POLYNOMIAL APPROXIMATION OF A ONE PARAMETER
BRANCH OF (UN)STBLE MANIFOLDS WITH RIGOROUS
COMPUTER ASSISTED A-POSTERIORI ERROR ANALYSIS

J. D. MIRELES-JAMES*

Abstract. In this work we develop a calculus for computation of formal series representations of
parameter dependent branches, or sheafs, of stable and unstable manifolds in discrete and continuous
time dynamical systems. As an essential first step in this process we must develop formal parameter
dependent expansions of the fixed point or equilibria, as well as their associated eigenvalues and
eigenvectors. Then we use the fact that the family of invariant manifolds satisfies a functional
equation to compute formal expansions of some chart maps of the manifold to arbitrary finite order.
We also present a-posteriori theorems which allow the error in the finite approximations to be bound
rigorously using validated numerics. We present several example computations, as well applications
to manifold visualization and computer assisted proof of the existence of a tangency in a family of
diffeomorphisms.

1. Introduction.

2. Parameterization of Invariant Manifolds, Regularity With Respect
To Parameters, and one Parameter Branches of Invariant Manifolds.

2.1. Parameterization of (Un)stable Manifolds for a Map at a Fixed
Parameter Value. Let py € R? Suppose that f : R? — R? is real analytic in a
neighborhood of pg and that pg is a fixed point of f. If zero is not an eigenvalue of
Df(po) then the differential is invertible, and f is a local diffeomorphism about py.
If in addition D f(pg) has no eigenvalues on the unit circle, then there are local stable
and unstable manifolds WIS(;?: (po) tangent at py to the stable and unstable eigenspaces
of D f(po).

Let ds and d,, denote the number of stable and unstable eigenvalues respectively,
and note that since pg is hyperbolic we have that ds; + d,, = d. Then there v,, v, >0
and chart maps, or parameterizations, P : B(0,v,) C Ré% — R?% and Q : B(0,vs) C
R% — R? so that

P[B,,] =W .(po), Q[Bu,] = Wi .(po)-

[9, 10, 11] develop a general Parameterization Method for studying such chart
maps. The method is based on the fact that the chart maps solve certain functional
equations. More precisely we will assume that D f(pg) is diagonalizable and let Ag €
GL(R%) and A,, € GL(R%) denote the diagonal matrices with respectively the stable
and unstable eigenvalues of Df(pg) on the diagonal entries and zeros in all other
entries. Further, let A; and A, denote the d x ds and d x d,, matrices having the
stable and unstable eigenvectors of D f(pg) as columns. Then the chart maps P and
@ are solutions of the following functional initial value problems

Q(0) = po
DQ(0) = A,
flQ0)] = Q[As¢] forall ¢ € B, (2.1)
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and

P(0) = po
DP(0) = A,
fIPO)] =P[A0] forall 6€eB,,. (2.2)

Since f is analytic it can be shown that under generic non-resonance conditions
on the eigenvalues the parameterizations P and @ are analytic functions having power
series expansions

= > pab”, Qo)=Y qs¢”

|e|>0 18120

where o € N%_ 3 € N% ¢ € R%, § € R*, and 4s;Pa € R?. For more detailed
discussion of the analyticity of P and @, see [11] (a non-constructive proof can be
given using the Implicit Function Theorem). For a particular map f linear recurrence
equations for the unknown power series coefficients can be developed by standard
power matching techniques.

Example: Consider the Hénon mapping

floy) = [ y+1b;ax2 }

with ¢ = 1.4 and b = 0.3 fixed. For these parameters the map has exactly two distinct

hyperbolic fixed points, each with a one dimensional stable and unstable manifold.

Let pg, A and & denote respectively a choice of fixed point, eigenvalue, and associated

eigenvector. Then the parameterization of the local invariant manifold has power
M : oo n . .

series expansion P(0) ) " p,0" satisfying

Py(0) +1 —alPi(0)] } _ [ Py(A0) ]
b Py (6) P(N) |-

(Here we are not specifying whether X is stable or unstable so we just mean use P
for parameterization). Of course the coefficient pg is equal the fixed point (making
pn a notation consistent with the notation for both the parameterization and the
fixed point) and p; = £. To find the remaining coefficients we exploit the functional
equation. The right hand side is

355 E )

while the left hand side is



Matching like powers of # and solving for the highest order coefficient p,, in terms of
lower order coefficients gives the linear system of equations

—2apy — A" 1 py | _ [ SoRZiaph_yph

for n > 2. Equation (2.3) is referred to as the homological equation. Note that the
homological equation has the form

[Df(po) = A" Ilpn = sn

where s, depends only on terms of order less than n. Also note that the matrix is
the characteristic matrix of D f(py). Then since |\| # 1 we have A" #£ X for all n > 2
and matrix is always invertible. Then the coefficients p,, are formally well defined to
all orders.
REMARKS 2.1.

e Generalization

e Resonances

e Numerics/Radius of Convergence

2.2. Parameterization of (Un)stable Manifolds for a Differential Equa-
tion at a Fixed Parameter Value. The parameterization method can also be
applied to differential equations, as is also shown in [9, 10, 11]. If py € R? is an
equilibria of a vector field f : R? — R? we suppose that f is real analytic near po,
that D f(po) is diagonalizable, and that pg is a hyperbolic equilibria (all eigenvalues
have no-zero real part). Let A, , again denote the diagonal matrices of stable and
unstable eigenvalues and A, , the matrices whose columns are the associated stable
and unstable eigenvectors.

The the parameterizations of the local stable and unstable manifolds solve the
initial value functional (in this case partial differential) equations

Q(0) = po
f[Q(e)] = DQ(¢) A9 for all ¢ € BVS? (24)
and
P(0) = po
DP(0) = A,
FIP(O)] =DP(®)-Ay-6 forall ¢ B,. (2.5)

with some v, vs > 0. Here the multiplications are matrix-matrix or matrix-vector as
appropriate.

Again, an application of the Implicit Function Theorem gives that there are an-
alytic P and @ solving (see for example [11]). Then P and @ have convergent power
series expansions and we can try to formally compute the coefficients by power match-
ing.



Example: Counsider the differential equation & = f(x) given by the vector field

oy — )
flx,y,2)=| pr—w2—y |,
xy — Bz

Let py denote one of the fixed points, A; and A2 denote two eigenvalues of D f(pg)
with like stability (either both stable or both unstable), and &1, &2 be two associated
eigenvectors . Let P denote the parameterization of the invariant manifold (whether
stable or unstable) A denote the matrix with A; and Ay as diagonal entries. Then in
this case the power series is

PO)= D pab™ = D D plnuna) 1657,
|a|>0 n1=0n2=0

with Py, n.) € R3 for each ny,ny > 0. The linear constraints give that P(0,0) = Po,
Po,1) = &1, and p(10) = 2. The coefficients for ny + ny > 2 are worked out by
considering the functional equation

U(P2(0) — P1(0)) 91)\1891131(9) + 92)\2892131(9)
pPL(0) — PL(B)P3(0) = Pa(6) | = | 010105, P(6) + 020005, P2 (0)
PL(6)P2(6) — BP3(6) 61\ 9. P3(8) + 02 \a0. Ps(6)

The right hand side expands as

012189, Py (0) + 037209, P1(0) o Pl ina)

91)\1591P2(9) + 92)\2592P2(0) = Z Z (nl)q + n2)\2) p%m’nz) 9?1932
91)\1691 Pg(@) + 92)\2692 Pg(@) n1=0mn2=0 p?m,nz)
while the left hand side is

o(Pa(0) — P1(0))
pP1(0) — Pi(0)P3(0) — P2(0) | =
P(0)P,(0) — Ps(0)

2 1
> > g (p(n17n2) _p(nlﬂm)) e
1 2 n n 1 3 1 2
Z:O Z—IO pp(nl,nz)g_p(nl,nz) —Mzki%zj%op(,“,j,nz}k)p(j’k) 07057,
meme =B Py may T 2ok 20 22520 Plny — .z — k)P )

Matching like powers of 6 and solving for the highest order terms in terms of the lower
order terms gives the homological equation

o — (n1A1 + ngla) o 0 p%nhnz)
P —210?0,0) -1- (nll)\l + n2A2) ~Dlo.0) Plns )
Dl0,0) D0,0) —B— (nl)\l + n2A2) p?m,nz)
ne Ny 0
= Pl —jina—0) Pk
F=07=0 L P(n1—jna—k)P.k)

4



where

_ 0 ifeither i=7j=0 or i=mny,j =ns
PGk = P(i.5) otherwise

The homological equation has the form

[Df(po) — (n1A1 + 12X2) I | D(ny ny) = S(n1na)s

with s depending only on lower order terms. Moreover the matrix is a characteristic
matrix for Df(pg) and is invertible as long as naX; + nadg # Mg for any ny + ng > 2
and either of £ = 1,2. When \; 5 are a complex conjugate pair this non-resonance
condition holds for all ny +ny > 2. If Ay > are real distinct and A\; < Ag then if

NaAg < A1,
then we have
ML+ N2 < Ay £=1,2.

So there are no resonances for any multi-index (ny,ns) with ny + na > A1/A2. Once
we check that there are no resonances for multi-indices smaller than this then we rule
out resonances to all orders.

2.3. Regularity with Respect to a Parameter and Analytic Branches
of Parameterizations. Now we consider that f : R x R — R? is a one parameter
family of maps with py € R? a hyperbolic fixed point of f(x,0), so that f(pg,w) = 0.
Moreover we suppose that f(z,w) is real analytic jointly in each variable in some
neighborhood of (pg,0). By the implicit function theorem there is a 7 > 0 and a real
analytic function p : (—7,7) C R — R% so that

fp(w),w) =plw) forall |w|<T.

Suppose in addition that D f(py, 0) is diagonalizable and let A}, ..., \2*, and &}, . .., €3
denote the unstable eigenvalues and associated eigenvectors. Let Ay be the matrix
with the A} as diagonal entries and zeros on the off diagonal entries and Ay be the
matrix with columns fé (1<i<dy,).

Since the eigenvalues and eigenvectors solve analytic equations the implicit func-
tion theorem gives that there is a 7 > 0 and analytic functions Ay, ..., Ag, : (—=7,7) —
C, &1,...,&q, + (=7,7) — R? s0 that \;(w) is an eigenvalue of D f(p(w),w) with as-
sociated eigenvector &;(w) for each |w| < 7, and having X;(0) = A} and &;(0) = &
for each 1 < i < d,. Moreover, if |¢j| = K then requiring that |¢(w)| = K for each
|w| < 7 determines the branches uniquely. (Here 7 is taken to be the smallest number
so that all the implicit function arguments go through simultaneously).

Assume the eigenvalues A}, .. .,)\g" are non-resonant. Then there is a v, > 0
and a real analytic chart map P : B(0,v,) C R% — R? satisfying Equatoin (2.2)
parameterizing the local unstable manifold of py. Let

P(0) = > pab®
|a|>0
Then the power series coeflicients satisfy the homological equation

[D f(po,0) = AGlpa = Sa, (2.6)
5



and, as per Remark (SOMETHING), the matrix is invertible fo all o by the non-
resonance assumption and for each a > 2, and the right hand side s, is an analytic
function of only the coefficients of order less than «. Moreover, since the eigenvalues
are non-resonant there is a 7 > 0 so that A;(w), ..., Ag, (w) are non-resonant for each
lw| < 7.

Let A(w) denote the non-constant matrix having [A(w)];; = Ai(w) for each 1 <
i < d, and [A(w);; = 0if ¢ # j, and A,(w) be the non-constant matrix having
columns &;(w) for each 1 < i < d,. It is shown in [10, 11], again using the analytic
Implicit Function Theorem, that there is a branch of real analytic functions P :
B(0,v,) x (=7,7) € R% x R — R? through P (in other words P(-,0) = P) solving
the functional initial value problems

P(0,w) = p(w) (2.7)
DP(0,w) = Ay(w) (2.8)
fI[P(O,w),w] = P[A(w)8,w] forall 6#eB,,, 6 |w<T (2.9)

Since P is analytic it has a convergent power series representation

PO,w) =YY Pmaw™0® = > pa(w)* 0€B,, lwl<7, (210)

lal>0m=0 lal0

where we have defined pq (w) = Y~ Pm,a)w™. Note that p,(w) is analytic for each

o as the series given by Equation (2.10) converges. Because P(6,0) = P(f) we also
have that

P0,a) = Pa(0) =po  forall  m,|al >0. (2.11)

We also have that each p,, solves the homological equation (Equation 2.6). Since
the homological equations are analytic, we apply the Implicit Function Theorem again
to obtain real analytic branch functions p, : (—7,7) — R so that p(0) = p, for each
«. But then by the uniqueness of power series coefficients of an analytic function and
the uniqueness provided by the Implicit Function Theorem we have

Pa(w) =po(w)  forall  |a] >0.

In other words the coefficients p, (w) of P solve the w-dependent homological equations

[Dflp(w),w] = Aw)*Tpa(w) = sa(w) (2.12)

for all |w| < 7, where the matrix is invertible for all |w| < 7 by the non-resonance
assumption.

Consider the 0 < |a| < 1 coefficients. We will denote these by letting g =
(0,...,0) be the zero index, and e; = (0,...,1) be the index having a one in the i-th
component and zeros elsewhere. Let the parameterization of the analytic branch of
fixed points have power series expansion p(w) = > °_;p w™. Then by Equation
(2.7) we have that



Pao(W) =p(w) O Plmiag) = po  forall m>0. (2.13)

So the (m, ag) terms of P are given by the power series coefficients of the fixed point
branch p. Similarily let & (w) = Y o &), w™. Then Equation (2.8) gives that

Pe, (W) =&W)  or  pme, =& m>0. (2.14)

Of course Equaiton (2.11) gives that the m = 0 coefficients are determined by
the power series expansion of the parameterization P of the w = 0 manifold. The
computation of the m = 1 coefficients are somewhat more delicate. Considering
Equation (2.10) we see that just as the m = 0 coefficients are given by the coefficients
Pa(0), the m = 1 coefficients are given by the coefficients of %pa(O). Explicitly we
have that

8 = a m (07
%P(Q’O) = Z Zp(m,a)%‘wzow = Z pl,ae

o] >0 m=0 la|20

On the other hand we have that the coefficients a,, (w) solve the parameter depen-
dent homological equation (Equation 2.12). Now since p1 o = %pa (0) we differentiate
both sides of Equatoin (2.12) with respect to w and evaluate at w = 0 in order to
obtain that p; , solves the linear equation

0 0

[Df(po,0) = A5 1] p1,a) = 5~5a(0) [Df(p(w),w) = A%(w)I] po,a) (2.15)

OW |w_o

for |a| > 2. We make no attempt at present to simplify the expressions on the right
hand side of Equation (2.15). Rather we will work out the formulas only in the context
of specific examples, in which case the expressions may simplify dramatically. The
essential fact to note at present is that the matrix on the left hand side of of Equation
(2.15) is none other than the characteristic matrix of D f(po, 0), so that the coefficients
P(1,a) are well defined for all |a| > 2 due to the non-resonance assumption. In other
words, Equation (2.15) introduces no extra constraints.

Finally we must determine the coefficients p,,, o when m + || > 2. This could be
done by repeatedly differentiating the w-dependent homological equation (Equatoin
2.12) and evaluation at w = 0 to obtain homological equations analogous to Equation
(2.15) for all m > 2. Such expressions become both analytically, and computationally
cumbersome. It is in fact preferable in the context of specific applications to substitute
the power series form of P directly into Equation (2.9) and match like powers in
order to develop the homological equations directly. We give examples in Section
SOMETHING.

Similar considerations hold in the context of differential equations. For a vector
field f : R — R? let py € R? be a hyperbolic equilibria and suppose that f is real
analytic in a neighborhood of py. By the implicit function theorem there is a 7 > 0
and p : (—7,7) — R? so that

flp(w),w] =0  for all lw| < 7.
7



With A(w) and A(w) as before we are led to the fact that the parameterization of a
branch of invariant manifolds through p(w) must satisfy

P(0,w) = p(w) (2.16)
DP(0,w) = Ay (w) (2.17)
fIP(O,w),w] = DgPl,w] - A(w) -0 forall 6eB,, |w<71. (2.18)

The series for P will be given by Equation (2.10) just as before, however in this case
the w-dependent homological equation must be given by

[Dflp(w),w] = (Aw), @) Ipa(w) = sa(w) (2.19)

Proceeding as above we obtain that Equations (2.13, 2.14, and 2.11) hold exactly
as before. However the homological equation for the coefficients p; o of %P(H, 0) are
given by the homological equation

0 0

(DS (p0.0) = (R0,0) 1) p(1.a = 55a(0)

[Df(p(w),w) = (Aw), @) I] p(o,a)-
(2.20)
Again the matrix on the left is just the characteristic matrix of D f[pg,0] so that
the non-resonance assumptions yield that the coefficients are formally well defined.
Simplification of Equation (2.20) and the formal computation of p,, o for m > 2 is
carried out only in the context of specific applications, which we consider in Section
SOMETHING.
Also: note that all the comments made in this section apply equally well to stable
manifolds of maps and flows. We have focused on unstable manifolds in order to

minimize the proliferation of sub and superscripts.

0w =0

REMARK 2.1. [P(f,w)-Algorithm] The discussion above provides us with a
four step meta-algorithm for development of the formal series expansion of a branch
of invariant manifolds

Step 1: Compute the parameterization I:’(G) of the invariant manifold at w = 0. This
determines the coefficients pg, of P. This step was discussed in Section
SOMETHING for both the Hénon map and the Lorenz system.

Step 2: Compute the power series of the analytic branch functions p(w), A\;(w), and
&i(w), 1 < i < d,s for the fixed point, eigenvalues, and eigenvectors. The
coefficients of p(w) determine the coefficients py, o,, while the coefficients of
§i(w) determine the coefficients p(, c,). These computations are the subject
of Section SOMETHING.

Step 3: Depending on whether f generates a discrete or continuous time dynamical
system (maps or differential equations) use either Equation (2.15) or Equation
(2.20) along with the specific form of the map f to compute the py o coeffi-
cients. Examples of this computation are given in Section SOMETHING.

Step 4: Plug the unknown power series given by Equation (2.10) into the either Equa-
tion (2.9) if f is a map, or Equation (2.18) if f is a vector field. Expand both
sides as power seres, match like powers of w™6%, and isolate the highest order
coeflicients from the lower order coefficients in order to obtain a homological
equation for the p,,  coefficients when m > 2. We illustrate this computation
for the Hénon and Lorenz systems in Section (SOMETHING).

8



3. One Parameter Families of Fixed Points, Equilibria, Eigenvalues,
and Eigenvectors. Let f : R™ x R — R™ be a one parameter family of real analytic
vector fields denoted by f(z,w) with © € R™ and w € R. Suppose that o € R” is
an equilibria for f at w = 0, so that f(zg,0) = 0. Then if D, f(zq,0) is non-singular,
the implicit function theorem (in the analytic category) gives that the is an analytic
branch of equilibria through x.

More formally there exists a 7 > 0 real analytic function = : (—7,7) — R™ so that
x(0) = z¢ and

flz(w),w] =0 forall we(—7,7).

We say that x parameterizes the branch of equilibria through zg. Since x is analytic
it has a power series expansion z(w) = > -~ z,w" with z, € R™ convergent for
|w] < 7. In order to exploit this fact in a computational setting we must determine

(I) the coefficients x,, of the power series expansion for the branch of zeros,
(IT) the radius of convergence 7 of the power series.

Since z solves a (functional) equation, recurrence relations for the coefficients z,, can
be computed by the usual power matching schemes. The convergence of the series
could be treated in any of several ways. One could for a given problem prove the
convergence of the power series directly by the method of majorization. Since we are
using these series as inputs into further numerical computations, we pursue a numer-
ical alternative. In any given problem we will compute the coefficients z,, to some
finite order M € N, giving an approximate parameterization xy(w) = ngzo Tpw™
of the branch of equilibria. Then we use residual methods based on the Newton-
Kantorovich Theorem to prove that the series converge on some finite disk, and to
rigorously bound the truncation error of the finite series. The radius of convergence
is determined using numerical methods. We discuss the formal computations and the
a-posteriori numerical argument in the next two sections respectively.

Finally we note that the comments above apply equally well to parameterizations
of fixed points of diffeomorphisms, as well as to parameterizations of eigenvalues and
eigenvectors, as in each of these solve functional equations of their own.

3.1. Computation of Formal Series Expansions for Linear Data. We
consider the Hénon Family

(3.1)

Pl yyw) = [ y+1-aa® }

(b+w)x

where we think of ¢ and b as fixed. Let

o0
z(w) = Z Tpw"
n=0

parameterize an analytic branch of the first component of a fixed point of Equation
(3.1). Then x(w) solves the equaiton

alz(W)]? +z(w)(1—b—w)—1=0. (3.2)
9



Then

b—1+ /I —-b)?+4a
o 2a ’

o
and
d i)
= —z(0)= —M—.
e dwx( ) 2axg —b+1

(The expression for x; can be obtained by implicit differentiation of Equation 3.2).
Matching like powers of w in equation 3.2 gives that

1

n = 2axg —b+1 n

n—1
- Z aTp_Tr|. for n>2. (3.3)
k=1

We note that since the second component of the fixed point is given by y(w) =
(b + w)x(w) we also have

Yo = bea Y1 = bx1 + x¢ and Yn = b, +Tn_1 n > 2.

Similarly, if Ag is an eigenvalue of D(, . f(z,y,0) then we let

AMw) = i Apw™
n=0

parameterize a branch of eigenvalues passing through Ag. Then A(w) satisfies the
equation

Mw)? 4+ 2a 2(w) Mw) —w —b =0, (3.4)

with A(0) = Ag. As above we compute that

1 — 2az; A
Ao = azo £ JaPxg + b7, A= 2Xo f§;m2

and

n—1 n—1
An = m <Z Aok Ak + 2axnk)\k> with  n > 2. (3.5)
k=1 k=0

Note that the A, are formally well defined as long as A\g # —azg, i.e. as long as \g is
not a repeated eigenvalue, and that the coefficient \,, depends on the coefficients of
x(w) recurssively to n-th order.

Now suppose that we choose an eigenvector &y with [|£[|? = K for some K > 0,
associated with the eigenvalue \g. Now denote by

10



{(w) = Z Enw"
n=0

a parameterizatoin of the branch of eigenvectors through &y, where the entire branch

is normalized to have length V/ K. Then &(w) satisfies the system of equations

L) (8)-(0)
G(w) +&w)? =K

but since the rows of the matrix equation are linearly dependent, we have that &(w)
must simultaneously safisfy

b+ w(w) - Aw)(w) =0 and  &(w)* +&w)? =K.

Matching like powers leads to the linear systems

o e J(80) ("9

for the coefficient &; and

{ b =X ] ( & (w) ) _ ( ~&h1 20 Ao )
26 265 |\ &) gD SRS SRS
for &, when n > 2. The coefficient &, depends recursively on the coefficients of A(w)

to n-th order.
We consider also the Lorenz System, which is given by the flow of the vector field

oy —z)
Ty — Bz

where we think of o, p, and g as fixed. When w = 0 the system has equilibria at
po = (0,0,0)T and

+y/Blp—1)
P12=| £/B(p—1)
p—1

In fact py is fixed for all w. On the other hand, if we let p(w) = (2(w), y(w), z(w))T be
a branch of either pq o, then we can work out that zo = yo = £+/8(p — 1), 20 = p—1,

- N iﬁ o 23?0.%1
‘rl - yl — = Zl — T

2¢/B(p—1)

11



and

In the applications section we will be more interested in the fixed point at the
origin, so we develop the expansions for the eigenvalues and eigenvectors only at pg.
We note that at the origin —f is an eigenvalue for all w. The remaining two eigenvalues
do depend on w and solve the equation

AMw)? + (1 +o)Mw) —o(p+w—1)=0. (3.7)

Denote a parameterization of a branch of these by

AMw) = i Aow™.
n=0

Then
\ :—(1+U):I:\/(1+0)2—4(p—1) N = o
0 2 ’ Pt
and
1 n—1
hm ST A > 9.
2)\04—1—&-0; RAR T =

An eigenvector associated with the eigenvalue —3 is ¢ = (0,0,1)7 for all w. The eigen-
vectors associated with the solutions of 3.7 lie in the zy-plane for all w. A computation
similar to as in the Hénon case shows that the coefficients of parameterizations of the
these planar eigenvectors are given by the solutions of the linear systems

M ] (48)-(%)

for the coefficient & and

{_mxo) o ](mw))_( "o An—k&l )
268 282 |\ &) DY SN

for &, when n > 2. Moreover &3 = 0 for all n.

4. Formal Computation of P(0,w); Branch of Parameterized Manifolds.
In this section we illustrate steps 3-4 of the algorithm stated in Remark (2.1) of Section
(SOMETHING). We discuss separately the case of maps and flows.

12



4.1. Formal Expansion of P(6,w) for the Hénon Map. Consider again the
Hénon Family given by Equation (3.1). At w = 0 choose py one of the maps two fixed
points and Ag and &, an eigenvalue and associated eigenvector of D f(po,0). Using
the expansions developed in Section (SOMETHING) we have series

Mw) = i Amw™  and  {(w) = i Emw™,
m=0 m=0

where we can compute the coefficients A, and &, to any desired order using Equations
(SOMETHING) and (SOMETHING). Let P be the parameterization of the invariant
manifold at w = 0 associated with \g and having DP(0) = &y. Then the coeflicients p,,
of P can be computed to any desired order using the homological equation (Equation
SOMETHING) given in Section (SOMETHING).

By the discussion in Section (SOMETHING) we know that there is a branch of
parameterizations given by

P(G,w) = Z Z p(mn)enwmv

n=0m=0

satisfying the functional equation

fIP(8,w),w] = PA(w)8,w]. (4.1)

Then pmo = Pm, Pm1 = &n and po, = Pn, as discussed in Section SOMETHING. This
completes Steps 1 — 2 of the algorithm given in Remark (2.1). Now we turn to steps
3 —4.

Step 3: Now we compute the m = 1 coefficients for the case of the Hénon map.
Recall that the m = 1 coefficients solve the homological equation given by Equation
(2.15), and we want to simplify the right hand side into a computable form for the
specific case of the Hénon map. Then consider that

0 0

7550 W) = 5o [DfIp(w), w] = A" ()] pa(w) =

_ ( —22pH(w) — nA(W)" L ZA(w) 0 ) [

1 () X (%))

Evaluating at w = 0 gives
13



550 (0) = 50 DA ] = A" @) o | P

o
=

Ow

n—1
[ a (p%l,n—k)p%o,k) +p%0,n—k)p%1,k)) 1

k=1 0

1 n—1 1
~ ( “Pae "o A 0 ) Plomy || (4.2)
1 —nAyT A D(o,n)

Taking Equation (4.2) as the right hand side of Equation (2.15) gives the homological
equation for the coefficients p(; ,,) in the case of the Hénon map.

Step 4: Finally we obtain the equations for the coefficients p(,,,y when m +n > 2.
First we define the coefficients A(,, ) be the series expansion of A(w)™. So

= Z )\(m,n)wm
m=0
We expand the right hand side of Equation (4.1) and obtain
oo

PAw)l,w] = an(w)[)\(w)]"ﬁn

n=0

= Z (ZP mn)W ) (Z_: A(mmwm) o
=S Ak l e ] W, (4.3)

n=0 m=0 k=0 n)

8

Expanding the left hand side of Equation (4.1) as a power series gives

1+ P(0,w) — a[P1(0,w)]?
PO, w),w] = [ (b+w)Pa(8,w) }

which we expand componentwise to obtain

f[ (Gw 1_1+Zzpmn9nm

n=0m=0

n m

N Z Z Z Z a p%mfj,nfk)p%ﬁk)enwmv (4.4)

n=0m=0 k=0 j=0
and

fIPO.w),wla =D bph, ™0™+ > ply g @™ 0" (4.5)

n=0m=0 n=0m=1

14



Now we equate the power series expressions for the left and right hand sides, match
like powers, and isolate the highest order terms to obtain the homological equation

1 n 1 1
o L[] [m] e
0 Plm,n) (m,n)

where

m—1 n m

1 1 —1 —1
S(m,n) = Z Am—jm)P(jn) T Z Z @ P(m—jn—k)P(j k)

j=0 k=0 j=0

and

Ju

2 _ 1 2
Stmn) = "P(m-1,n) T Z A(m—5.m)Pjn)

Jj=

for n +m > 2. Again note that the matrix on the left hand side of the homological
equation is just the characteristic matrix of D f(pg,0), so that no new constraints are
introduced for computing the branch expansions. The formal series is well defined to
all orders by the non-resonance assumption on the eigenvalues at w = 0.

4.2. Formal Expansion of P(f,w) for the Lorenz System. Let f be given
by Equation (3.6). We consider the equilibria po = (0,0,0) at the origin, and fix
o,p, and 8. Let )y denote the stable eigenvalue of Df(0,0) and &, be the associated
eigenvector. Then the branch of one dimensional manifolds through Pis given by

PO,w) = Z Z Pimnyw 0"

n=0m=0

In this case the computations are similar to the case of the Hénon map, except that
P satisfies the functional equation

0
fIP(O,w),w] = )\(w)G%P(G,w) (4.7

where

(o)
AMw) = Z Amw™
m=0
parameterizes the branch of stable eigenvalues of Df(0,w) through X\g. Let
E(w) = Z Emw™ and  P(0) = Z;ﬁnH”,
m=0 n=0

be the series expansions for the stable eigenvector and the parameterization of the
stable manifolds associated with A\g. Explicit formulas for A\, and¢,, are developed in

15



Section (SOMETHING). The homological equation for the p,, is Equation (SOME-
THING) developed in Section (SOMETHING).

The remaining computations for Steps 3 — 4 are similar to the one dimensional
case for maps already studied in detail in Section (SOMETHING). We simply report
that when m = 1 coefficients of P satisfy the homological equation given by

[Df(po,0) — nAo]p(1,n) = S(1,n)
where
n\ p%o n)
S(1n) = NPy ~ Plomy T 2ohet [pu iy Plok) T Plon—iPl1, k)} ,
NP ) — Dokt [p(l,n—k)p(o,k) + Plon—i)Plip)

and for m > 2 we have the homological equation

1
—0 — ;7,/\0 (o q pgmn) 371nn
P _2p(00) -1 1_ ’I’LAQ _p(OO) p(mn) = Sgnn ) (48)
D(oo) D(o0) —B —nko P:()’mn) Smn

for n +m > 2, where

and
mn ~

We illustrate the computation for the branch of two dimensional stable manifolds
at the origin in detail. Let

P(0,w) = P(6y,0q,w Z Z Z P(mony n)w 071052

n1=0n2=0m=0

denote the parameterization of the one parameter branch of two dimensional stable
manifolds through the origin. Then P satisfies the functional equation

fIP(01,02,w),w] = [DyP(0,w)]A(w)b,

where we let A!(w), and A\?(w) denote the parameterizations of the stable eigenvalues
and define



Since the origin is a fixed point for all w the series expansion of p(w) is trivial
to all orders. Moreover since we take 8 > 0, we have that A\}(w) = —3 and ¢! (w) =
(0,0,1) are a stable eigenvalue/eigenvector pair for all w. The remaining unstable
eigenvalue/eigenvector pair A\?(w) and &;(w) do depend on w and are computed as in
Section (SOMETHING). In addition, let

(01392 Z Z p(nl,nz) 0 0712

no= Onl =0

be the parameterization of the two dimensional unstable w = 0 manifold through
the origin, where the coefficients p(,, »,) solve the homological equation given by
Equation (SOMETHING). Then we have that po.n,,n,) = P(ny,ns) for all ny,ng >0,
P(m,0,0) = 0 for all m > 0, p(y,.1,0) = &m for all m >0, poo,1 = (0,01), and pp 02 =0
for all m > 1, and can consider Steps 1 — 2 of the P-Algorithm complete (see Remark
SOMETHING).

Step 3: For the Lorenz equations we consider the right hand side of Equation (2.20),
first for w free, and see that this simplifies to

19} 0
305 (@) = 55 [DF(p(w), w) = (AW), @) [ pa(w) =

ng niy 0
ZZ[ p(] k) “’péql—j’nz—k)( )+p(n1 —Jyna— k)( )8“’;5?3',’@)(0‘}) ]

k=0 j=0 —p%] 1) (@) 0Dy —jing—iy (W) — p(m —jng—ky (W )auﬁ?j,k)(w)

(181 (@) + 1200 Aa(w)) 0 0 Pl na) (@)
- 1 —(n10uA1(w) + n20uA2(w)) 0 pgnﬂn»(w) :
0 0 —(maw/\l(w) +n2((9w/\2(w))

p(nlwnz)(w

Evaluating at w = 0 gives and setting equal to the left hand side of Equation
(SOMETHING) gives the homological equation

[Df(0,0) - (nlA% + nQA%)I]p(l,nhnz) = S(1,n1,n2)

(where we recall that A\? = 0 for the Lorenz System) and where

S%l,nl’nz) = (nl)\l - nz)\Q)p%O,nhnz)

na Ni

2 1 2 —1 -3 —1 -3
Sna,me) = —p<o,n17n2>+(”1A1—”2*2)p<o,m7nz>+z Zp(l,mfj,nz*k)p(ou’,k)+p(0,n1*j>n2*k)p(l7j,k)
k=0 j=0
no ni
3 3 ~1 —2 —1 2
S$(1m1,mz) = (M AT =1222)D(0 1, nz) —Z Zpu,mfjmrk)p(o,j,k)+P<o,nlfj,nrk>p<1,j,k>
k=0 j=0

Step 4: Since

17



Then we can work out that for ny + ny +m > 2 the coefficients of P are solutions of
the homological equation

—0 — (nl/\(l) + nzx\%) o 0 P(m.ni,ns)
p— a?oo) —1 — (A 4+ n2Ad) _a%oo) Plmnino)
2 1 0 5
@{o0) (00) —A = (mdo +n2dy) Plm.nana)
(4.9
1
S(m,n1,nz)
= gm \T1,m2) )
$(m,n1,n2)
where
m—1
1 2 1
(m ni,nz) Z nlAm_k + n2)\m_k] Plknama)
k=0
m—1
2 ! 2 :
S(m,n1,n2) — “P(m—1,n1,m2) + Z [nl)‘m—k + n2)‘m—k~] P(k,n1,n2)
k=0
ny M2 m
_1 =3
DD Blonkm—isma—) Bk
i=0 j=0 k=0
and
m—1 o nz m
3
S(m,nyna) = [77,1)\ kT n2>‘m k p(k nim2) ZZ Zp(m ki —inz— j)p(kw)
P i=0 j=0 k=0

4.3. A Formalism for Polynomial Mappings f.

5. A-Posteriori Validation for the Formal Expansion of a Branch of
Invariant Manifolds.

5.1. Background and Notation. THEOREM 5.1 (Newton-Kantorovich Method).
Let XY be Bancah spaces and F : X — 'Y be a differentiable mapping. Assume that
there as an £ € X and an r > 0 such that

(i) DF(%) has bounded inverse, and

(ii) |DF(z) = DF(y)llpx.y) < sl —yll for all x,y € B.(Z).

(1)

If

enw > |[DF(2)7 F ()] x,
(1)

l\.’)\ﬁ

ENK <

and
18



(111)
denk K||[DF(2) M pxy) <1,
then the equation
F(z)=0

has a unique solution in B(r,I).

Co-Homological Equations: Let X' be a Banach Space and ® : X — ) be a
differentiable mapping. Let D® : X — ) denote the Fréchet derivative of ®. Let
x € X, b €Y and consider the linear equation D®(x)a = b with unknown a € X'. Such
linear operator equations are often referred to as co-homological equations, and play
a key role in Contraction mapping and/or Newton-Kantorovich arguments involving
®. In the sequel we are especially interested in two different co-homological equations
associated with Parameterization problems; one which arises in the context of discrete
time dynamical systems and another for continuous time dynamical systems.

Let p, ¢ be bounded analytic M N-tails. When we study the a-posteriori equations
associated with a one parameter branch of parameterizations for maps, we will be
interested in the linear equation

ﬁ[Q](va) = p(@,w)
where L is defined by
Lg)(8,w) = q[A(w)f,w] = Df[Prn (0, w), w].

Let Qo be the matrix of eigenvalues of D f[pg, 0] and Q, ! denote its inverse. Let C},
Cy, p*, and p, be positive constants such that
0<ps < min  inf )\)\f(w)\ < max sup |A(w)| <pt <1,

T 1<i<ds Te(—7,7 1<i<ds re(—r,7)

C1 > [|QollmllQq (1M,

and

?UP )‘Slup IDf[Pun(0,w),w] < Crut + Co.
Te(—7,7) |0|<v

Then we have the following lemma, which is a parameter dependent version of Lemma
4.4 in (CITE TANGLE PAPER).
LEMMA 5.1. Suppose that
In(p) = In(Cy + pCo)
In(p*)

Then the linear operator L is boundedly invertible, and we have that

N+1>

Cr + /L*Cz
pix — (C1 + pa Co) () N+

271 <

19



The proof is identical to the proof of Lemma 4.4 in CITE TANGLE PAPER, once
the parameter dependent definitions of C, Cs, p* and u, are taken into account, and
the parameter dependent versions of the norms are used. We omit the details.

On the other hand, when we study the a-posteriori equations associated with
a one parameter branch of parameterizations for flows the definition of the linear
operator becomes

‘C[Q](va) = Dq(@,w)A(w)G - Df[PMN(oaw)vw]Q(eaw)'

This is the parameter dependent version of the linear operator studied in (CITE
GREY SCOTT) (See specifically Lemma 4.3). However by examining the D f[Pysy]™?
term somewhat more carefully than was done in (CITE GS) we can obtain a sharper
estimate (even in the single parameter case).

Let po be the absolute value of the real part of the most negative eigenvalue of
D f(po,0). Then define the positive constants

0<pe <|max sup real(A](w))] <

< | D S min  inf real(A(w))| < p* < oo,

1<i<ds we(—7,7)

Cy > | Qollar Qo I

where Q)p and @ L are as before. Suppose that

M
DfPun(O,w),wl = > Y Appaw™®

0<|a| <N m=0

and

Cyzexp| 3 E: ”Aonalhf o

1< || <N M=0 pelal

and

mao |M7-

ﬁMs‘

LEMMA 5.2. Suppose that

Mo + C2 02
[

(N+1)>

Then L is boundedly invertible and

C3Cy

L7 < .
A (N 4 Dpes = (o + C2)

The proof is an integrating factor argument. We define

a(t) = qle™)0, w],
20



A(t) = Df[Pyn (€20, w), w]

p(0,w) = p(e" )0, w),
and
C(t) = e~ Jo AlD)ds
so that the equation
Llql = p,

is equivalent to the ordinary differential equation

Ga— A =p

(for each w). The solution is given by

(oo}

o) =-C70) [ Clolplo)is
t
so that, taking t — 0 we have
a(6.) =o(0) =~ [ Clopp(s)ds,

0

The observation that lets us improve the results of CITE GS is that

t M
At) = 7/0 Z Z A(m,a)wme<A’a>89a ds

0<|a| <N m=0

t M M
= —/(; A(O,ag) + Z A(m7ao)wm + Z Z A(m’a)wme</\,o¢>59a ds

m=1 1<[al<N m=0

Then since

e~ Awant||, = ||e=Pfwo0

= Qo™ < 11Qoll 195 ase™”,

where Qg is the full diagonal d x d matrix of eigenvalues of D f(pg,0), we have that

IC@)l1ar < le*®]ls

M M
< ||€7A(0v0¢0>t|| exp | —t Z Alm,ag)w™ exp Z Z A(m,a)wme<A’a>59a ds
m=1 1<[al<N m=0
21



C’3C4e"“+c2

Then using estimate (SOMETHING) we have that

ICEPW] < CCyelDne =t

as long as N satisfies the Inequality (SOMETHING). Then the indefinite integral in
Equation (SOMETHING) converges and we have theorem.

REMARK 5.3. Note that if the theorem is applied with w = 0 then Cy = 0 and
the invertibility condition becomes

N4+1>Ht

7.
where p and p_ are the largest and smallest real parts of the stable eigenvalues.
Then the condition is just that N + 1 be larger than the stable spectral gap fraction.

In this case the estimate given by Equation (SOMETHING) is an improvement over
the estimate in Lemma 4.3 CITE GREY SCOTT even for w = 0.

5.2. A-Posteriori Validation for a Formal Expansion of the Linear Data.
Observe that the problem of computing a-posteriori bounds on the truncation error
associated with a polynomial expansion of a branch of fixed points, equilibria, eigen-
values, or eigenvectors can always be put in the following framework. Suppose that
F :R? xR — R? is a one parameter family of smooth maps and that py € R? has
F(po,0) = 0 with DF(pg,0) invertible. We assume also that F(x,w) is real analytic
in a neighborhood of (pg,0) € R4+, Then there is a 7 > 0 and an analytic function
p:(—7,7) C R — R? so that p(0) = pp and F[p(w),w] = 0 , i.e. p parameterizes an
w dependent analytic arc of zeros through pg. Let

M
Pm (W) = Z pmwm
m=0

be the polynomial whose coeflicients are determined by power matching. Then py; = p
exactly to M-th order and there is an analytic M-tail h : (—7,7) C R — R? so that
p = ppm + h. The goal of this section is to determine, given a candidate for 7 > 0, a
bound on ||Al|.

The idea is that we first choose, based on numerical experimentation, a ‘good’
7. Here ‘good’ means that the C° norm of the composition of F' and p,; is small on
(=7,7). Then apply the Newton-Kantorovich argument to prove the there is a true
solution p near pps. Since pps equals p to M-th order, the difference p — pjs is the
desired analytic M-tail.

DEFINITION 5.4. [Validation Values for a Branch of Zeros of a Finite Dimensional
Map] We say that the polynomial py; and positive constants R, &, €, K and 7 are
validation values for the ‘branch of zeros problem’ if the following conditions are met:

1. The constant R has

M
> lpmlr™ < R,
m=1

so that par[(—7,7)] € B(po, R).
22



2. Let 8 € N? be a d dimensional multi-index Ny be the number of non-zero sec-
ond partial derivatives of F'. We require that M bounds the second derivative
of F in the sense that

Nr  sup SuUp max max 3ﬁf'(x,w) <M.
2€B(po,R) |w|<r 1SiSd |B|=2 } i |

3. € bounds the a-posteriori error associated with pp; in the sense that

sup |Fpy(w),w]| <e.

lw|<T

4. K bounds the inverse of the derivative of F' along the branch, in the sense
that

sup || DF[pp(w),w] 7| < K

|w|<T

THEOREM 5.2 (A-Posteriori Existence of a Branch Funciton). Given validation
values pyr, R, k, €, K and 7 we define a “Newton-Kantorovich Epsilon” §gby

2Ke < ép
Assume that
4k Kop <1
Then there is a unique analytic N-tail h with
o)l < oF
so that
Flpu(w) + h(w),w] =0

for allw € (—7,7).
Proof: Let X be the Banach Space of real analytic functions from (—7,7) into R¢
endowed with the supremum norm. Then define the map ® : X — X by

P[p)(w) = Flp(w),w],
and note that ® is differentiable with
D@[p)(w) = DF[p(w),w].

Taking into account the definitions of the validation values in Definition (5.4), the the
proof that there is an analytic p so that ®[p|(w) = 0 on (—7,7) and |[p—pas||- < 2eNK
is just a straight forward application of the Newton-Kantorovich Theorem applied to
the map ®, with eNg = 0/2. Then define h = p—pys, and note that h is an analytic
M tail by the assumption that pas equals p to M-th order (i.e. that the coefficients
of pas solve a homological equation for F') and the uniqueness of the power series
coefficients of an analytic function.

O
23



In practice computing the validation values is a problem dependent exercies.

Examples: Consider for example the case of an analytic branch A(w) of eigenvalue
for the Lorenz system. The branch solves the equation

F(Aw),w) = [Mw)]* + (1 +0)Aw) —a(p+w—1) = 0.

Let Ay = Ef\:{:o Amw™ be the polynomial with coefficients defined by Equations
(SOMETHING, SOMETHING) and (SOMETHING). Then

B(w) = F(Ay(w),w)
is an 2M-th order polynomial and we easily compute € = ankio |E,,|7™ by interval
arethmetic (this involves only one Cauchy Product). Moreover we compute directly
that

IDFM s (w).w] | = ! 2

<
(Ao +0+1) [1 + ﬁzﬁiﬂmwm} Ao+ (L+0)[(1— M)

so long as we require that

9 M
_ AT =M < 1.
ot (o 4 1] 2 Pl =M <

Note also that there is only one non-zero partial derivative of F' and that it is uniformly
bounded (in fact identically equal to) two. Then Theorem (SOMETHING) provides
the conditions which must be satisfied in order to bound the truncation error on
(=7, 7).

The case of an eigenvector of the Lorenz systems is only slightly more complicated.
Suppose that \g is one of w dependent eigenvalues at the origin and that Aps is the
M-th order polynomial approximation of a branch as computed discussed in (SOME-
THING). Suppose also that, following the discussion above, we have the existence of an
analytic M-tail h so that ||h||_; ) < dx. Then we can define A(w) = Ay (w) + h(w).
Moreover let &p(w) = Z%:o Enw™ have coeflicients given by Equations (SOME-
THING), (SOMETHING), and (SOMETHING). The true branch of eigenvectors &(w)
solves simultaneously the equations

—[o F AW () +obo(@) =0 and  [G(W)] + [©w) = K

where K = ||&]| is the length of the eigenvalue at w = 0. Then in this case we seek a
branch of solution of the non-linear equation F(¢(w),w) = 0 with

—[o + AMw)]& + 0§
reo = glg )

Now the a-posteriori error depends on &7 (w), and Ay (w), as well as on the unknown
function h(w). Here the rigorous bounds on h are necessary in order to compute the
a-posteriori error associated with &yr(w). We define the 2M-th order polynomial

—0&p (W) — A (W)€ (W) + 08 (w) )
(630)% (W) + (€3,)*(w) — K
24
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by taking Cauchy Products where necessary. Then
_ 1
B(w) = F(éu(),w) = Exr(w) + ( h(w)Ehs () )

so that
oM M
IE- <> [Emlr™ 403 Y [&mlr™.
m=0 m=0

We evaluate the sum on the right using interval arithmetic and use the result to define
¢ for the eigenvector problem.
In order to bound the differential we consider

M
DF[EJW(W)vw] - < _;—&1;125;)) 25]2;'(&)) > =Ap+ Z Apw™ + Ay,

m=1

where

[ —o=X © (=m0 _( —h{w) O
AO‘( 2} 253)’ Am‘(%; 2§3n>’and A""‘( 0 0)'

The inverse becomes
-1

DF(enr(w),w] ™ = 4,

M
I+ A5t (Z Apw™ + Aoo>

m=1

so that by requiring

M
145 (Z max{Aml, 2165 | + [€3)} 7" +U,\> =M <1,

m=1

the Neumann Series gives that

145

IDFléar (@), ] < 1207

Note that M can always be made less than one by taking 7 > 0 small enough (as-
suming that o is small), but in practice this is often mitigated by the decay rate of
the coeflicients || A, ||. For example, at the parameters given in (SOMEWHERE), the
A5 Y|l < 1 and the coefficients A, actually decay so fast that we can take 7 > 1.

5.3. A-Posteriori Validation for a Formal Expansion of P(6,0). In Some-
thing we show that...

5.4. A-Posteriori Validation for a Formal Expansion of %P(@,O). For
maps we have that the branch parameterization solves the invariance equaton given
by Equatoin (SOMETHING). Differentiating both sides of Equation (SOMETHING)
with respect to w gives that

9
ow

A(w)} Q—Ef[P(Q, w),w.

DIP(6.0) ] - Pl6.0)— 5 PIAWIO,w] = DPIAG)0.6] | B

ow ow
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We denote by % (0) = Aj and %P(G,O) = K (0) and evaluate at w = 0 to obtain
that K solves the functional equation

Df[P(0)]K(0) — K[Ao] = DP[Agf]AL0 — a%f[zf’(e)]. (5.1)

On the other hand we know (by a different argument) that the K exists and is analytic
and that the power series coefficients of K solve the homological equation given by
Equation (SOMETHING).

Then assume that

0<|a|<N

has coefficients as defined in (SOME SECTION), i.e, the he solve the homological
equaton (SOMETHING) to N-th order. Then Ky = K exactly to N-th order and
we seek v > 0 and an analytic N-tail H so that

K(0)=Kx()+ H(®) forall || <wv.
We define the defect, or a-posteriori error function

B(0) = DIIPO)Rx(0) ~ K [Aof] ~ DPIAAIAGG + 2= FIP(0)],

and plug Kn + H into Equation 5.1 to obtain that the truncation error H solves the

linear functional equation

DF[P(0)]H(6) — H(Ao6) = E(0). (5.2)

Note that this is exactly the equation treated by Lemma 4.4 of (CITE TANGLE
PAPER). Then assuming that ... we have that

with

C + pCo
tx — (Cr + pCo) (p*)
A similar computation for differential equations (differentiating Equation SOME-

THING with respect to w and evaluating at w = 0) shows that the first partial of the
parameterization function with respect to w satisfies the functional equation

IH]. < 1Bl

0

DK (0)Ao8 — Df[P(0)]K(0) = el

P(0)] — DP()AL6. (5.3)
Now suppose that KN(H) = ZOSI&\SN ko0 has coefficients solving the homological

equation (Equation SOMETHING) then Ky = K exactly to N-th order. Then the
truncation error H is an analytic N-tail solving the linear functional equation
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DH(0)Ao8 — Df[P(0)|H(0) = E(6), (5.4)

where the a-posteriori error E is defined by

0

E(#) = 5]

P(0)] — DP(0)Ay0 + DKy (0)Aof — Df[P(0)] Ky (6)

Again, this equation was studied in (CITE GS PAPER). So if ... then there is a
unique H so that K(0) = Ky (0) + H(0) for all |§] < v and

Cs

Hl) €

[E2i[P

REMARKS 5.3.
e Py versus P in the linear operator equation.
e Py versus P in the error bound ||F|[,

5.5. Validation Theorem for P(f,w); the Case of Diffeomorphisms. The
validation theorem is almost identical to the Theorem Theorem 4.1 of (CITE TAN-
GLE PAPER). The only difference is that several of the constants must in this case be
uniform in w. We state explicitly the assumptions, the definitions, and the Theorem
in order to show exactly what conditions must be checked in the computer assisted
proof of the a-posteriori error bounds.

Al:

A2:

A3:

Let p: (—7,7) — R? be an analytic branch of fixed points of f and be given
by p = pam + hy, where pys is an M-th order polynomial and ||h, || < dp.
Assume that D f[p(w),w] is non-singular, diagonalizble, and hyperbolic. Let
{M(W),..., A, (w)} denote analytic branches of the stable eigenvalues (which
are distinct as Df is diagonalizable). Suppose that each A\ (w) = A] 3/ (w) +
hy,(0) where Af,, is an M-th order polynomial and [|hy,[|; < J;. Define
Apr(w) to be the diagonal matrix whose non-zero elements are the \; ,, and
A(w) to be the diagonal matrix containing the A. Define §5 = max(d;).
Assume that Pyy : (—7,7) x B(0,v) C RxC"™ — C" is a finite formal series
of the form

M
PMN(Q,W) = Z Z p(m)a)wmea

0<|a|<N m=0
which solves the equation
f[PMN(H,w)7w] = PMN(A(Q))G,W)

exactly to N-th order in o and M-th order on m (in the sense that the
power series coefficients of the function on the left are equal to the power
series coefficients of the function on the right to the specified order). By
the discussion in Section (SOMETHING) the m = 0 coefficients of Py
solve the homological equation (SOMETHING), the m = 1 coefficients solve
homological equation (SOMETHING), the |o| = 0 are the coeflicients of pyy,
the |a| = 1 coefficients are given by (SOMETHING). For 2 < |a| < N the
coefficients solve a homological equation of the form of (SOMETHING).
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A4: Assume that p > 0 has that

M M
510 + Z |pm|Tm + Z Z |p(m,o<)‘7_ml/‘a| <p
m=1

1<|a|<N m=0
This guarantees that
[Prn(0,w) = p(w)| = [Prun (0, w) = prr(w) = hyp ()| < [Pun = par| + [hp| < p

for all |6] < v, |w| < 7. Since |py — p(w)| < Z%zl |pm |T™ we have that for all
w € (—7,7) we have that image[Pyn (-, w)] C B(po, p).
We make the following definition.

DEFINITION 5.5. [Validation values for discrete dynamical systems] The collection
of positive constants v, €], C1, Ca, K1, p, p, pt« and p* are validation values for Py
if

1.
|S‘up |Slllp |f[Pyn (0, w), w] — Pun[A(w)0,w]| < €5
0|<v|w|<T
2.
sup sup |Pyun(0,w)| < p' < p;
[0]<v |w|<T
3.

< mi i s < s < F <1
V<u S 2l IS e WIS <1

4. Let Qo denote the matrix of eigenvectors of Df[p(0),0] and Q;* denote it’s
inverse (so these are constant matrices). We require of C; and C; that

sup sup [|[Df[Pyn(0,w),w]  lar < Crpst + Co(v, 7);
1< |w| <7

where we take C; to be any constant with

1QolllQ5 | < C,

so that Cy is any bound on the theta-omega dependent terms of D f[Pyn (6, w),w] L.
5. K is any number with

X . &
max max sup sup |0°f;(z,w)| < K.
1<GEAIBI=2 |p—po|<p lwl<r

We define a number Ny which counts the number of non-zero second partials of
f with respect to the phase space variables.

Ny = max #{B€Z":|3| =2 and 9°f; # 0}, (5.5)
1<j<n

and have Ny < n?. Here a second partial is considered to vanish only if it is identically
zero for all w € (—7, 7). Now we state out a-posteriori validation theorem for maps.
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THEOREM 5.4 (A-posteriori manifold validation). Given validation values v,
€01 » K1, C1, Co, p, p'; ps and pi*, assume that N and & satisfy the three inequalities

In(p) = In(C1 + psCa) |

N+1> : 5.6
(") (56)
(s = (CL A pC) ()N
0 < min < 2nex NS (Cr 4 pnC)Kr (p—pe (5.7)
2(C «C
5> (C1 + 1. C)egol (5.8)

p — (C1 + pa Co) () N+

Then there is a unique parameterization function P : (—7,7)xB(0,v) C RxC" — C"
solving Equation (SOMETHING). Additionally, the truncation error is bounded by

Sup sup |P(0’w) - PMN(07W)| <4é
|w|<T|0]<v

and the parameterization coefficients piy, .oy € C" of the true solution P decay as

1P(m,a)| < for |a| > N,m > M.

Tmylal

The proof is almost identical to the Proof of Theorem 4.1 in (CITE TANGLE
PAPER), with the exception that .... The main complication in applying Theorem
(5.4) is actually the evaluation of the a-posteriori error (1. The subtly arises due to
the fact that the expression for the a-posteriori error contains the term A which we
only know explicitly up to order M equals the polynomial A,;. Then the evaluation
of £, will depend also on the a-posteriori error given by d5. In fact we have that

E(0,w) = f[Pun(8,w),w] — Pun[A(w)d,w]
= f[PMN(G,w),w] — PMN[AM(UJ)G + hA(w)G,w].

We expand the right hand side to obtain

Py A (w)0+ha(w)0, w] = Parn [An (w)0, w]+DPrrn [Anr (w)0, w]ha (W) 0+T (A s (w)o,0) [ha (W)],

where T is the second order Taylor remainder for Py;x. (Note that this is the Taylor
expansion in the phase space variable, uniformly in the parameter w). Let

EMN(€7LU) = f[PMN(H,w),w] — PMN[AM(W)Q,W},

and note that we can compute the coefficients of Fy;n explicitly by composing the
polynomial representations. Then in practice we take £, > 0 to be any number
having
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20% o
”E(evw)H(T,v) < ”EMNHE,(T,V) + ”DPH(;L*V,T)(SAV + 121].3;;5 |Z2 Flla PjH(/—"*l/,T)

S gtol’ (510)

where we have used the Lagrange form of the remainder. Note that all three terms
can be evaluated using interval arithmetic. We expect that || Ean |5, (r,,) will be small
because it is essentially a weighted sum of of the round off error accumulated in the
computations of the py, o, for 0 <m < M and 0 < |a| < N. We expect the remaining
terms to be small so long as we have arranged that the a-posteriori error d, is small.

5.6. Validation Theorem for P(6,w); the Case of Vector Fields. The
validation theorem is similar to the Theorem Theorem 4.2 of (CITE GS PAPER),
except we incorporate the Cauchy estimates used in CITE TANGLE PAPER, and
the improved estimates on the co-homology equation given by Lemma SOMETHING.

B1:

B2:

B3:

B4:

Let p: (—7,7) — R? be an analytic branch of equilibria of f and be given by
p = pym + hyp where pys is an M-th order polynomial and ||h,||- < 4.
Assume that D f[p(w),w] is non-singular, diagonalizble, and hyperbolic. Let
{Af(w),..., A, (w)} denote analytic branches of the stable eigenvalues (which
are distinct as Df is diagonalizable). Suppose that each A} (w) = A? 5, (w) +
hy,(0) where A?,, is an M-th order polynomial and [|hy,[|; < d;. Define
A (w) to be the diagonal matrix whose non-zero elements are the A7 5, and
A(w) to be the diagonal matrix containing the A?. Define d, = max(J;).
Assume that Pyy : (—7,7) x B(0,v) C RxC"™ — C™ is a finite formal series
of the form

M
Pyn(0,w) = Z Zp(mya)wmea

0< || <N m=0
which solves the equation
f[PMN(G,w),w] = DPMN(H,W)A(UJ)H

exactly to N-th order in o and M-th order on m (in the sense that the
power series coeflicients of the function on the left are equal to the power
series coefficients of the function on the right to the specified order). By
the discussion in Section (SOMETHING) the m = 0 coefficients of Py
solve the homological equation (SOMETHING), the m = 1 coefficients solve
homological equation (SOMETHING), the |o| = 0 are the coeflicients of pyy,
the |a| = 1 coefficients are given by (SOMETHING). For 2 < |a| < N the
coefficients solve a homological equation of the form of (SOMETHING).
Assume that p > 0 has that

M M
510 + Z |pm|Tm + Z Z |p(m,o¢)"rmy‘a| <p
m=1

1<|a] <N m=0
This guarantees that
|Prn (0, w) = p(w)| = [Pun (8, w) —pu(w) — hp(w)| < |[Pyun —pum| + |yl < p

for all |8] < v, |w| < 7. Since |py — p(w)| < 2%21 |pm |T™ we have that for all
w € (—7,7) we have that image[Ppn (-,w)] C B(po, p).
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We make the following definition.

DEFINITION 5.6. [Validation values for continuous dynamical systems] The col-
lection of positive constants v, €1, C1, Ca, K1, p, p', pix and p* are validation values
for Py if

1.
lsw‘up |81‘1p |/ [Pun (0, w),w] — DPp N[0, w]A(w)l] < €tols
0|<v|w|<T
2.
sup sup |Pyn(0,w)| < p' < p;
[0]<v |w|<T
3.

0 <psx <| max sup real(\;(w))| <

1<i<ng we(—7,7)

1<i<ng we(—7,7)

4. Let Qo denote the matrix of eigenvectors of D f[p(0),0] and Q, L denote it’s
inverse (so these are constant matrices). We require of Cy, C3, and Cy are as
in the assumptions of Lemma (SOMETHING).

5. K3 is any number with

) . &
max max sup sup |0°f;(z,w)| < K.
1§J§dm|:2\zfpo\<p\w|§r 7

We also define a number Ny which counts the number of non-zero second partials
of f with respect to the phase space variables.

Nf= max #{B€Z": || =2 and 9°f; # 0}, (5.11)
1<j<n

and have Ny < n?. Here a second partial is considered to vanish only if it is identi-
cally zero for all w € (—7,7). Now we state out a-posteriori validation theorem for
differential equaitons.

THEOREM 5.5 (A-posteriori manifold validation). Given wvalidation values v,
€101 » K1, Co, C3, Cy, p, p', ps and p*, assume that N and 0 satisfy the three
inequalities

N1 T (5.12)
i
A (N+ D —(po+Ca) 0y
0 < min ( 2nenN;CyCaky ,(p—pe (5.13)
2C5C!
5> 25 tol (5.14)

(N + Dpse — (o + C2)
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Then there is a unique parameterization function P : (—7,7)xB(0,v) C RxC" — C"
solving Equation (SOMETHING). Additionally, the truncation error is bounded by

sup sup |P(0,w) — Pyn(f,w)| <o
|w|<T |0]<v

and the parameterization coefficients p(, .oy € C" of the true solution P decay as

1D(m,0)| < el for |a] > N,m > M.

The proof is similar to the Proof of Theorem 4.2 in (CITE GS), except that we
use Lemma (SOMETHING) in order to solve the co-homological equation, and follow
the argument given in Section SOMETHING of CITE TANGLE PAPER to obtain
the contraction. The main difference between the contraction mapping arguments
given in CITE GS and the one in CITE TANGLE PAPER is the use of the Cauchy
Bound of Theorem (TP SOMETHING) in stead of the weaker bound of THEOREM
(GS SOMETHING).

Again, the complication in applying Theorem (5.4) is the numerical evaluation of
the a-posteriori error e(,). We define

E(&w) = f[PMN(G,w),w] — DP]\/[N[H,W]A(OJ)H
= f[PMN(97w),w] — DPMN[Q,UJ][AM((A)) + hA(w)]e
(5.15)

and note that the problem is much simpler than in the case of maps (the dependence
of a-posteriori error E on the truncation error hp is linear). Defining the numerical
a-posteriori error function to be

EMN(H,W) = f[PMN(G,w),w] - DPMN[H,LU]AM(OJ)Q.
Then in practice we take ;] be any positive constant with

HEH(T,V) < ||EMN|

s,(rw) T IDPun |5, (r,0)087 < €]

Again, such a g is easily computed via interval arithmetic.
6. Applications.
6.1. Visualization of Validated Sheafs of Invariant Manifolds.

6.2. Computer Assisted Proof of the Existence of Tangencies for Fam-

ilies of Diffeomorphisms.
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