, µ

∗ be validation values for PN . Assume
that these validation values satisfy the hypotheses of Theorem (4.1) applied to f−1,
so that the is a unique analytic N -tail h with ‖h‖νu ≤ δu so that P = PN + h is a
parameterization of Wu

loc(p).

P3: Similarly, let QN be the N -th order polynomial approximate parameterization of
W s(p) and νs, εs, C

s
1 , Cs2 , ρ, ρ′, and µ−, µ+ be validation values for QN and assume

that these validation values satisfy the hypotheses of Theorem 4.1 so that the is a
unique analytic N -tail g with ‖g‖νu ≤ δs so that Q = QN + g is a parameterization
of W s

loc(p).

Then we can write the homoclinic functional equation (Equation 1.1) in the form

F (θ, x1, x2, . . . , xk−2, xk−1, φ) =
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f−1(x1)− PN (θ)− h(θ)
f−1(x2)− x1

f−1(x3)− x2

...
f−1(xj)− xj−1

f(xj)− xj+1

...
f(xk−2)− xk−1

f(xk−1)−QN (φ)− g(φ)


≡ FN (θ, x1, . . . , xk−1, φ) +H(θ, φ), (5.1)

where again we stress that PN and QN are explicitly know polynomials and h, and g are
unknown analytic N -tails for which we have the mathematically rigorous bounds given in
P3. We call FN the discretized homoclinic functional equation.

Heuristically our validation scheme is as follows. Assume that there is x̂ = (θ̂, x̂1,
. . . , x̂k−1, φ̂) ∈ Rnk with θ̂ ∈ B◦u and φ̂ ∈ B◦s having that x̂ is an approximate zero of the
discretized homoclinic equation, i.e. assume that

‖FN (x̂)‖ ≈ 0.

If in addition δs and δu are small, then we have that x̂ is also an approximate zero of F , so
that orbit(x̂j) is approximately homoclinic to p for each 1 ≤ j ≤ k− 1. Our goal is to apply
the Newton-Kantorovich Theorem (Thm 4.3) in order to conclude that there exists a true
solution x∗ of the full homoclinic functional equation near x̂. These notions are formalized
in the next section.

5.1. Validation of Homoclinic Connections. We now formalize the heuristic
scheme just described. Assume, in addition to P1, P2 and P3, that we have computed, or are
otherwise given, the following “quasi-local” data, which we refer to as homoclinic validation
values.

Definition 5.1 (Homoclinic validation values). We say that the vector x̂ = (θ̂, x̂1, . . .,
x̂k−1, φ̂) ∈ Rnk, and positive constants AN , MN , Cβ, CP , κ, δ̂, ε̂, and r are validation
values for the homoclinic functional equation if the following conditions are met:

1. Define the point x0 ∈ Rnk to be given by x0 = (0nu , p, . . . , p, 0ns) where p is the
fixed point of f described in P1− P3 and 0nu and 0ns are the zero vectors in Rnu
and Rns . Assume that x0 is not in the poly-disk Br(x̂) ⊂ Rnk.

2. x̂ = (θ̂, x̂1, . . . , x̂k−1, φ̂) ∈ Rnk is an ε̂-approximate solution of F = 0, in the sense
that

|DFN (x̂)−1 FN (x̂)| ≤ ε̂.

3. DFN (x̂) is non-singular and the positive constant AM has that ‖DFN (x̂)−1‖M ≤
AN .

4. |θ̂| < νu and |φ̂| < νs so that we can define what we will call the first order loss of
domain parameters

σ̂s = − ln

(
|θ̂|
νs

)
, and σ̂u = − ln

(
|φ̂|
νu

)
.

5. The positive constant MN has that(
max

1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

)
2πnu
νuσ̂u

δu+

 max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 2πns
νsσ̂s

δs ≤MN .
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6. The positive constant δ̂ has that(
max

1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

)
δu +

 max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 δs. ≤ δ̂.

7. The parameters θ̂, φ̂ and the positive constant r also satisfy |θ̂| + r < νu and
|φ̂|+ r < νs so that we can define the second order loss of domain parameters

σs = − ln

(
|θ̂|+ r

νs

)
, and σu = − ln

(
|φ̂|+ r

νu

)
.

8. The positive constant Cβ has that

max
1≤j≤k−1

max
1≤i≤n

max
|β|=2

{
‖∂βfi‖Br(x̂j), ‖∂

βf−1
i ‖Br(x̂j)

}
≤ Cβ .

9. The positive constant CP has

max

(
‖D2PN‖Br(θ̂) +

2π2n2

ν2
uσ2

u

δu, ‖D2QN‖Br(φ̂) +
2π2n2

ν2
sσ2

s

δs

)
≤ CP .

10. Finally, κ is positive constant having

NfCβ + CP ≤ κ,

where Nf is the max of the number of non-zero second partials of f and f−1.

We sometimes write Cβ(r), CP (r) and κ(r) to emphasize that these constants should
be thought of as depending on the radius r of the Rnk poly-disk about x̂. In other words
they are the members of a validation values set which carry global information about the
ball Br(x̂) ⊂ Rnk. In the next section we will prove the following a-posteriori result for
F , which is based on a standard Newton-Kantorivich argument combined with the rigorous
a-posteriori bounds on the parameterizations.

Theorem 5.1 (A-posteriori validation of a homoclinic connection). Given assumptions
[P1]− [P3] let x̂, AN , MN , Cbeta, CP , κ, δ̂, ε̂, and r be a set of homoclinic validation values
as in Def 5.1. We call εNK a “Newton-Kantorovich Epsilon” if

1

1−MN

(
ε̂+ δ̂

)
≤ εNK . (5.2)

With εNK fixed suppose that

A. 0 < MN < 1,

B. 2εNK ≤ r,
C. AN

1−MN
4κεNK ≤ 1.

Then there is a unique x∗ ∈ Br(x̂) ⊂ Rnk which is a non-trivial solution of the equation
F (x∗) = 0. Such an x∗ clearly has that

|x∗ − x̂| ≤ r.

Moreover, if for all x ∈ Br(x̂) ⊂ Rnk we have both that DFN (x)−1 exists, and that

‖DFN (x)−1DH(x)‖M,Br(x̂) < 1, (5.3)

then it follows that W s(p) ∩Wu(p), which is non-empty due to the existence of x∗, is also
transverse.
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5.2. Proof of Theorem 5.1. The proof consists of two parts. First we use Theorem
4.3 to show that the hypotheses of Theorem 5.1 combined with the definition of homoclinic
validation values imply the existence of a non-trivial zero of F in Br(x̂). Then we study the
form of the differential in order to establish the transversality. The subtly throughout is that
while FN (x̂) and DF−1

N (x̂) are known, it is F and DF which must be explicitly bound.

In order to apply the Newton-Kantorovic Theorem (thm 4.3) we must show that

(i) DF (x̂) has bounded inverse,

(ii) DF is Lipschitz on Br(x̂) with Lipschitz constant κ,

(I) |DF (x̂)−1F (x̂)| ≤ εNK ,

(II) εNK ≤ r/2,

(III) 4εNKκ‖DF (x̂)−1‖M ≤ 1.

Here the roman numerals refer to the nomenclature established in the statement of Theorem
4.3.

Let [DF−1
N (x̂)](a:b), with a < b ∈ N, denote the submatrix of DF−1

N (x̂) composed of
columns a through b. We begin by noting that

DF−1
N (x̂)DH(x̂) = DF−1

N (x̂)


Dθh(θ̂) 0 . . . 0

0 0 . . . 0
...

... . . .
...

0 0 . . . Dφg(φ̂)


=
[
[DF−1

N (x̂)](1:n)Dh(θ̂) | 0 | . . . | 0 | [DF−1
N (x̂)](nk−n+1:nk)Dg(φ̂)

]
,

so that

‖DF−1
N (x̂)DH(x̂)‖M ≤

(
nu max

1≤i≤nk

n∑
j=1

[DF−1
N (x̂)]ij

)
‖Dh‖νue−σ̂u

+

ns max
1≤i≤nk

nk∑
j=nk−n+1

[DF−1
N (x̂)]ij

 ‖Dg‖νse−σ̂s
≤MN

< 1,

by part 5 of Definition 5.1, The Cauchy bounds of Lemma (4.3), and Assumption A of
the present Theorem. It follows from the Neumann Series Theorem that the matrix I +
DF−1

N (x̂)DH(x̂) is invertible and that∥∥[I +DF−1
N (x̂)DH(x̂)]−1

∥∥
M
≤ 1

1−MN
. (5.4)

Then we have that

DF (x̂)−1 = [DFN (x̂) +DH(x̂)]−1

=
[
DFN (x̂)

(
I +DFN (x̂)−1DH(x̂)

) ]−1

= [I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1 (5.5)

exists, and obtain the bound
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‖DF (x̂)−1‖M ≤
AN

1−MN
. (5.6)

This establishes (i) of Theorem 4.3.

In order to investigate the Lipschitz condition on the differential DF we define the real
valued functions gij : Br(x̂) ⊂ Rnk → R where 1 ≤ i, j ≤ nk by the expressions

gij(z) = ∂jFi(z).

Then for x, y ∈ Br(x̂) we have that

|gij(x)− gij(y)| ≤ ‖∇gij‖M,Br(x̂)|x− y|

≤
nk∑
`=1

‖∂`gij‖Br(x̂)|x− y|

≤

(
nk∑
`=1

‖∂`∂jFi‖Br(x̂)

)
|x− y|, (5.7)

by the Mean Value Theorem. Then

‖DF (x)−DF (y)‖M ≡ sup
v ∈ Rnk
|v| = 1

|[DF (x)−DF (y)]v|

≤ max
1≤i≤nk

∑
1≤j≤nk

|[DF (x)−DF (y)]ij |

= max
1≤i≤nk

∑
1≤j≤nk

|∂jFi(x)− ∂jFi(y)|

≤

(
max

1≤i≤nk

nk∑
j=1

nk∑
`=1

‖∂`∂jFi‖Br(x̂)

)
|x− y|, (5.8)

where we have used the estimate of Inequality 5.7.
Note that from 7 of Definition 5.1 and the Cauchy Bounds of Lemma 4.3 we have that

for any 1 ≤ i ≤ n

‖∂`∂jhi‖Br(x̂) = ‖∂`∂jhi‖Br(θ̂)

≤ ‖∂`∂jhi‖νue−σu

≤ 2π2

ν2
uσ2

u

δu,

and similarly

‖∂`∂jgi‖Br(x̂) ≤
2π2

ν2
sσ2

s

δs.

Using these estimates and considering the second partial derivatives of F one component at
a time we recall 8, 9, and 10 of Definition 5.1 and obtain that

max
1≤i≤nk

nk∑
j=1

nk∑
`=1

‖∂`∂jFi‖Br(x̂) ≤ NfCβ + CP = κ.

Combining this with Inequality (5.8) gives (ii) of Theorem 4.3.
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For (I) of Theorem 4.3 we use the notation [DF−1
N (x̂)](a:b) as above and have that

∣∣DF−1
N (x̂)H(x̂)

∣∣ =

∣∣∣∣∣∣∣∣∣∣∣
DF−1

N (x̂)


h(θ̂)

0
...
0

g(φ̂)



∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣[DF−1

N (x̂)](1:n) h(θ̂) + [DF−1
N (x̂)](nk−n+1:nk) g(φ̂)

∣∣∣
≤

(
max

1≤i≤nk

n∑
j=1

∣∣[DF−1
N (x̂)]ij

∣∣) ‖h‖νu
+

 max
1≤i≤nk

nk∑
j=nk−n+1

∣∣[DF−1
N (x̂)]ij

∣∣ ‖g‖νs
≤ δ̂, (5.9)

where we have used 6 of Definition 5.1. Then, recalling Equation 5.5 and Inequality 5.6 we
have

∣∣DF (x̂)−1F (x̂)
∣∣ ≤ ∣∣[I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1F (x̂)

∣∣
=
∣∣[I +DFN (x̂)−1DH(x̂)]−1 DFN (x̂)−1 (FN (x̂) +H(x̂))

∣∣
≤ 1

1−MN

(∣∣DF−1
N (x̂)FN (x̂)

∣∣+
∣∣DF−1

N (x̂)H(x̂)
∣∣)

≤ 1

1−MN

(
ε̂+ δ̂

)
≤ εNK , (5.10)

where we have used 2 of Definition 5.1, the Estimate given by Inequality 5.9, and the the
defintion of εNK given by Equation 5.2. This establishes condition (I) of Theorem 4.3.
Finally note that (III) of Theorem 4.3 follows directly from assumption C of the present
theorem and Inequality 5.6, while (II) of Theorem 4.3 is assumption B of the present The-
orem.

Then the conditions of Theorem 4.3 are satisfied and we obtain the existence of a unique
x∗ ∈ Br(x̂) so that F (x∗) = 0. Note that since x∗ 6= x0 by 1 of Definition 5.1, we obtain a
non-trivial homoclinic orbit.

Now we turn to the question of transversality of the intersection at x∗. An argument
similar to the one used to derive Equation 5.5, except with x̂ replaced by a variable x ∈ Br(x̂)
shows that DF (x) is invertible for all x ∈ Br(x̂) as long as DFN (x) is invertible for all
x ∈ Br(x̂) and the condition given by Equation 5.3 is met. Since we have assumed that both
of these conditions are met, it follows that DF (x∗) is non-singular.

What remains is to show is that the non-singularity of DF (x∗) implies that the homo-
clinic orbit is transverse. Assume for the moment that k = 1, so that the local manifolds
Wu

loc(p) = P [Bνu(0)] and W s

loc(p) = Q[Bνs(0)] intersect at x∗. In this case the operator F
reduces to

F (θ, φ) = P (θ)−Q(φ).

and we have a solution x∗ = (θ∗, φ∗) ∈ Br(x̂). Since DF (x∗) is non-singular, the columns of

DF (x∗) = [DθP (θ∗)| −DφQ(φ∗)]
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span Rn. But the columns of DθP (θ∗) and DφQφ∗ span TP (θ∗)W
u(p) and TQ(φ∗)W

s(p)
respectively. It follows that TP (θ∗)W

u(p) and TQ(φ∗)W
s(p) span Rn, which is to say that x∗

is a point of transverse intersection.

Now suppose K > 1, and x∗ ∈ Rnk is the solution of F = 0. Since any f -iterate of a
local unstable manifold is again a local unstable manifold, and any f -iterate of a homoclinic
point is another homoclinic point, we have that the local unstable manifold fk[Wu

loc(p)] =

fk[P (Bnu(0))] intersects W s

loc(p) = Q[Bνs(0)] at the phase space point Q(φ∗) = fk[P (θ∗)].
Then we are in exactly the same situation as above, and the intersection is transverse if and
only if the matrix

[−Dθfk[P (θ∗)] |DφQ(φ∗)] = [−Dxfk[P (θ∗)]DθP (θ∗)|DφQ(φ∗)]

is non-singular. Note that Dxf
k(x) is non-singular for any x ∈ Rn as f is a diffeomorphism.

Now, by hypothesis the matrix

DF (x∗) =

 −DθP (θ∗) 0
... A

...
0 −DφQ(φ∗)

 ,

is non-singular, so that if we construct the non-singular matrix

B =

(
Dxf

k[P (θ∗)] 0
0 Idn(k−1)×n(k−1)

)
and multiply, we have that the product

BDF (x∗) =

 −Dxf
k[P (θ∗)]DθP (θ∗) 0

... C
...

0 −DφQ(φ∗)


is the product of non-singular matrices hence is itself non-singular (here the actual form of C
is unimportant to us). Since BDF (x∗) is non-singular, it has linearly independent columns.
Exploiting this linear independence gives that the columns of

[−Dθfk[P (θ∗)] |DφQ(φ∗)] = [−Dxfk[P (θ∗)]DθP (θ∗)|DφQ(φ∗)],

span Rn, which is to say that the local manifolds W s

loc(p) = Q[Bνs(0)] and Wu

loc(p) =

fk[P (Bνu(0)] intersect transversally, as desired.

�

6. Numerical Computations. We begin by considering a Lomeĺı Map with param-
eters a = 0.5, b = −0.5, c = 1, α = −5.34, and τ = 0.8. These correspond to Dullin-Meiss pa-
rameters of ā = 1, b̄ = 0.5, c̄ = 0.5, µ = −2.4 and ε = 5.5. For these parameters values there
is a hyperbolic fixed point at p = (x−, x−, x−) with x− = −2.745207879911715. Then Df(p)
has unstable complex conjugate eigenvalues −0.402451645443971± i2.035392592347574 and
stable eigenvalue 0.232299350932085. Table 6 illustrates the results of the parameterization
computations, which are carried out using the rigorous interval arithmetic library IntLab
(which runs under Matlab).

The table records the dimension of the manifolds, the approximation order N used in
each case, the time taken to compute the coefficients of the polynomial approximations PN
and QN , the time taken to a-posteriori validated the approximations, the magnitudes of
the resulting bounds on the truncation errors ‖h‖νu = δu and ‖g‖νs = δs, the size of the
parameter domain radii νu and νs, the size of the eigenvector scaling, and finally a rigorous
bound on the size of the local manifolds in the sigma-norm.
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Dim Order Approx Time Valid Time Validated Error Radius |ξ| ‖ · ‖ν,Σ
1 50 5.16 sec 0.40 sec 8.71× 10−13 0.9 2 1.96
2 25 1.68 min 2.84 sec 5.67× 10−12 0.4 1.5 1.21

Table 6.1
Manifold Validation Performance: Example 1 (ε = 5.5, µ = −2.4)

K x̂1 r
6 (−1.648314148155201,−3.605864990373435,−2.750773367689280) 1.1× 10−11

6 (−1.692334813290302,−3.652591337627915,−2.718741184627647) 1.06× 10−11

Table 6.2
Primary Intersection Validation (ε = 5.5, µ = −2.4): 3.21 sec for proof of both orbits. Chaos

confirmed in both cases.

We then use a classical, numerical Newton scheme to find an approximate numerical
solution to the discretized homoclinic functional equaiton FN (x) = 0 with k = 6 and of
course n = 3. This leads to an approximate zero

x̂ =



θ̂
x̂1

x̂2

x̂3

x̂4

x̂5

φ


=



(−0.337379322019076, 0.088431234641040)
(−1.648314148155201,−3.605864990373435,−2.750773367689280)
(1.979508268106647,−1.648314148155201,−3.605864990373435)
(−1.054666610773029, 1.979508268106647,−1.648314148155201)
(−2.313572985270695,−1.054666610773029, 1.979508268106647)

(−2.642742570718999,−2.313572985270695,−1.054666610773029)
0.228218016117584


Using Theorem 5.1 we can validate that there is a true solution of the homoclinic functional
equation in a polydisk Br(x̂) with r = 1.1× 10−11. Table 6 gives computation data for the
proof just described, and also for the proof of a second distinct solution of the homoclinic
operator equation for k = 6. In each case only the x̂1 data is recorded. Figure 6.1 shows the
time series data for the x component of the first of these two orbits. Black dots represent
points in x̂. Red points represent iterates on the local manifolds.

We note that in these first two proofs is that the time taken to compute the rigorous
interval enclosures of the coefficients for the two variable polynomial PN is 1 minute 68
seconds, while the validation of the two homoclinic orbits takes only 3.21 seconds. Since
we can use the same polynomial approximations PN and QN in any homoclinic functional
equation, regardless of the size of k, we compute 32 more distinct homoclinic orbits with k
varying. The results are tabulated in Table 6, and again only x̂1 components are recorded.
Note that the time required to validate all 34 of orbits is a little less than the time needed to
compute the rigorous approximation of the stable manifold. This suggests that high order
approximation of the manifolds is most useful when computing many distinct homoclinic
orbits at a given parameter set. Figures 6.2 and 6.3 show time series data for the x-component
of the shortest and longest homoclinic orbits validated.

We note that in the previous example the dynamics is “fast” in the sense that as few as 6
iterates are needed in order to transition from the local unstable to the local stable manifold.
In order to compute orbits with longer ‘time of flight’ (higher k) we consider a Lomeĺı map
with parameters a, b, c, and τ as before, but with α = −0.04. This corresponds to a Dullin-
Meiss value of ε = 0.2 with all other parameters as above. At these parameter values we study
the fixed point p = (x−, x−, x−) with x− = −0.847213595499957. The differential Df(p) has
unstable complex conjugate eigenvalues of −0.150742620101308 ± i1.205183554810613 and
a stable eigenvalue of 0.677878442452638. The data for the parameterization computations
is given in Table 6, with format identical to before. Table 6 gives data for the results of the
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K x̂1 r time
8 (−1.878269557294666− 3.704360821688669− 2.644177124855255) 1.0× 10−11 3.13 sec
· (−1.598486534326447− 3.712394711133192− 2.715338895232408) 1.1× 10−11 ·
9 (−1.693365888596068− 3.516449414154529− 2.776271298390562) 1.05× 10−11 4.95 sec
· (−2.033965491062911− 3.691036738831221− 2.607784382423848) 1.05× 10−11 ·
· (−3.649752275192224− 2.876479215542708− 2.487231377447373) 1.00× 10−11 ·
11 (−1.724921906236488− 3.503098391735548− 2.773685700840596) 1.06× 10−11 10.1 sec
· (−2.089900084565888− 3.686144425839955− 2.594568562106802) 1.0× 10−11 ·
· (−3.634873256589227− 2.906134859387798− 2.482573305537549) 1.0× 10−11 ·
· (−3.620917995724487− 2.915222901577827− 2.483676082433866) 1× 10−11 ·
· (−2.114585182128023− 3.679401143907701− 2.591096188024756) 1.03× 10−11 ·
· (−1.768297176557754− 3.496683655844906− 2.765421447288818) 1.05× 10−11 ·
12 (−1.613946132963925− 3.601054205346514− 2.761528716808955) 1.1× 10−11 6.8 sec
· (−1.672093712060165− 3.527103879468739− 2.777334962197874) 1.06× 10−11 ·
· (−2.122097145983667− 3.674130503709248− 2.591708802528494) 1.04× 10−11 ·
· (−1.822510500455057− 3.571768208555173− 2.720873332899369) 1.1× 10−11 ·
13 (−3.644121861531430− 2.872709464400592− 2.489856336907984) 1× 10−11 10.35 sec
· (−1.720320939862523− 3.656391590596805− 2.709687450800172) 1.0× 10−11 ·
· (−1.972320520664557− 3.693712699582179− 2.623618282117915) 1.0× 10−11 ·
· (−3.647170226591191− 2.867372482172479− 2.490553201321108) 1× 10−11 ·
· (−1.582489566947040− 3.527839146851471− 2.799122415227350) 1.07× 10−11 ·
· (−1.574224069064366− 3.529792848481951− 2.800384605320380) 1.1× 10−11 ·
20 (−1.931148725862011− 3.707646666557216− 2.627909579872393) 1.0× 10−11 4.01 sec
· (−3.638326627639060− 2.901176380906034− 2.483107270172258) 1.0× 10−11

21 (−3.690719490424216− 2.823690393936636− 2.490880594199791) 1× 10−11 16.44 sec
· (−1.957194765763665− 3.705297800511473− 2.621878341459779) 1.05× 10−11 ·
· (−1.729640666364290− 3.510087223951199− 2.769773329564600) 1.06× 10−11 ·
· (−1.690639165363386− 3.669844178437995− 2.711227287037635) 1.1× 10−11 ·
· (−1.950380561442004− 3.705777860019821− 2.623527619587280) 1.1× 10−11 ·
· (−3.702924845715120− 2.791265552326865− 2.496202529149488) 1.0× 10−11 ·
· (−3.708117158393551− 2.774277602263187− 2.499173703371658) 0.98× 10−11 ·
· (−1.932029291989042− 3.707691973193318− 2.627641932935536) 1.04× 10−11 ·
· (−3.616786394029812− 2.918973341522530− 2.483676503055390) 1× 10−11 ·

Table 6.3
Secondary Homoclinic Orbits (ε = 5.5, µ = −2.4): Total Time for Proofs: 55.0 sec. Transver-

sality confirmed in all cases.

Dim Order Approx Time Proof Time Validated Error Radius |ξ| ‖ · ‖ν
1 50 4.95 sec 0.45 sec 2.71× 10−11 0.9 1.5 5.63
2 25 1.66 min 2.94 sec 4.30× 10−13 0.4 0.5 0.32

Table 6.4
Manifold Validation Performance: Example 2 (ε = 0.2, µ = −2.4)

homoclinic validation computations for five different orbits with values of k varying between
75 and 121. Figures 6.3 and 6.4 show time series data for the shortest and longest of these
homoclinic orbits (x-component in both cases). Note that for the orbit with k = 121 the
discretized homoclinic functional equation FN : Rnk → Rnk has nk = 121× 3 = 363.

Finally we cary out a similar computation for the map G : R6 → R6 obtained by a
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Fig. 6.1. Time Series Data:
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Fig. 6.2. Time Series Data:

coupling a pair of Lomeĺı maps as discussed in Section 2.3. We take parameters a1 = a2 =
0.5, b1 = b2 = −0.5, c1 = c2 = 1, τ1 = τ2 = 0.8, α1 = −5.339999999999998 and α2 =
−5.939999999999998 (corresponding to Dullin-Meiss parameters of ε1 = 5.5 and ε2 = 6.1).
The maps are coupled with a strength of ε = 5 × 10−7. (The reason for the small coupling
strength is that we obtain a numerical guess by continuing away from the product system
having ε = 0. The coupled system is quite sensitive to this parameter, and a tangency
develops for coupling strengths much larger than this).

We study the fixed point p = (x1
−, x

1
−, x

1
−, x

2
−, x

2
−, x

2
−) with x1

− = −2.74507879911714
and x2

− = −2.869817807045693. The differential DG(p) has two pair of unstable complex
conjugate eigenvalues −0.428678184042694±i2.076458156435394 and −0.402451645448668±
i2.035392592342751, and a pair of real distinct stable eigenvalues 0.232299350933555 and
0.222447464570467. Then fixed point has a four dimensional unstable manifold and a two
dimensional stable manifold. We show that these manifolds intersect transversally using the
arguments developed above. The results of the computer assisted proofs are recorded in
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K x̂1 r time
75 (−0.717248519714197− 1.043252947479510− 0.860812112677259) 1.04× 10−7 6.32 sec
76 (−1.107394504655081− 0.745731963636135− 0.642025567084575) 1.4× 10−7 6.15 sec
111 (−1.104148108665029− 0.729631044649217− 0.648872760710501) 1.05× 10−7 15.04 sec
118 (−1.087535686140795− 0.715568561563514− 0.669111490970251) 1.3× 10−7 16.11 sec
121 (−0.995810895350469− 0.972045779061998− 0.671276957464922) 1.04× 10−7 18.6 sec

Table 6.5
Homoclinic Orbits (ε = 0.2, µ = −2.4): Transversality confirmed in all cases.
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Fig. 6.3. Time Series Data:

Tables 6.6 and 6.7. Note that since we are only doing one proof, we use lower order approxi-
mations and smaller parameter domains. This helps to mitigate the substantially slower run
time of the coefficient computations for the four variable polynomial approximation of the
unstable manifold.

7. Conclusions.
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[54] P. Zgliczyński. Covering Relations, Cone Conditions and the Stable Manifold Theorem. J.
Differential Equations, 246(5):1774–1819, 2009.

41


