Estimate
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We used the following theorem from Schultz Spline Analysis:
Theorem 0.1 Let ¥ € P>*(0,1). Define h = max;—q, 1 ||tis1 — ti||. Then with
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fori=0,...,m—1 the following inequality holds:
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In our case this amounts to applying it to

0= [ fns)as

Calculating the second derivative leads in the 1D case to the following expression
for M
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Now we introduced the following trick to estimate |x; 1 — x;|:

| |x1+1 le = |uh( 1+1) - ”h(ti)| =
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where F; denotes the second component of our operator.

Finally we get:
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where € is the computed bound on |F; (uy(t;))|. Then imposing
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leads to a quadratic error estimate.



