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Abstract. This work describes a method for approximating a branch of stable or unstable
manifolds associated with a branch of hyperbolic fixed points or equilibria in a one parameter family
of analytic dynamical systems. We approximate the branch of invariant manifolds by polynomials
and develop a-posteriori theorems which provide mathematically rigorous bounds on the truncation
error. The hypotheses of these theorems are formulated in terms of certain inequalities which are
checked via a finite number of calculations on a digital computer. By exploiting the analytic category
we are able to obtain mathematically rigorous bounds on the jets of the manifolds, as well as on the
derivatives of the manifolds with respect to the parameter. A number of example computations are
given.

1. Introduction. The existence and geometry of stable and unstable manifolds
plays a central role in the qualitative theory of dynamical systems. The intersection
of these manifolds gives rise to connecting orbits, and under some additional assump-
tions to periodic orbits and chaotic motions as well. For a parameterized family of
dynamical systems the study of how the manifolds and their intersections vary with
parameters illuminates the transition from regular to chaotic dynamics, bifurcations of
connecting orbits, the location of separatrices, and the global structure of attractors.
Over the last several decades substantial work has gone into developing numerical
methods for studying invariant manifolds. A brief survey of the literature is found in
Section 1.1.

The present work is concerned with high order approximation of local stable/unstable
manifolds for a one parameter family of analytic dynamical systems. We develop a
constructive method for computing the Taylor polynomials of these invariant man-
ifolds to arbitrarily high order in both the dynamical variables and the parameter.
We also develop analytical tools which allow us to obtain rigorous computer assisted
error bounds on the truncation errors associated with the polynomial approximations.
These results are formulated in the analytic category, and rely on functional analytic
arguments in some Banach spaces of candidate error functions.

Proceeding somewhat informally, let f : Cn × C → Cn be an analytic family of
vector fields. Our approach is based on the Parameterization Method of [13, 14, 15],
so that we study the family of first order non-linear partial differential equations

f [P (θ, ω), ω] = D1P (θ, ω) Λ(ω)θ, (1.1)

subject to the constraints

P (0, ω) = p(ω), D1P (0, ω) = A(ω). (1.2)

Here p(ω) is a family of hyperbolic equilibria, and we assume that for each ω the
differential is diagonalizable. Then we take Λ(ω) to be the one parameter family of
matrices whose diagonal entries are the stable eigenvalues (and off diagonal entries
are zero), and A(ω) is a family of matrices whose columns are stable eigenvectors. If
P is a solution of Equation (1.1), then the image of P (·, ω) is a local stable manifold
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for p(ω) for each ω. Moreover, under the assumption of some mild non-resonance
relationships between the stable eigenvalues, a unique solution to Equation (1.1) exists
(and is unique up to the choice of the scalings of the eigenvectors). See [13, 15] and
Section 2.2.

In the present work we develop a formal power series expansion for the parame-
terization P . Then we are able to compute recursively a polynomial approximation
PMN of P to any desired finite order in N in the phase space/dynamical variables
and any finite order M in the family parameter. Once the polynomial approximation
is fixed we obtain a mathematically rigorous bound on the truncation error. The
following is a ‘meta’ statement of our main result for vector fields.

Theorem 1.1 (Theorem (4.7) Paraphrased). Assume that PMN is a “good
enough” and “properly constructed” approximate solution of Equation (1.1). Then
there is a δ > 0 and a unique true solution P of equation (1.1) so that

‖P − PMN‖ ≤ δ.

Of course care must be taken in order to make precise the terms “good enough”
and “properly constructed”, and also to ensure that δ is in fact “small”. For the
moment we only remark that “good enough” is defined in terms of an a-posteriori
indicator. More precisely we define the ‘defect’ associated with the approximation
PMN by considering

‖f [PMN (θ, ω), ω]−D1PMN (θ, ω)Λ(ω)θ‖ = ε,

in an appropriate norm. We bound this defect rigorously using a computer, and in
the full version of Theorem (1.1) the constant δ is made explicitly proportional to the
numerical bound on ε. In this sense the present work generalizes the constructive,
rigorous, a-posteriori numerical methods of [5, 42] to vector fields depending on a
parameter.

We also consider f : Cn × C → Cn a family of analytic diffeomorphisms, with
p(ω) a family of hyperbolic fixed points, and Λ(ω), A(ω) as before. Again we follow
[13, 14, 15] and study the nonlinear operator equation

f [P (θ, ω), ω] = P [Λ(ω)θ, ω], (1.3)

subject to the first order constraints

P (0, ω) = p(ω), D1P (0, ω) = A(ω). (1.4)

If P is a solution of Equation (1.3) then the image of P is a family of local stable
manifolds for the family of fixed points, and again we have that there exists a unique
solution to Equation (1.3) assuming only some mild non-resonance relations between
the stable eigenvalues (see again [13, 14, 15] and below for fuller discussion). We
develop a formalism for approximating solutions of Equation (1.3) as well as a precise
version of Meta-Theorem (1.1) for diffeomorphisms. This generalizes the work of [54]
to parameter dependent families of discrete time dynamical systems.

Remark 1.2 (Data Structures for Analytic Functions). In Equations (1.1) and
(1.3) the terms p(ω), Λ(ω), andA(ω), i.e. the analytic families of fixed points/equilibria,
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eigenvalues, and eigenvectors appear as known quantities. Before any attempt is made
to solve the equations themselves it is essential that we develop appropriate represen-
tations of this ‘linear data’. Since our goal is to develop polynomial approximations
of the families of invariant manifolds with rigorous remainders, we require the same
kind of representation of the linear data, i.e. we must be able to compute polyno-
mial expansions of one parameter families of fixed points/equilibria eigenvalues, and
eigenvectors.

Throughout this work we discretize functions using neighborhoods in function
space about fixed taylor polynomials. We represent such a neighborhood by a poly-
nomial with interval coefficients, a floating point number describing the radius of
convergence of the function, and a floating point bound on the truncation error. This
data structure is often referred to in the literature as a Taylor Model. In principle
(if not in name) the use of Taylor models in computer assisted proofs appears in the
literature as early as the works of [22, 23, 26, 45, 46] on universality, renormalization,
and the Feigenbaum conjectures. We remark that these works appear to inaugurate
the birth of the field of computer assisted proof in dynamical systems. Taylor models
were later developed independently (and so named) in the works of [48, 49, 6], leading
to the development of the COSY Infinity software for computing and manipulating
Taylor models [8]. In the present work we impose some extra regularity conditions on
our Taylor Models so that we are able to control derivatives. This leads to the notion
of an “analytic Taylor model”, and we discuss this notion more formally in Section
2.4.

At present we remark that all the computations discussed in the present work have
been implemented numerically for some specific example systems. The computations
run under the MatLab/IntLab environment for interval arithmetic. This source code
is found at [56]. In order to support the computations discussed in the present work
it was convenient to implemented a basic analytic Taylor Model library in the IntLab
environment. A “user guide” supporting the analytic Taylor Model library and also
describing the applications discussed in the present work is provided by the author
and is found at [55]. In the guide we discuss methods for computing mathematically
rigorous analytic Taylor models for equilibria/fixed points, eigenvalues, eigenvectors,
and several other quantities needed throughout the present work. While similar work
has appeared in the literature the guide is provided so that the present work is self-
contained, well documented, and reproducible.

Remark 1.3 (Rigorous Computation of Jets). In the work of [42, 5, 54] we find
methods for obtaining computer assisted error bounds for polynomial approximations
of stable/unstable manifolds of analytic vector fields and diffeomorphism (albeit at
fixed parameter values). An important feature of these methods is that in addition to
obtaining rigorous C0 bounds on the truncation error, one actually obtains that the
truncation error is an analytic function. Having a representation of the truncation
error as a bounded analytic function allows one to bound derivatives of the truncation
error using classical estimates of complex analysis in exchange for shrinking the do-
main of the function. Having some control over the derivatives of the truncation error
is essential in certain applications to computer assisted proof of the existence of con-
necting orbits, chaotic motions, etc. (See also Remark 1.5) This control of derivatives
may also be valuable for developing numerical globalization schemes for computing
invariant manifolds (see also Section 1.1).

Remark 1.4 (Other Validated Computations for One Parameter Branches of
Local Stable/Unstable Manifolds). Part of the present work (the portion pertain-
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ing to on parameter families of vector fields) is closely related to the work of [2].
There the authors develop polynomial approximations to one parameter families of
stable/unstable manifolds for the purpose of proving the existence of a homoclinic
tangency in a certain model of cardiac muscle. A difference between the present work
and the work of [2] is in the formulation of the fixed point problem which determines
the truncation error. The remark is technical but important as each method has its
strengths. In [2] the second order Taylor remainder of the vector field f about the
equilibria is exploited in order to obtain a contraction mapping. This simplifies the
error analysis while imposing the constraint that the image of the polynomial ap-
proximation lie inside the neighborhood of the origin where the remainder is a good
approximation. In the present work we follow [5, 54] and formulate the contraction
mapping problem for the truncation error in terms of the second order Taylor re-
mainder of the vector field (or diffeomorphism) f about the image of the polynomial
approximation PMN itself. This results in a-posteriori theorems which we are able to
apply for high order polynomial approximations in larger neighborhoods of the origin,
however it also complicates both the computations and analysis.

Remark 1.5 (Computer Assisted Proofs for Connecting Orbits). A classical
method for numerical computation of connecting orbits in discrete and continuous
time dynamical systems is the method of projected boundary conditions [9, 11, 12, 24,
25]. The idea here is to reformulate the connecting orbits as the solution of a (finite
time) boundary value problem. So instead of looking for an orbit with prescribed
asymptotics we look instead for an orbit which begins on an unstable manifold and
ends on a stable manifold. Recently some authors have developed validated numerical
schemes for these boundary value problems which lead to computer assisted proof of
the existence of connecting orbits. See for example [5, 54, 2, 29] and especially the
references therein. It is worth mentioning that in the references just mentioned the
boundary conditions are formulated in terms of chart maps for the stable and unstable
manifolds. These chart maps must be computed rigorously and the Parameterization
Method proves to be an excellent tool for carrying out this analysis.

A natural extension of the methods just mentioned it to combine them with an
infinite dimensional continuation method such as [61, 28]. By combining the methods
of [5, 54, 2, 29] with the methods of [61, 28] it should be possible to study rigorously one
parameter branches of connecting orbits. However in order to cary out this analysis
it will be essential to to control the boundary conditions, and even derivatives of
the boundary conditions, with respect to parameter. Since the boundary conditions
are formulated in terms of one parameter families of local stable/unstable manifolds,
this reduces to the problem solved by the present work, and is in fact one of our
primary motivations. We mention again the work of [2], which proves the existence
of a homoclinic tangency for a differential equation. This can be seen as a bifurcation
in the connecting orbit structure of the family of vector fields.

The remainder of the paper is organized as follows. In the next subsection we
make some brief remarks about the literature. In Section (2) we establish some
notation and recall some elementary notions of the theory of analytic functions of
several complex variables. In Section (2.2) we formalize the problem studied in the
remainder of the present work, establish the notation used throughout the remainder
of the paper, and describe the overall solution strategy. In Section (2.3) we define a
certain family of analytic function which we call ‘one parameter families of analytic
N -tails.’ These comprise the main technical tools of our error analysis. In Section
(2.4) we define the data structure which we use throughout the paper in order to
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model analytic functions on the computer.

Section (3) belongs to the study of certain operator equations on the Banach
Space of one parameter families of analytic N -tails. In Section (3.1) we study a
pair of linear operators on the space of one parameter families of analytic N -tails.
These linear operators play a central role in our analysis of invariant manifolds in
the sequel. Section (3.2) is devoted to an abstract non-linear equation on the space
of one parameter families of analytic N -tails, and we prove an existence theorem.
We also examine a concrete instantiation of this nonlinear equation which unifies our
a-posteriori error analysis later in the paper.

In Section (4) we treat the rigorous computation of one parameter families of
stable/unstable manifolds. We begin by illustrating the formal computation of the
coefficients for the polynomial approximation of the family of invariant manifolds. We
discuss conditions which guarantee that the coefficients are formally well defined to
all orders, and illustrate the computations for specific families of diffeomorphisms and
differential equations. We focus on the examples of the classical Hénon map and the
Lorenz differential equation. In Section (4.4) we provide a method which allows us
to compute explicitly a parameter interval on which the formal solution converges.
We think of the parameterization of the invariant manifold as a power series in the
dynamical variables, whose coefficients are power series in the parameter. In Section
(4.5) we show how to bound the truncation errors of a finite number of these coefficient
power series. The remaining truncation error is now a one parameter family of analytic
N -tails, and in Section (4.6) we apply the theory of Section (2) in order obtain the
desired bound. The cases of maps and flows are studied separately.

Section (5) presents example computations with rigorous error bounds for the
Hénon map and the Lorenz system. Specifically we compute one parameter branches
of all four stable and unstable manifolds of the two fixed points of the Hénon map.
Since the phase space of the map is two dimensional and all the (un)stable manifolds
are one dimensional we can represent the resulting one parameter families of invariant
manifolds graphically. We also discuss computations of the one parameter family of
two dimensional stable manifolds at the origin of the Lorenz system. Since this results
in polynomials of three variables we present only tabular results.

1.1. Computing Invariant Manifolds: A Brief Overview. The literature
on numerical methods for computing stable/unstable manifolds is rich and a thorough
review of the literature quite beyond the scope of the present work. The much more
modest goal of this section is simply to point the interested reader in the direction
of more complete coverage. With this in mind it seems reasonable to partition the
computational literature based on two distinct but related concerns. The first concern
is the computation of local stable/unstable manifolds, while the second concern is the
development of methods for globalizing these local invariant objects.

The more classical and in many ways more difficult question is the second of
these. Explicitly stated it is: given a good local approximation of the stable/unstable
manifold how can we obtain good numerical approximations of the global manifold?
The question is difficult as the global manifold is in general neither compact nor
neatly embedded. Moreover the growth of the manifold depends in a highly nonlinear
way on it’s embedding in phase space and blindly iterating the local manifold often
leads to very poor results. There are a number of sophisticated approaches to this
problem and we refer the interested reader to the excellent review given in [47]. In
addition to describing the authors own methods for globalizing (un)stable manifolds
[47] also serves as an overview of the the entire field. We remark that since the
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methods discussed in [47] focus on globalization they often begin with the simplest
representation of the local manifold possible, namely the linear approximation given
by the eigenvectors.

The other end of the spectrum is occupied by methods for computing high order
approximations of the local stable/unstable manifold itself. These methods are usu-
ally based on the fact that there are chart maps for the local manifold which solve
an invariance equation, and solutions of this invariance equation are usually approxi-
mated well by polynomials (the polynomial approximations are easily generated either
by some formal power matching scheme or by an iterative procedure such as used in
the graph transform method). Some of the earliest numerical implementations of
methods for computing local stable/unstable manifolds using high order polynomial
approximation are found in [27, 10, 31]. In the mean time computational methods
based on “automatic differentiation” have found wide application in the dynamical
systems community and even a cursory overview is beyond the scope of the present
work. We refer for example to [57, 60] for more systematic discussion of this topic.
We also remark that the idea of exploiting an invariance equation in order to com-
pute series approximations of the stable/unstable manifold has a history predating
the digital computer by more than half a century, appearing as early as the seminal
works of Poincaré, Lyapunov, and Darboux. We refer the reader to Appendix B of
[15] for a historical overview.

Some more recent work has focused on the middle ground between the two ex-
tremes just mentioned. We mention for example the work of [34, 35], where the
authors treat one and two dimensional invariant manifolds of maps and develop an
adaptive globalization scheme which exploits Bézier curves and triangles. A feature
of this work is that the authors pre-condition their globalization scheme with a high
order approximation of the local invariant manifold based on the Parameterization
Method.

This hybrid idea of combining sophisticated globalization schemes with high or-
der representations of the local invariant manifold is a promising direction of future
research. We remark that the the information about derivatives one can obtain using
the Parameterization Method seems not to have been fully exploited in a globalization
scheme. We also remark that some less sophisticated globalization schemes which also
exploit the high order preconditioning given by the Parameterization Method were
used in [53, 52] in order to compute some one dimensional invariant heteroclinic sets
as well as to visualize the vortex dynamics and tangle generated by a certain fam-
ily of volume preserving diffeomorphisms. These computations suggest that even a
naive approach to globalizing the local manifold can produce quite good results when
preconditioned with a good enough representation of the local invariant manifold,
and make the idea of combining sophisticated globalization methods with high order
preconditioning all the more enticing.

We also remark that application of the Parameterization Method is not limited to
the study of stable/unstable manifolds. The method has been used to study hyperbolic
invariant tori and their “whiskers” [38, 39, 37], stable and unstable manifolds of
periodic orbits for differential equations [15], and to develop KAM arguments without
action angle coordinates [51, 50]. Moreover this list is by no means exhaustive and
the interested reader should consult the references just mentioned for a much more
complete picture of the literature. In fact the key to the Parameterization Method
is the existence of an invariance equation which one can study via analytic tools,
and conjugacy and semi-conjugacy relations are fundamental in the description of
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qualitative dynamics. Seen in this light the growth of this literature in recent years
is not surprising. Examples of numerical computations of invariant objects using
generalizations of the Parameterization Method are found in [36, 16, 17]. Again the
literature is substantial and this short discussion can only scratch the surface.

We conclude with some comments closer the the topic of the present work, namely
the literature on computing mathematically rigorous enclosures of stable/unstable
manifolds. Again the literature is rich, and begins as early as [58]. Even in the case
of validated computation for stable/unstable manifolds we make no attempt at an
exhaustive survey of the literature. The interested reader will find by consulting the
references below many additional techniques, ideas, and applications.

We refer to the work of [18, 19, 20, 21, 33, 67] for a general theory of validated
computation for stable/unstable (and other types of normally hyperbolic) invariant
manifolds based on the topological notion of covering relations and cone conditions.
The computer assisted topological arguments are carried out in phase space using
polygonal elements. Efficient implementations of these methods are provided in the
CAPD C++ library [7] for rigorous computation in dynamical systems. These tools
have been used in order to rigorously study many problems in celestial mechanics
and dynamical systems theory, and in addition to the references just cited we refer to
[63, 32, 3, 4, 43, 44, 64] for more applications and discussion. We point out that these
comments provide only the briefest of introductions to this active area of research.

Another general theory for computing rigorous enclosures of stable/unstable man-
ifolds is found in the work of [66, 65, 48, 49, 41, 6]. These authors use the theory
of Taylor Models in order to approximate the invariant manifolds, and then apply
computer assisted arguments in order to obtain validated error bounds for these ap-
proximations. Error bounds for the manifold enclosure are obtained by making a high
order covering argument in phase space (nonlinear polygonal coverings with cone con-
ditions). The ideas are implemented in the high level COSY programing language [8]
for validated Taylor Model computations with interval arithmetic, which has been
applied to a number of applications in physics and engineering. Once again these are
meant as introductory remarks and the interested reader should consult the works
just cited for a proper discussion of this field.

Finally we refer briefly to the work of [42, 2, 5, 54] which are based on applying
functional analytic arguments to the invariance equation for the local invariant man-
ifold. These methods are most closely related to [13, 14, 15] and also to the present
work. These works are discussed in some detail in the introduction above and we
devote no more time to them here.

2. Background.

2.1. Spaces, Norms, and Theorems of Analysis. We endow C with the
usual Euclidean norm |z| = |x+ iy| =

√
x2 + y2, and Cn with the max norm

|(z1, . . . , zn)|∞ = max
1≤i≤n

|zi|.

We sometime suppress the infinity subscript when it is clear from context weather z
is a point or a vector. These norms induce the balls Br(z) = {w ∈ C : |w− z| < r} in
the complex plane, and the poly-disks

Dr(z) = {w ∈ Cn : |w − z|∞ < r},

in the complex vector space Cn. We often write Br = Br(0) and Dr = Dr(0) to
denote respectively balls and poly-disks centered at the origin.
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Let z ∈ Cm and f : Dr(z) ⊂ Cm → Cn be an analytic function. Then we let

‖f‖Dr(z) ≡ sup
|w−z|∞<r

|f(w)|∞,

denote the (componentwise) C0 norm of f on Dr(z). When it is clear from context
what the domain is we often write simply ‖f‖r. This norm induces the usual Banach
Space structure on the collection of bounded analytic functions on a given poly-disk.
We denote this Banach Space by Cω(Dr(z),Cn).

Let τ > 0 and Bτ denote the ball of radius τ about the origin in the complex
plane C. We are often interested in a one parameter family of analytic mappings
f : Dr(p0)×Bτ ⊂ Cm × C→ Cn. Here we employ the norm

‖f‖r,τ ≡ sup
|z−p0|∞<r

sup
|ω|<τ

|f(z, ω)|∞.

Again the collection of all such functions is a Banach Space under this norm.
Suppose that X and Y are Banach Spaces. Let ‖ · ‖X and ‖ · ‖Y denote the norms

on these spaces. Suppose that L : X → Y is a linear operator between them. The
norm of the linear operator L is defined to be

‖L‖B(X ,Y) ≡ sup
‖w‖X=1

‖Lw‖Y .

If ‖L‖B(X ,Y) <∞ then we say that the linear operator is bounded. If L is invertible
and ‖L−1‖B(Y,X ) < ∞ then we say that the operator L is boundedly invertible. If
X = Y then we simplify the notation by writing

‖L‖B(X ,X ) = ‖L‖B(X ).

Now let A be a k× ` matrix of fixed complex numbers. We denote the (i, j) entry
of A by either [A]i,j or aij , depending on context. We take the norm of A to be the
maximum of the sum of the absolute values of row entries, where the maximum is
taken over all rows; i.e.

|A|M ≡ max
1≤i≤k

∑̀
j=1

|aij |.

When thinking of A as a linear operator from the (finite dimensional) Banach Space
C` to the (finite dimensional) Banach Space Ck (both endowed with the maximum
norm on components) then ‖A‖B(C`,Ck) ≤ |A|M . This inequality gives an easy to
compute bound for finite dimensional linear operators. When it is clear from context
that A is a matrix we use the notation |A|, |A|M and even ‖A‖ interchangabally.

Suppose that A(ω) is a k× ` matrix whose entries aij : Bτ ⊂ C→ C are analytic
functions of one complex variable, and that v : Bτ ⊂ C → C` is a ‘column vector’ of
analytic functions of a single complex variable. Then A(ω) defines a linear operator
L : Cω(Bτ ,C`)→ Cω(Bτ ,Ck) by the formula

L[v](ω) = A(ω)v(ω).

The discussion of the preceding paragraphs makes it clear that we have

‖L‖B(Cω(Bτ ,C`),Cω(Bτ ,Ck)) ≤ sup
|ω|≤τ

|A(ω)|M .
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We write ‖A‖τ ≡ ‖L‖B(Cω(Bτ ,C`),Cω(Bτ ,Ck)), to simplify when it results in no confu-
sion.

Consider again p0 ∈ Cm, τ, r > 0, and take f : Dr(p0) × Bτ ⊂ Cm × C → Cn
an analytic function. Later in the paper z ∈ Br(p0) is thought of as a “dynamical
variable” and ω ∈ Bτ is thought of as a parameter. When we consider the derivative
of f with respect to z (and ω is fixed) we will denote this derivative (the n×n matrix
of first order partial derivatives of f with respect to z) as D1f(z, ω). Let β ∈ Nn be a
multi-index. Higher order partial derivatives (order |β|) of fi, 1 ≤ i ≤ n with respect
to z are denoted by

∂β1 fi(z, ω) =
∂|β|

∂zβ1

1 . . . ∂zβnn
fi(z, ω).

For n-th order partials with respect to ω we have simply ∂n2 fi(z, ω) = ∂n/∂ωnfi(z, ω).
Let α ∈ Nk denote a multi-index, m ∈ N denote an integer index, z ∈ Ck,

and a(α,m) ∈ Cn be a complex number indexed by α and m. For any multi-index
α = (α1, . . . , αk) we let |α| = α1 + . . .+αk and zα = zα1

1 · . . . · z
αk
k . If f is analytic on

Bν ×Bτ ⊂ Ck × C then we can write the power series for f as

f(z, ω) =

∞∑
|α|=0

∞∑
m=0

a(α,m)ω
mzα =

∞∑
|α|=0

aα(ω)zα,

i.e. as a power series in z whose coefficients are power series in the parameter ω,
and have that the series converges to the value of the function for any |z|∞ < r and
|ω| < τ . Similarly, we denote by

fMN (z, ω) =

N∑
|α|=0

M∑
m=0

a(α,m)ω
mzα,

a polynomial of degree N in several complex variables z = (z1, . . . , zk) whose coeffi-
cients are polynomials of degree M in the single complex variable ω.

The next estimate follows directly from the Cauchy Theorem of Complex Analysis
[1], and provides a bound on the sup norm of the derivative of an analytic function in
terms of the sup norm of the function itself, albeit on a smaller disk. A proof which
yields the constants given here is found in [54].

Lemma 2.1 (Cauchy Bounds). Suppose that f : Dν(0) ⊂ Cm → Cn is bounded
and analytic. Then for any 0 < σ ≤ 1 we have that

‖∂if‖νe−σ ≤
2π

νσ
‖f‖ν so that ‖Df‖νe−σ ≤

2πm

νσ
‖f‖ν . (2.1)

Similarly we have the second order bounds

‖∂i∂jf‖νe−σ ≤
4π2

ν2σ2
‖f‖ν so that ‖D2f‖νe−σ ≤

4π2m2

ν2σ2
‖f‖ν . (2.2)

2.2. Notation and Formal Problem Statement. Let p0 ∈ Cn, ρ, τ > 0, and
consider a one parameter family of analytic vector fields f : Dρ(p0) × Bτ ⊂ Cn ×
C → Cn, also analytic with respect to parameter, which is uniformly bounded on
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Dρ(p0)×Bτ . Suppose that p0 is a hyperbolic equilibria of f(z, 0), and that ∂ωf(p0, ω)
is not zero at ω = 0. The implicit functions theorem actually tells us that is a branch
of hyperbolic equilibria. However we are interested in constructive results and assume
that the following additional data is given.

A1-flows: Assume that there is a τ > 0 and an analytic function p : Bτ → Cn so that

f [p(ω), ω] = 0, for all ω ∈ Bτ .

A2-flows: Assume that for each ω ∈ Bτ , Df [p(ω), ω] is diagonalizable and hyperbolic in
the sense of differential equations, so that there are k ≤ n stable eigenvalues,
and n−k unstable eigenvalues for each ω ∈ Bτ . We assume that λi : Bτ → C,
1 ≤ i ≤ n are analytic functions with

det (Df [p(ω), ω]− λi(ω)Idn) = 0 for all ω ∈ Bτ ,

and real(λi(ω)) < 0 for 1 ≤ i ≤ k, and 0 < real(λi(ω)) for k + 1 ≤ i ≤ n.
We assume that the eigenvalues are distinct, and undergo no bifurcations on
Bτ . We let Λ: Bτ → Matk×k(C) be the diagonal matrix of stable eigenvalues
defined by

Λ(ω) =

 λ1(ω) . . . 0
...

. . .
...

0 . . . λk(ω)

 .

A3-flows: Assume that for 1 ≤ i ≤ n there are constants Ki, and analytic functions
ξi : Bτ → Cn having

(Df [p(ω), ω]− λi(ω)Idn) ξi(ω) = 0, and ‖ξi(ω)‖ = Ki for all ω ∈ Bτ ,

and each 1 ≤ i ≤ n. (Here we use the Euclidean norm for the lengths
of the eigenvectors). We call ξ1(ω), . . . , ξk(ω) the stable eigenvectors and
ξk+1(ω), . . . , ξn(ω) the unstable eigenvectors. Let A : Bτ → Matn×k(C) de-
note the matrix of stable eigenvectors given by

A(ω) = [ξ1(ω)| . . . |ξk(ω)].

Under these hypotheses our goal is to solve Equation (1.1) under the constraints
given by Equation (1.2). We now outline the main steps in our procedure.

• Step 1: Solve the Equation

f [P (θ, ω)] = D1P (θ, ω) Λ(ω)θ,

term by term in the sense of power series. This formal computation is carried
out in Section 4.2 for the Hénon family of diffeomorphisms and in Section 4.3
for the Lorenz family of vector fields. This step leads to recurrence relations
(also called homological equations) for the coefficients of the solution P and
allows us to compute the desired polynomial approximation PMN to any
desired finite order.

• Step 2: Next we seek an analytic function Error(θ, ω) having that

P (θ, ω) = PMN (θ, ω) + Error(θ, ω),

10



is an exact solution of Equation (1.1) on some domain Dν×Bτ ′ ⊂ Ck×C with
τ ′ ≤ τ . In order to prove that there exists such a truncation error function
we derive a nonlinear fixed point problem,

Φ[Error](θ, ω) = Error(θ, ω),

related to Equation (1.1), whose solution is the desired function Error. This
fixed point problem is derived in Section 4.6.1.

• Step 3: The last step is to show that, the operator Φ is a contraction. The
fixed point operator Φ depends on the approximation PMN , as well as on the
sizes ν and τ ′ of the domain on which we hope to validate the error. Φ also
depends indirectly on the vector field f , its branches of equilibria, eigenvalues,
and eigenvectors, and the dimension of the problem. We find that Φ is a
contraction only if certain nonlinear relationships hold between all of these
quantities. Moreover the relationship between these quantities determine the
the size of the ball in function space on which Φ is a contraction, and hence
the bounds on the error function. This argument is carried out in detail in
Section 4.6.1.

Similar considerations apply to discrete time dynamical systems. Let f : Dρ(p0)×
Bτ ⊂ Cn × C → Cn be a one parameter family of analytic diffeomorphisms, and
p0 ∈ Cn be a hyperbolic fixed point of f(z, 0) with ∂ωf(0, ω) not zero at ω = 0. We
make the following assumptions.

A1-maps: There is a τ > 0 and an analytic function p : Bτ → Cn having

f [p(ω), ω]− p(ω) = 0, for all ω ∈ Bτ .

So p parameterizes a one parameter family of fixed points for f .
A2-maps: For each ω ∈ Bτ , Df [p(ω), ω] is diagonalizable and hyperbolic in the sense of

diffeomorphisms. Then there are k ≤ n stable eigenvalues, and n−k unstable
eigenvalues for each ω ∈ Bτ . Each of these eigenvalues is parameterized by a
one parameter family of analytic functions λi : Bτ → C, 1 ≤ i ≤ n with

det (Df [p(ω), ω]− λi(ω)Idn) = 0 for all ω ∈ Bτ .

Moreover for all ω ∈ Bτ we have that 0 < |λi(ω)| < 1 for 1 ≤ i ≤ k, and
1 < |λi(ω)| for k + i ≤ i ≤ n. The eigenvalues are distinct, and undergo
no bifurcations on Bτ . Let Λ: Bτ → Matk×k(C) be the diagonal matrix of
stable eigenvalues defined by

Λ(ω) =

 λ1(ω) . . . 0
...

. . .
...

0 . . . λk(ω)

 .

A3-maps: (Same as A3-flows).
In this case our goal is to solve Equation (1.3) under the constraints given by

Equation (1.4). This is done by a small modification of the argument described in
steps 1− 3 above.

The cartoon solution given by steps 1− 3 above provides useful heuristic insight,
but obscures a number of critical details. Since it is these details which account for
much of the technical developments to follow, we make a few clarifying comments.
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Remark 2.1. Components of the Error Function: Suppose that we write
the true solution of Equation (1.1) as

P (θ, ω) =

∞∑
|α|=0

aα(ω)θα,

where for each α the coefficient function aα(ω) is an analytic function of one complex
variable (the complex variable is the system parameter). Now write the approximate
solution as

PMN (θ, ω) =

N∑
|α|=0

(
M∑
m=0

a(α,m)ω
m

)
θα.

Then the truncation error Error(θ, ω) decomposes naturally into two separate com-
ponents. First note that for each α there is an error associated with truncating aα(ω)
at order M . In other words we have

aα(ω) =

M∑
m=0

a(α,m)ω
m + hα(ω),

and we must bound the truncation error arising from the fact that we only compute
a finite number of terms in ω for each of the indices with 0 ≤ |α| ≤ N .

In addition to this there is the error introduced by the fact that we only approx-
imate P to order N in θ. Then we have to take into account an error H having

P (θ, ω) =

N∑
|α|=0

aα(ω)θα +H(θ, ω).

Note that it is only H which is zero to high order in the variable θ. In the end then
we have that

Error(θ, ω) =

N∑
|α|=0

hα(ω) +H(θ, ω).

In truth it is difficult to formulate a contraction operator for Error(θ, ω). Instead
we make separate arguments for the components hα(ω) and the term H(θ, ω). We
develop an a-posteriori arguments for the components hα terms in Section 4.5, and
apply this argument once for each α with 0 ≤ |α| ≤ N . Then in Section 4.6 we derive
a contraction mapping operator for H. We will see that the contraction mapping
argument relies heavily on the fact that H is zero to high order in the dynamical
variable θ.

Remark 2.2. The Co-Homological Equations: In the process of deriving the
fixed point operator for the truncation error H we encounter certain linear operators
which must be inverted and bounded in order to show that the fixed point opera-
tor is well defined. These linear equations are similar to the equation which arise in
normal form and KAM theory, where they are usually referred to as “co-homological
equations”. In general the term co-homological equation is used to refer to the lin-
ear obstructions to solving semi-conjugacy problems in many branches of non-linear
analysis.
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In the present work we arrive at one co-homological equation for vector fields and
one for diffeomorphisms. We present and solve these equations together in Section
3.1.

Remark 2.3. Abstract Fixed Point Problems: While it is true that dif-
feomorphisms and vector fields lead to different linear co-homological equations, the
subsequent nonlinear analysis of the fixed point problems are almost identical in both
cases. For this reason we formulate and solve a certain abstract nonlinear operator
equation in Section 3.2. This problem is formulated with an unspecified linear part,
so that the abstract problem applies in both the vector field and the diffeomorphism
case. This unifies the analysis in Sections 4.6.1 and 4.6.2.

2.3. Analytic N-Tails and One Parameter Families of Analytic-N Tails.
In this section we define a class of functions which we use to model truncation errors.

Definition 2.2. [Analytic N-Tails] An analytic function h : Dν ⊂ Ck → Cn is
called an analytic N -tail if

h(0) = ∂αh(0) = 0, for all α ∈ Nk, with |α| <= N. (2.3)

If the analytic N -tail h uniformly bounded on Dν then we say that h is a bounded
analytic N -tail on Dν .

Given a disk Dν the set of all bounded analytic N -tails on Dν is a Banach Space
under the supremum norm. A key fact is that a bounded analytic N -tail h on Dν has
a power series representation

h(z) =

∞∑
|α|=N+1

aαz
α,

which converges for |z| < ν. Analytic N -tail are zero to N -th order at the origin and
we think of them as “small perturbation of the zero function”, in the sense of power
series. We have the following useful bounds.

Lemma 2.4. Let h be a bounded analytic N -tail on Dν ⊂ Ck, and let Λ be a k×k
diagonal matrix with diagonal entries λ1, . . . , λk ∈ C having 0 < |λi| < 1 for 1 ≤ i ≤ k.
Let µ∗ be any positive constant with sup1≤i≤k|λi| ≤ µ∗. Then (h ◦ Λ)(z) = h(Λz) is
a bounded analytic N -tail on Dν and

‖h ◦ Λ‖ν ≤ (µ∗)N+1‖h‖ν . (2.4)

See [5] (Lemma 3.2) for an elementary proof. Since the present work deals largely with
one parameter families of analytic functions we introduce the following generalization.

Definition 2.3. [One Parameter Family of Analytic N -Tails] We call an analytic
function H : Dν ×Bτ ⊂ Ck×C→ Cn a one parameter family of bounded analytic N -
tails if H(z, ω) is an analytic N -tail on Dν for each fixed |ω| ≤ τ and H is uniformly
bounded on Dν ×Bτ .

A family of analytic N -tails has that

H(0, ω) = Dα
1H(0, ω) = 0 for each α ∈ Nk, 1 ≤ |α| ≤ N, and for all |ω| ≤ τ,

and has power series expansion

H(z, ω) =

∞∑
|α|=N+1

∞∑
m=0

a(α,m)ω
mzα,
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which converges uniformly to H for all |z| < ν, |omega| < τ . Let Λ: Bτ ⊂ C → Ck
be a diagonal matrix of analytic functions on Bτ and suppose that there is a positive
µ∗ ∈ R so that

sup
|ω|≤τ

|Λ(ω)| ≤ µ∗ < 1.

Lemma (2.4) applies uniformly to ω ∈ Bτ . Defining (H ◦Λ)(z, ω) ≡ H(Λ(ω)z, ω), we
have that H ◦ Λ is an analytic N -tail in z for each fixed ω and

‖H ◦ Λ‖ν,τ ≤ (µ∗)N+1‖H‖ν,τ . (2.5)

Let

Hk,nν,τ =
{
H : Dν ×Bτ ⊂ Ck × C→ Cn | H is a one parameter family of bounded analytic N tails

}
.

We note that this is a Banach Space under the supremum norm.

2.4. Analytic Taylor Models. The following defines the fundamental data
structure needed in the sequel.

Definition 2.4. Let r > 0 and f : Br ⊂ C→ C be a bounded analytic function.
An M -th order Analytic Taylor Model of f consists of:

1. A polynomial with interval coefficients

fM (ω) =

M∑
m=0

amω
m,

having that

1

m!

dm

dωm
f(0) ∈ am,

for each 0 ≤ m ≤M .
2. A number δf > 0 so that

‖f − fM‖r ≤ δf .

We denote an analytic Taylor model by the triple (fM , r, δf ). Let fTM denote the
true M -th order Taylor polynomial for f and note that fTM ⊂ fM (meaning that each
coefficient of the Taylor polynomial is enclosed by the corresponding interval coeffi-
cient of the polynomial fM ). Then the “tail” of f is an analytic function hf : Br → C,
defined by hf ≡ f − fTM , and having ‖hf‖r ≤ δf . Indeed, hf is an analytic M -tail
and we have

f(ω) = fTM (ω) + hf (ω) ⊂ fM (ω) + hf (ω).

One could of course define multi-variable analytic Taylor models in an analogous
fashion, however Definition (2.4) is sufficient for the present work.

We now state without proof some elementary properties of analytic Taylor models.
More sophisticated operations are discussed in the user guide [55]. It is clear that
analytic Taylor models form a vector space, and it is clear that we can easily consider
vectors of analytic Taylor models.

Lemma 2.5 (Properties of Analytic Taylor Models). Let (fM , r, δ) be an analytic
Taylor model. Then for any f which is analytic on Br and which is enclosed by this
analytic Taylor model we have that
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(a) (Sup Bounds) ‖f‖r ≤
∑M
m=0 |am|rm + δ.

(b) (Model of a Sum) If (fM , r, δf ) and (gM , r, δg) are analytic Taylor models
on Br then (fM + gM , r, δf + δg) is an analytic Taylor model for f + g.

(c) (Bound Away From Zero) Suppose that τ > 0 has that

τ

M∑
m=1

|am|τm−1 + δ ≤ |a0|.

Let C̃ be defined by

|a0| − τ
M∑
m=1

|am|τm−1 − δ ≡ C̃.

Then ∥∥∥∥ 1

f

∥∥∥∥
τ

≤ 1

C̃
.

(d) (Analytic Taylor Model of the Derivative) For any 0 < σ ≤ 1 we have
that

‖f ′‖re−σ ≤
M−1∑
m=0

(m+ 1)|am+1|rm +
2π

σr
δf ,

by applying the Cauchy Bounds of Lemma (2.1). It follows that (f ′M−1, re−σ,
2πδf/σr) is an analytic Taylor model for f ′. (Note that the domain of the
new analytic Taylor model is reduced by a factor of e−σ, the order of the
polynomial approximation is reduced by one, and the bound on the truncation
error is inverse proportional to the “loss of domain” parameter σ.

We also note that integrals of analytic Taylor Models can be defined in the obvious
way, however we have no need for these in the present work.

Remark 2.6 (Taylor versus Analytic Taylor Models). Note that it is Lemma
2.5(c) which exploits the analytic category and justifies the specialized definitions of
this section. A brief technical remark is in order. We note that the standard no-
tion of Taylor Models are not usually required to have interval coefficients. Instead
the coefficients are floating point numbers and the round off errors associated with
operations between Taylor Models are reallocated into the error bound via a pro-
cess referred to as “shrink wrapping” [41]. Shrink wrapping is a powerful tool for
controlling the so called wrapping effect which tends to inflate the truncation term
when a Taylor Model is propagated forward in time under some dynamical system.
On the other hand shrink wrapping involves a sort of loss of regularity (or loss of
information about derivatives) and in this regard it is clear why a standard C0 Taylor
Model should not be differentiated. In the standard formulation the tail term contains
continuous functions which are not differentiable.

3. Operator Equations on the Space of One Parameter Families of An-
alytic N-Tails.
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3.1. Two Linear Equations. We now consider certain linear equations onHk,nν,τ
which play a critical role in the a-posteriori truncation error analysis developed in
Section (4.6.1). In the following discussion we take A to be an n × n matrix of
analytic functions aij : Dν×Bτ ⊂ Ck×C→ Cn. We assume that A(z, ω) is invertible
for each |z| ≤ ν, |ω| ≤ τ and that A(0, ω) is diagonalizable for each |ω| < τ . We let
λi : Bτ → C with 1 ≤ i ≤ n denote parameterizations of the eigenvalues of A(0, ω).
We assume that the eigenvalues vary analytically for ω ∈ Bτ and that there are no
bifurcations.

Take Q : Bτ → Matn×n(C) to be a parameterization of the diagonalizing trans-
formation for A(0, ω). Then if we denote by Σ: Bτ → Matn×n(C) the matrix with
λi(ω) as diagonal entries and zeros elsewhere then we have

A(0, ω) = Q(ω)Σ(ω)Q−1(ω),

for each ω ∈ Bτ . Note that for each ω ∈ Bτ the columns of Q(ω) are eigenvectors for
A(0, ω).

Suppose that for each ω ∈ Bτ the matrix A(0, ω) is hyperbolic in the sense of
maps. We have already supposed that there are no eigenvalue bifurcations on Bτ ,
so the stability of A(0, ω) does not change on Bτ . Then there are k ≤ n stable
eigenvalues. We order the eigenvalues so that the stable ones come first, i.e. we
require that 0 < |λi(ω)| < 1 for 1 ≤ i ≤ k. Let Λ(ω) denote the k × k matrix
having the stable eigenvalues λi(ω) for 1 ≤ i ≤ k as diagonal entries and zeros as the
off-diagonal entries.

Theorem 3.1 (Parameterization Co-Homological Equation for Maps). Consider
the linear operator on Hk,nν,τ given by

Lmaps[H](z, ω) = A(z, ω)H(z, ω)−H[Λ(ω)z, ω]. (3.1)

Assume that there are 0 < µ∗ < 1 and M > 0 so that

max
1≤i≤k

sup
|ω|≤τ

|λi(ω)| ≤ µ∗,

and

sup
|ω|≤τ

sup
|z|≤ν

|A−1(z, ω)| ≤M.

Assume in addition that N is any integer large enough that

M(µ∗)N+1 < 1. (3.2)

Then Lmaps is boundedly invertible. Moreover we have that

‖L−1
maps‖Hk,nν,τ ≤

M

1−M(µ∗N+1)
. (3.3)

Proof: Let E ∈ Hk,nν,τ and consider the equation

A(z, ω)H(z, ω)−H[Λ(ω)z, ω] = E(z, ω).
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Inverting the linear operator (3.1) is equivalent to solving the equation above for any
such E. We rewrite as

H(z, ω)− L[H](z, ω) = [(I − L)H] (z, ω)

= A−1(z, ω)E(z, ω), (3.4)

where L : Hk,nν,τ → Hk,nν,τ is the linear operator defined by

L[H](z, ω) = A−1(z, ω)H[Λ(ω)z, ω].

Using the estimate given by Equation (2.5) we have that

sup
‖H‖=1

‖L[H]‖(ν,τ) ≤ sup
‖H‖=1

‖A−1[H ◦ Λ]‖(ν,τ)

≤ sup
‖H‖=1

‖A−1‖(ν,τ)‖H ◦ Λ‖(ν,τ)

≤ sup
‖H‖=1

M(µ∗)N+1‖H‖(ν,τ)

< 1.

Then the Neumann Theorem gives that the operator defined by the left hand side of
Equation (3.4) is boundedly invertible so that

H(z, ω) =
[
(I − L)−1A−1E

]
(z, ω),

is the desired solution. In addition the Neumann Theorem gives

‖H‖(ν,τ) ≤
M

1− (µ∗)N+1M
‖E‖(µ,τ).

Let L−1(E) ≡ H and take the sup over all E with norm one in order to obtain

‖L−1
maps‖Hk,nν,τ ≤

M

1− (µ∗)N+1M
,

as desired.

�

For the case of differential equations suppose that for each ω ∈ Bτ the matrix
A(0, ω) is hyperbolic in the sense of differential equations. Since we assume that there
are no eigenvalue bifurcations on Bτ , we have that the stability of A(0, ω) does not
change on Bτ . Then there are k ≤ n stable eigenvalues. We order the eigenvalues so
that the stable ones come first, i.e. we require that real [λi(ω)] < 0 for 1 ≤ i ≤ k. Let
Λ(ω) denote the k × k matrix having the stable eigenvalues λi(ω) for 1 ≤ i ≤ k as
diagonal entries and zeros as the off-diagonal entries.

Theorem 3.2 (Parameterization Co-Homological Equation for Vector Fields).
Consider the linear operator on Hk,nν,τ defined by

Lflows[H](z, ω) = D1H(z, ω) Λ(ω)z −A(z, ω)H(z, ω). (3.5)

Assume that M1, M2, µ∗, and µ∗ are positive real constants having that

0 < µ∗ ≤ min
1≤i≤k

inf
|ω|≤τ

|real[λi(ω)]| ≤ max
1≤i≤k

sup
|ω|≤τ

|real[λi(ω)]| ≤ µ∗ <∞, (3.6)
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and that

‖Q‖τ‖Q−1‖τ ≤M1, (3.7)
∞∑
|α|=1

∞∑
m=0

|A(α,m)|
µ∗|α|

τmν|α| ≤M2. (3.8)

Assume in addition that N is any positive integer large enough that

(N + 1)µ∗ ≥ µ∗. (3.9)

Then Lflows is a boundedly invertible linear operator with

∥∥∥L−1

flows

∥∥∥
Hk,nν,τ

≤ M1e
M2

(N + 1)µ∗ − µ∗
. (3.10)

Proof: Let E ∈ Hk,nν,τ and note that inverting the operator given by Equation (3.5)
is equivalent to solving the equation

D1H(z, ω) Λ(ω)z −A(z, ω)H(z, ω) = E(z, ω), (3.11)

for arbitrary E. We make a change of variables z → eΛ(ω)tz and define the analytic
N -tails

x(t) = H
(
eΛ(ω)tz, ω

)
, and E(t) = E

(
eΛ(ω)tz, ω

)
,

and the matrix of analytic functions

A(t) = A
(
eΛ(ω)tz, ω

)
.

Consider the ordinary differential equation

d

dt
x(t)−A(t)x(t) = E(t), (3.12)

and note that if x(t) solves Equation (3.12) the x(0) solves Equation (3.11). We define
the integrating factor

C(t) = exp

(
−
∫ t

0

A(s) ds

)
,

and have that

x(t) = −C−1(t)

∫ ∞
t

C(s)E(s) ds,

solves Equation (3.12). Taking the limit as t→ 0 we define

L−1[E](z, ω) = H(z, ω) = x(0) = −
∫ ∞

0

C(s)E(s) ds,

as the solution of Equation (3.11). The fact that H is an one parameter of analytic
N -tails follows from the fact that E is.
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In order to obtain bounds on L−1 we first note by the definition of µ∗ given in
Equations (3.6) we have that ∣∣∣eΛ(ω)tz

∣∣∣ ≤ e−µ∗t|z|,
for all t > 0, ω ∈ Bτ , and z ∈ Dν . Then, since E is a one parameter family of analytic
N -tails, the estimates of Equations (2.5) give that

|E(t)| ≤
∥∥∥E [eΛ(ω)tz, ω

]∥∥∥
ν,τ
≤ e−(N+1)µ∗t‖E‖ν,τ . (3.13)

In order to bound the integrating factor we observe that

−
∫ t

0

A(s) ds = −
∫ t

0

∞∑
|α|=0

∞∑
m=0

A(α,m)ω
m
[
eΛ(ω)sz

]α
ds

= −
∞∑
|α|=0

∞∑
m=0

A(α,m)ω
m

(∫ t

0

e〈Λ(ω),α〉s ds

)
zα

= Q(ω)[−Σ(ω)t]Q−1(ω)−
∞∑
|α|=1

∞∑
m=0

A(α,m)
1− e〈Λ(ω),α〉t

|〈Λ(ω), α〉|
ωm zα ds,

as the sums are uniformly bounded. Then

‖C(t)‖ ≤ ‖Q‖τ‖Q−1‖τ exp(µ∗t) exp

 ∞∑
|α|=1

∞∑
m=0

|A(α,m)|M
µ∗|α|

 ≤M1e
M2eµ

∗t.

We note that 〈Λ(ω), α〉 is never zero for |α| ≥ 1 by the assumption that the eigenvalues
are non-zero for ω ∈ Bτ . Combining this with the estimate of Equation (3.13) as well
as the assumption given by Equation (3.9) we obtain∥∥∥L−1

flows
[E]
∥∥∥
Hk,nν,τ

≤
∥∥∥∥−∫ ∞

0

C(t)E(t)dt

∥∥∥∥
≤M1e

M2

∫ ∞
0

e−[(N+1)µ∗−µ∗]t‖E‖ν,τ dt

≤ M1e
M2

(N + 1)µ∗ − µ∗
‖E‖ν,τ .

Taking the sup over all E with norm one gives the estimate claimed in Equation
(3.10).

�

3.2. A Nonlinear Operator Equation on Hk,nν,τ . Let L be a linear operator

defined on Hk,nν,τ . Assume in addition that L is boundedly invertible and let E ∈
Hk,nν,τ be a fixed one parameter family of bounded analytic N -tails. Suppose that

T : Ds × Dν × Bτ ⊂ Cn × Ck × C → Cn, with k < n is analytic in all variables.
Further we impose the condition that T is zero to second order at the origin in
it’s first variable and uniformly bounded in the remaining variables. More precisely
suppose that there are M1,M2 > 0 so that for any 0 < δ < s we have
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R1:

sup
|ω|≤τ

sup
|θ|≤ν

sup
|z|≤δ

|T (z, θ, ω)| ≤M1δ
2,

R2:

sup
|ω|≤τ

sup
|θ|≤ν

sup
|z|≤δ

|DT (z, θ, ω)|M ≤M2δ.

Given such T , E, and L we are interested in the equation

L[H](θ, ω) = E(θ, ω) + T [H(θ, ω), θ, ω] = 0, (3.14)

on Hk,nν,τ . The next theorem provides conditions under which we can uniquely solve
the equation, as well as bounds on the resulting solution.

Theorem 3.3. Let T : Ds×Dν×Bτ ⊂ Cn×Ck×C→ Cn be an analytic function
which together with M1,M2 > 0 satisfying the estimates of R1-R2. Let E ∈ Hk,nν,τ be
a fixed one parameter family of bounded analytic N -tails with ‖E‖ν,τ ≤ ε. Let L be a
boundedly invertible linear operator with ‖L−1‖Hk,nν,τ ≤ C. Suppose that 0 < δ < s has

that

CM1δ
2 − δ + Cε ≤ 0, (3.15)

and

CM2δ < 1. (3.16)

Then equation (3.14) has a unique solution H ∈ Hk,nν,τ with ‖H‖ν,τ ≤ δ.
If we think of ε as a “small parameter” then the theorem is saying that when ε is

small enough we can solve Equation (3.14).

Proof: Since L is invertible we define the nonlinear operator Φ: Hk,nν,τ → Hk,nν,τ by

Φ[H](θ, ω) = L−1[E(θ, ω) + T (H(θ, ω), θ, ω)],

and note that H is a solution of Equation (3.14) if and only if H is a fixed point of
Φ. Let

Uδ =
{
H ∈ Hk,nν,τ | ‖H‖ν,τ ≤ δ

}
,

and note that Uδ is a complete space. Then the theorem is established as soon as we
show that Φ is a contraction mapping on Uδ. First we take H ∈ Uδ and consider

‖Φ[H]‖ν,τ ≤ ‖L−1‖Hk,nν,τ (‖E‖ν,τ + ‖T [H]‖ν,τ )

≤ C(ε+M1δ
2)

≤ δ,

by R1 and (3.15). Then Φ maps Uδ into itself.
Now let H1, H2 ∈ Uδ. By hypothesis we have that δ < s and we apply the mean

value theorem to obtain that

‖Φ(H1)− Φ(H2)‖ν,τ ≤ ‖L−1‖Hk,nν,τ ‖T (H1)− T (H2)‖ν,τ
≤ ‖L−1‖Hk,nν,τ sup

H∈Uδ
‖DT (H)‖Hk,nν,τ ‖H1 −H2‖ν,τ

≤ C sup
|ω|≤τ

sup
|θ|≤ν

sup
|z|≤δ

‖DT (z, θ, ω)‖M‖H1 −H2‖ν,τ

≤ CM2δ‖H1 −H2‖ν,τ ,
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by R2. That Φ is a contraction follows from Equation (3.16).

�

The previous theorem allows us to solve certain non-linear operator equations
which arise when we study the second order Taylor expansion of an analytic function
about an analytic sub-manifold. To this end let f : Dρ(p0) × Bτ ⊂ Cn × C → Cn,
denote a one parameter family of analytic dynamical systems, and P : Dν × Bτ ⊂
Ck×Bτ → Cn with k < n be an analytic function with image(P ) ⊂ Dρ′(p0) for some
ρ′ < ρ. Then for each ω ∈ Bτ , P (·, ω) parameterizes an analytic sub-manifold which
is contained in the interior of Dρ′(p0), the domain of f(·, ω). In fact the image of P
is bounded away from the boundary of the domain of f by a know amount ρ − ρ′,
uniformly in ω.

Choose ω ∈ Bτ , z ∈ Dρ′(p0), and let s = ρ − ρ′. Then for any η ∈ Ds ⊂ Cn we
have

f(z + η, ω) = f(z, ω) +Df(z, ω)η + R̃(η, z, ω) (3.17)

where R̃ : Ds → C is analytic and |R(η, z, ω)|/|η| → 0 as |η| → 0. In fact, since
ρ− |z| < s for any z ∈ Dρ′(p0) (uniformly in ω) we have that R̃ : Ds×Dρ′(z)×Bτ ⊂
Cn × Cn × C → Cn is an analytic function in all variables, and since image(P ) ⊂
Dρ′(p0) the function R̃P : Ds ×Dν ×Bτ ⊂ Cn × Ck × C→ Cn defined by

R[η, θ, ω] = R̃[η, P (θ, ω), ω], (3.18)

is analytic in all variables. R is the second order Taylor remainder of f expanded
about the image of P , uniformly in the parameter ω. If we stipulate some uniform
bounds on the second derivatives of f in Dρ(p0) then R satisfies assumptions R1-R2
of Theorem (3.3). This discussion is formalized in the following theorem.

Note that in order to satisfy R1-R2 we need bounds on both R and it’s first
derivative. While a standard Lagrange remainder argument gives bounds on the
supremum of R in terms of derivatives of f , we use the Cauchy Estimates of Lemma
(2.1) in order to obtain bounds on the derivatives. This requires giving up some
portion of the domain Ds ⊂ Cn, and accounts for the appearance of a factor of e−1s
in the theorem. Also note that in the following theorem we exploit the fact that some
of the second partial derivatives of f may be zero with respect to both z and ω. This
is a problem dependent consideration which improves our bounds in practice.

Corollary 3.4. Suppose that the linear operator L defined on Hk,nν,τ is boundedly
invertible linear operator with ‖L−1‖Hk,nν,τ ≤ C. Suppose that f : Dρ(p0)×Bτ ⊂ Cn ×
C→ Cn is a bounded family of analytic functions, that ρ′ < ρ and that P : Dν×Bτ ⊂
Ck × C→ Cn with k < n is analytic with |P (θ, ω)− p0| ≤ ρ′ for all ω ∈ Bτ , θ ∈ Dν .
Let s = ρ− ρ′.

Define M1 to be the number of second partial derivatives of f(z, ω) which are not
identically zero (with respect to both z and ω), so more explicitly M1 ≤ n2 is given by

M1 = max
1≤j≤n

card
({
β ∈ Nn||β| = 2 and ∂β1 fj(z, ω) 6≡ 0

})
. (3.19)

Suppose in addition that M2 is any bound of the form

sup
|ω|≤τ

sup
|p0−z|≤ρ

max
1≤i≤n

max
|β|=2

|∂β1 fi(z, ω)| ≤M2.

21



Assume that E ∈ Hk,nν,τ with ‖E‖ν,τ < ε and that 0 < δ < e−1s is a positive number
with

CM1M2δ
2 − δ + Cε ≤ 0, (3.20)

and

2πenCM1M2δ < 1. (3.21)

Let R : Dse−1 ×Dν ×Bτ ⊂ Cn ⊂ ×C→ Cn be defined by

R(η, θ, ω) = R̃(η, P (θ, ω), ω) for all η ∈ De−1s, θ ∈ Dν , ω ∈ Bτ ,

where R̃ second order Taylor remainder of f in Dρ′(p0) as defined in defined Equations
(3.17), and R is its restriction to the image of P . Then the equation

L[H](θ, ω) = E(θ, ω) +R[H(θ, ω), θ, ω],

has a unique solution H ∈ Uδ.

Proof: Fix (θ, ω) ∈ Dν × Bτ , z = P (θ, ω) ∈ Dρ′(p0), and take R̃(η, z, ω) to be
as defined in Equation (3.17). For any η ∈ Ds the Lagrange form of the Taylor
Remainder gives the bound

|R(η, z, ω)| ≤ max
1≤i≤n

∣∣∣∣∣∣
∑
|β|=2

2

β!
ηβ
∫ 1

0

(1− t)∂β1 fi(z + tη, ω) dt

∣∣∣∣∣∣
≤ max

1≤i≤n

∑
|β|=2

2

β!
|η||β|

∫ 1

0

(1− t)|∂β1 fi(z + tη, ω)| dt

≤ max
1≤i≤n

(
sup
|ω|≤τ

sup
|w−p0|≤ρ

∂β1 |fi(w,ω)|

)
M1s

|β|

≤M1M2s
2.

Now suppose that h ∈ Dδ and define Define ηh ∈ Ds by

h =
δ

s
ηh.

Since R(·, z, ω) and its first partial derivatives are zero at the origin, R(·, z, ω) is
analytic in all variables and is an analytic 2-tail in it’s first variable. (These claims
are established via Morera’s theorem and the Leibniz rule). Lemma (2.4) yields

|R(h, z, ω)| =
∣∣∣∣R(δsηh, z, ω

)∣∣∣∣
≤ δ2

s2
|R (ηh, z, ω)|

≤ δ2

s2
M1M2s

2

= M1M2δ
2. (3.22)
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Let H : Dν × Bτ → Cn be a one parameter family of bounded analytic N -tails
with ‖H‖ν,τ ≤ δ. Since the bound of Equation (3.22) is uniform with respect to z,
and since P (θ, ω) ∈ Dρ′(p0) for all θ ∈ Dν and ω ∈ Bτ we have that

sup
|ω|≤τ

sup
|θ|≤ν

|R[H(θ, ω), θ, ω]| = ‖R̃[H(θ, ω), P (θ, ω), ω]‖ν,τ ≤M1M2δ
2,

so R satisfies R1.
In order to bound the derivative R we again take z = P (θ, ω) with θ ∈ Dν and

ω ∈ Bτ , and now consider only 0 < δ < e−1s. For any 0 < σ ≤ 1 define t = δ/(se−σ).
Let h ∈ Dδ(z). Then define h = tη̂h with η̂h ∈ De−σs. Since DR̃(·, z, ω) is a matrix
whose entries have constant term equal to zero (with respect to the first variable) we
have that ∣∣∣DR̃ (tη̂h, z, ω)

∣∣∣
M
≤ t
∣∣∣DR̃ (η̂h, z, ω)

∣∣∣
M

≤ δ

se−σ
sup

|η|=e−σs
|DR̃(η̂h, z, ω)|M

≤ δeσ

s

(
2πn

sσ
sup
|η|=s

|R(η̂h, z, ω)|

)

≤ δ 2πneσ

σs2
M1M2s

2, (3.23)

where we pass from line two to line three using the Cauchy Bound Lemma (2.1).
Let H ∈ Hk,nν,τ with ‖H‖ν,τ ≤ δ. We observe that the estimate of Equation (3.23)

is uniform in z, that P (θ, ω) ∈ Dρ′(p0), and that δ < e−1s. We also note that the
estimate given by Equation (3.23) holds for all 0 < σ ≤ 1 and that eσ/σ is minimized
at σ = 1. Then we have the desired estimate

sup
|ω|<τ

sup
|θ|<ν

‖DR[H(θ, ω), θ, ω]‖M ≤ 2πenM1M2δ,

and R satisfies R2 as well. Then the hypothesis of Equations (3.20) and (3.21) give
that the bounds required by Equations (3.15) and (3.16) in the hypotheses of Theorem
(3.3) apply. The corollary follows.

�

4. Parameterized Families of Invariant Manifolds.

4.1. Review of Formal Computation of Taylor Coefficients at a Single
Fixed Parameter. Before we move on to the formalism for polynomial approxima-
tions of one parameter families of invariant manifolds it is highly instructive to recall
the basic steps for the formal the computations at a single fixed parameter value. As
discussed in the Introduction of the present work, the problem of finding a parame-
terization of the stable/unstable manifold of a fixed vector field f is equivalent to the
problem of solving the partial differential equation

f [P (θ)] = DP (θ)Λθ, (4.1)

under the constraints that P (0) an equilibria and that DP (0) the matrix of sta-
ble/unstable eigenvectors. Here Λ is a numerical matrix of fixed complex numbers.
(Namely the stable or unstable eigenvalues of the differential at the equilibria).
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Moreover it is shown in [13, 15] that (under mild non-degeneracy conditions which
are recalled momentarily) the coefficients aα for |α| ≥ 2 of the power series solution
P (θ) =

∑∞
|α|=0 aαθ

α themselves solve the homological equation

[Df(p0)− (α1λ1 + . . .+ αkλk)Idn]aα = sα. (4.2)

The equation is derived by a power matching scheme, and sα is a nonlinear function
of the the coefficients aα′ with |α′| < |α|. The from of the nonlinearity depends on
the nonlinearity of f . Then Equation (4.2) is a matrix equation whose only unknown
is aα. For the specific example of the Lorenz system, an explicit formula the sα
associated with the two dimensional invariant manifolds of an equilibria is given by

s(n1,n2) =
∑

0<k+j<n1+n2

 0
a1

(n1−j,n2−k) a
3
(j,k)

−a1
(n1−j,n2−k) a

2
(j,k)

 , (4.3)

for all two dimensional multi-indices (n1, n2) with n1 +n2 ≥ 2. See [29] for the details.
Similarly a parameterization of the stable/unstable manifold of a fixed point of a

diffeomorphism f solves the problem

f [P (θ)] = P (Λθ), (4.4)

with P (0) an equilibria and DP (0) the matrix of stable/unstable eigenvalues. Again
under mild non-degeneracy conditions, the coefficients aα for |α| ≥ 2 of the power
series solution P (θ) =

∑∞
|α|=0 aαθ

α solve the homological equation

[Df(p0)− (λα1
1 · . . . · λ

αk
k )Idn]aα = sα. (4.5)

Again sα is a non-linear function of the the coefficients aα′ with |α′| < |α|. For the
Hénon map one can work out that the homological equation for a stable/unstable
manifold is (

−2aa1
0 − λn 1
b −λn

)[
a1
n

a2
n

]
=

[
a
∑n−1
k=1 a

1
n−ka

1
k

0

]
. (4.6)

The explicit derivation of this equation is found in [27].

The following lemmas provide conditions under which we can define (at least for-
mally) the chart maps parameterizing the stable/unstable manifolds discussed above.
In other words we desire conditions under which we can solve the homological equa-
tions for every multi-index of order |α| ≥ 2. The proofs of the lemmas follow immedi-
ately from the discussion above (see also [13, 5, 54, 42]). The idea is that the left hand
sides of the homological equations are characteristic equations for the differential at
the fixed point/equilibria. Then the coefficient aα fails to be defined if and only if
the sum (α1λ1 + . . . + αkλk) (for flows) or the product λα1

1 · . . . · λ
αk
k (for maps) is

itself equal to an eigenvalue. Should equality occur for some multi-index α ∈ Nk,
|α| ≥ 2 we say that there is a resonance of order α. Since λ1, . . . , λk are eigenvalues
of like stability, there are only a finite number of possible resonances, and no “small
divisors”. (This is in contrast to the situation in KAM/normal form theory where
one encounters homological equations where λ1, 1 ≤ i ≤ k may be a set eigenvalues
of mixed or elliptic stability).
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Lemma 4.1 (Existence of a Formal Solution of Equation (4.1)). Assume that
p0 is an equilibria of an analytic vector field f and that Df(p0) is hyperbolic. Let
λ1, . . ., λk, λk+1, . . ., λn be the eigenvalues of Df(p0) and suppose that the first k
eigenvalues are stable and the remaining n− k eigenvalues are unstable (in the sense
of differential equations). Define

µ∗ = min
1≤i≤k

|real(λi)|, and µ∗ = max
1≤i≤k

|real(λi)|.

Assume that for each α ∈ Nk with 2 ≤ |α| ≤ dµ∗/µ∗e we have that the non-resonance
condition

α1λ1 + . . .+ αkλk 6= λi, 1 ≤ i ≤ k,

holds. Then the solution of Equation (4.1) is formally well defined to all orders.

Lemma 4.2 (Existence of a Formal Solution of Equation (4.4)). Assume that p0

is a fixed point of an analytic diffeomorphism f and that Df(p0) is hyperbolic. Let
λ1, . . ., λk, λk+1, . . ., λn be the k stable and n − k unstable (in the sense of maps)
eigenvalues of Df(p0). Define

µ∗ = min
1≤i≤k

|λi| and µ∗ = max
1≤i≤k

|λi|.

Assume that for each α ∈ Nk with 2 ≤ |α| ≤ dln(µ∗)/ ln(µ∗)e we have that the non-
resonance condition

λα1
1 · . . . · λ

αk
k 6= λi, 1 ≤ i ≤ k,

holds. Then the solution of Equation (4.4) is formally well defined to all orders.

Remarks 4.3.
(A) (Unstable Manifold Parameterization) When considering the parame-

terization of an unstable manifold for differential equations, we apply Lemma
(4.1) to −f . Since −f has differential −Df(p0) the unstable eigenvalues of f
become the stable eigenvalues of −f at the same equilibria. Similarly when
considering the parameterization of an unstable manifold for diffeomorphisms,
we apply Lemma (4.2) to f−1. We have that Df−1(p0) = [Df(p0)]−1, and
since the differential is diagonalizable it follows that the reciprocals of the
unstable eigenvalues of Df(p0) become the stable eigenvalues of Df−1(p0).

(B) (Systems With a Single Stable/Unstable Direction) Suppose that k =
1 so that the system has only one stable eigendirection, and hence the stable
manifold is one dimensional. Then the multi-indices are one dimensional (i.e.
α = n ∈ N ) and Equations (4.2) and (4.5) reduce to

[Df(p0)− nλId]an = sn, and [Df(p0)− λnId]an = sn,

respectively. Then since n ≥ 2 and λ is the only stable eigenvalue it is
impossible to have either nλ = λ (in the case of differential equations) or
λn = λ (in the case of maps). We conclude that in the case of one stable
direction there are never resonances, and the parameterizations are formally
defined to all orders. A similar remark holds for the case of a singe unstable
direction.
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(C) (Real Systems With a Single Complex Stable/Unstable Direction)
Similarly if f is real, k = 2, and λ1 is complex, then it follows that λ2 = λ̄1.
Considering a two dimensional multi-index α = (n1, n2) ∈ N2 we see that
both n1λ1 +n2λ̄1 = λ1,2 (for differential equations) and λn1

1 · λ̄1
n2 = λ1,2 (for

maps) are impossible. So here again there are no possible resonances.

4.2. Formal Solution of Equation (1.3) for the Hénon Map. In this sec-
tion we develop the homological equation which defines the power series coefficients
of the solution of Equation (1.3). These homological equations allow us to compute
interval enclosures of the Taylor expansion PMN to any desired order N in the dy-
namical variables, and M in the parameter.

Consider again the Hénon Family at the classical parameter values. At ω = 0
choose p0 one of the maps two fixed points and let λ0 and ξ0 be the stable eigenvalue
and associated eigenvector of Df(p0, 0). Computation of analytic Taylor Models for

p(ω) =

∞∑
m=0

pmω
m, λ(ω) =

∞∑
m=0

λmω
m and ξ(ω) =

∞∑
m=0

ξmω
m,

is discussed in detail in [55]. There we also find methods for computing analytic
Taylor models for the inverse of the diagonalizing transformation

Q−1(ω) =

∞∑
m=0

Qmω
m,

(where Q(ω) is just the matrix whose columns are the analytic Taylor models of the
eigenvectors), and also the powers

[λ(ω)]n =

∞∑
m=0

λ(m,n)ω
m,

for each 1 ≤ n ≤ N .

As mentioned in the Introduction (and proved in [15]) there exists an analytic
branch of parameterizations P (θ, ω) for the invariant stable/unstable manifold at p0.
We denote its unknown power series by

P (θ, ω) =

∞∑
n=0

∞∑
m=0

p(m,n)θ
nωm.

For the Hénon family, the invariance equation reduces to

f [P (θ, ω), ω] = P [λ(ω)θ, ω]. (4.7)

By imposing the linear constraints given by Equation (1.4) we have that p(m,0) = pm,
p(m,1) = ξm.

The coefficients p(0,n) are the coefficients of the parameterization when ω = 0.
These are computed by solving the homological equation for the Hénon map given by
Equation (4.6). We obtain the equations for the coefficients p(mn) when n ≥ 2,m ≥ 1
by plugging the unknown power series representation for P into Equation (4.7) and
matching like powers of ω and θ.

26



We expand the right hand side of Equation (4.7) and obtain

P [λ(ω)θ, ω] =

∞∑
n=0

pn(ω)[λ(ω)]nθn

=

∞∑
n=0

( ∞∑
m=0

p(m,n)ω
m

)( ∞∑
m=0

λ(m,n)ω
m

)
θn

=

∞∑
n=0

∞∑
m=0

m∑
k=0

λ(m−k,n)

[
p1

(k,n)

p2
(k,n)

]
ωmθn. (4.8)

Expanding the left hand side of Equation (4.7) as a power series gives

f [P (θ, ω), ω] =

[
1 + P2(θ, ω)− a[P1(θ, ω)]2

(b+ ω)P1(θ, ω)

]
,

which we expand component-wise to obtain

f [P (θ, ω), ω]1 = 1 +

∞∑
n=0

∞∑
m=0

p2
mnθ

nωm

−
∞∑
n=0

∞∑
m=0

n∑
k=0

m∑
j=0

a p1
(m−j,n−k)p

1
(j,k)θ

nωm, (4.9)

and

f [P (θ, ω), ω]2 =

∞∑
n=0

∞∑
m=0

bp1
mnω

mθn +

∞∑
n=0

∞∑
m=1

p1
(m−1,n)ω

mθn. (4.10)

Now we equate the power series expressions for the left and right hand sides, match
like powers, and isolate the highest order terms to obtain the homological equation[

−2ap1
(00) − λ

n
0 1

b λn0

] [
p1

(m,n)

p2
(m,n)

]
=

[
s1

(m,n)

s2
(m,n)

]
, (4.11)

where

s1
(m,n) =

m−1∑
j=0

λ(m−j,n)p
1
(j,n) +

n∑
k=0

m∑
j=0

a δ(m−j,n−k)δ(j,k) p
1
(m−j,n−k)p

1
(j,k),

with

δ(i,`) =

{
0 if i = ` = 0,
1 otherwise

and

s2
(m,n) = −p1

(m−1,n) +

m−1∑
j=0

λ(m−j,n)p
2
(j,n),

for n ≥ 2,m ≥ 1. Note that the δ(i,j) is not the usual Kronecker delta, but that

ours could be written as δ(i,j) = δkr
(i,j,0) where δkr is the usual Kronecker delta. The

purpose of this factor is to ‘zero out’ the terms which have been ‘moved to the other
side of the equation’, namely the zeroth order terms.
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4.3. Formal Solution of Equation (1.1) for the Lorenz System. We illus-
trate the formal computation for the one parameter branch of two dimensional stable
manifolds based at the origin of the Lorenz System. Let

P (θ, ω) = P (θ1, θ2, ω) =

∞∑
n1=0

∞∑
n2=0

∞∑
m=0

p(m,n1,n2)ω
mθn1

1 θn2
2 ,

denote the parameterization of the one parameter branch of two dimensional stable
manifolds through the origin. Then P satisfies the functional equation

f [P (θ1, θ2, ω), ω] = [D1P (θ1, θ2, ω)]Λ(ω)

[
θ1

θ2

]
,

where

Λ(ω) =

[
λ1(ω) 0

0 λ2(ω)

]
=

∞∑
m=0

[
λ1
m 0
0 λ2

m

]
ωm.

Since the origin is a fixed point for all ω the series expansion of p(ω) is trivial to all
orders. Moreover since we take β > 0, we have that λ1(ω) = −β and ξ1(ω) = (0, 0, 1)
are a stable eigenvalue/eigenvector pair for all ω. The remaining unstable eigen-
value/eigenvector pair λ2(ω) and ξ2(ω) do depend on ω. Computations of analytic
Taylor models for λ2(ω) and ξ2(ω) are discussed in the user guide [55]. For now note
that p(m,0,0) = 0 for all m ≥ 0, p(m,1,0) = ξm for all m ≥ 0, p(0,0,1) = ξ3 = (0, 0, 1),
and p(m,0,2) = 0 for all m ≥ 1.

The p(0,n1,n2) coefficients are the coefficients for the two dimensional manifold in
the ω = 0 system. These are computed using the homological equation (4.2) with
α = (n1, n2) a two dimensional multi-index and with the right hand side given by
Equation (4.3). What remains is to compute the coefficients p(n1,n2,m) for n1 +n2 ≥ 2
and m ≥ 1. As in the previous example for the Hénon map we compute a recursive
expression for the remaining coefficients by a power matching scheme and arrive at −σ − (n1λ

1
0 + n2λ

2
0) σ 0

ρ− a3
(00) −1− (n1λ

1
0 + n2λ

2
0) −a1

(00)

a2
(00) a1

(00) −β − (n1λ
1
0 + n2λ

2
0)


 p1

(m,n1,n2)

p2
(m,n1,n2)

p3
(m,n1,n2)



=

 s1
(m,n1,n2)

s2
(m,n1,n2)

s3
(m,n1,n2)

 , (4.12)

where

s1
(m,n1,n2) =

m−1∑
k=0

[
n1λ

1
m−k + n2λ

2
m−k

]
p1

(k,n1,n2)

s2
(m,n1,n2) = −p(m−1,n1,m2) +

m−1∑
k=0

[
n1λ

1
m−k + n2λ

2
m−k

]
p2

(k,n1,n2)
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+

n1∑
i=0

n2∑
j=0

m∑
k=0

p̄1
(m−k,n1−i,n2−j)p̄

3
(kij),

and

s3
(m,n1,n2) =

m−1∑
k=0

[
n1λ

1
m−k + n2λ

2
m−k

]
p3

(k,n1,n2) −
n1∑
i=0

n2∑
j=0

m∑
k=0

p̄1
(m−k,n1−i,n2−j)p̄

2
(k,i,j).

Here p̄i(j,k,`) = δ(j,k,`)p
i
(j,k,`) for i = 1, 2, 3 and,

δ(j,k,`) =

{
0 if j = k = l = 0,
1 otherwise.

(Again this is not precisely the Kronecker delta).

4.4. Analytic One Parameter Family of Non-Resonance Conditions:
Necessary Conditions for Convergence of the Formal Solutions. We note
that Equation (4.11), which is the homological equation defining the coefficients of
the one parameter branch of chart maps for the stable/unstable manifolds of the
Hénon map, has the form

[Df(p0)− λn0 Id]a(m,n) = ŝ(m,n),

where the characteristic matrix on the left-hand side is exactly the same matrix as
in the left hand side of the homological equation (4.6) for the coefficients of the
parameterization for the ω = 0 system. So while the right hand sides of Equations
(4.11) and (4.6) are different, we see that the coefficients of P (θ, ω) are well defined
under precisely the same conditions given in Lemma (4.2). We conclude that if the
eigenvalues of the ω = 0 system are non-resonant in the sense of Lemma (4.2), then
the formal series for the one parameter branch of parameterizations is well defined
to all orders. To put it another way: when we decide to compute a one parameter
branch of invariant manifolds we need impose no extra conditions in order that the
formal solution is well defined to all orders.

Similar comments are seen to apply for the Lorenz system by observing that the
matrix on the left-hand-side of the homological Equation (4.12) is the same matrix as
on the left-hand-side of the homological Equation for the ω = 0 system of differential
equations given by Equation (4.2). So again we see that the one parameter branch of
parameterizations is formally well defined under precisely the conditions of Lemma
(4.1).

These considerations give rise to an a-priori necessary condition on the radius of
convergence of the formal series defined above. Namely, for a one parameter branch
of invariant manifolds for differential equations we must find a τ > 0 so that

α1λ1(ω) + . . .+ αkλk(ω) 6= λi(ω),

for all 2 ≤ |α| ≤ dµ∗/µ∗e, 1 ≤ i ≤ k, and all ω ∈ Bτ . On the other hand, for a one
parameter branch of invariant manifolds for diffeomorphisms we must find a τ > 0 so
that

[λ1(ω)]α1 · . . . · [λk(ω)]αk 6= λi(ω),

for all 2 ≤ |α| ≤ dln(µ∗)/ ln(µ∗)e, 1 ≤ i ≤ k, and all ω ∈ Bτ .
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We focus for the moment on the case of differential equations. Consider the
analytic Taylor models

λi(ω) =
(
λiM (ω), τi, δi

)
, 1 ≤ i ≤ k,

for the eigenvalues at an equilibria of a one parameter family of analytic vector fields.
Then there is a resonance at the parameter ω̂ ∈ Bτ if and only if ω̂ has

α1λ1(ω̂) + . . .+ αkλk(ω̂)− λi(ω̂) = 0.

for some 2 ≤ |α| ≤ dµ∗/µ∗e. Under the assumptions of Lemma (4.1) we know that
ω̂ 6= 0. We now want to find a τ > 0 so that if ω ∈ Bτ then there are no solutions
for any multi-index α with 2 ≤ |α| ≤ dµ∗/µ∗e. We know that there is such a τ by the
implicit function theorem. However we require an explicit bound.

For any τ > 0 we define the quantities

bα(τ) ≡ min
1≤i≤k

inf
|ω|≤τ

|α1λ1(ω) + . . .+ αkλk(ω)− λi(ω)| .

Let λiM (ω) =
∑M
m=0 λ

i
mω

m, so that λim are the polynomial coefficients associated with
λi(ω). Then we have the bound

bα(τ) ≥ min
1≤i≤k

∣∣α1λ
1
0 + . . .+ αkλ

k
0 − λi0

∣∣−Bα(τ), (4.13)

where

Bα(τ) ≡ τ
M∑
m=1

∣∣α1λ
1
m + . . .+ αkλ

k
m − λim

∣∣ τm−1 + |α1δ1 + . . .+ αkδk + δi|.

If ∣∣α1λ
1
0 + . . .+ αkλ

k
0 − λi0

∣∣ > α1δ1 + . . .+ αkδk + δi, (4.14)

for each 1 ≤ i ≤ k, then there exists a τ > 0 so that bα(τ) > 0 for every α. If we can
find a τ > 0 for which all of the Equations (4.14) holds for each multi-index α with
2 ≤ |α| ≤ dµ∗/µ∗e, then there are no resonances on Bτ with this choice of τ .

Since in the present work we consider only the two dimensional Hénon map with
one stable and one unstable direction, there are no possible resonances. Then the
only restrictions on the parameter domain come from assumptions A1-A3(Maps);
namely we must choose a Bτ so that for all |ω| ≤ τ the differential is invertible and
there are no eigenvalue bifurcations. If we were to consider the secondary equilibria (or
“eyes”) of the Lorenz System near the classical parameters then again there would be
no possible resonances, as at the classic parameters the eyes have one stable direction
and one complex unstable direction, and again there are no possible resonances.

On the other hand when we consider the stable manifold associated with the
equilibria at the origin of the Lorenz System near the classical parameter values then
the eigenvalues are real distinct and we must rule out any possible resonances. An
numerical example is discussed in the user guide [55].

4.5. Validated Truncation Error for Coefficient Tails. Let

PMN (θ, φ) =

N∑
|α|=0

M∑
m=0

a(α,m)ω
mθα,
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be the approximate solution of Equation (1.1). In this section we are interested in
the error which is made when we approximate the full coefficients

aα(ω) =

∞∑
m=0

a(α,m)ω
m,

by its M -th order Taylor expansion

aMα (ω) =

M∑
m=0

a(α,m)ω
m.

The key to our argument is that aα(ω) is itself the solution of a certain operator
equation, namely the one parameter family of homological equations at the α order
given by

(Df [p(ω), ω]− (α1λ1(ω) + . . .+ αkλk(ω))Idn) aα(ω) = sα(ω), (4.15)

The following theorem provides the desired a-posteriori bounds on the truncation
error.

Theorem 4.4 (hα Bounds for Differential Equations). Assume that λi(ω), 1 ≤
i ≤ k are non-resonant on Bτ in the sense of differential equations. Assume that
(λMi , τ, δi), 1 ≤ i ≤ k, (sMα , τ, δs), and (pM , τ, δp) are analytic Taylor Models for the
functions λi, sα, and the fixed point branch p. Define δΛ = maxi δi. Additionally let
(AM , τ, δA) be an analytic Taylor model of the differential of f at p having

A(ω) = Df [p(ω), ω] = Df [pM (ω), ω] +HA(ω),

with AM = Df [pM (ω), ω] an M -th order polynomial in ω with matrix coefficients,
and ‖HA‖τ ≤ δA. Let Q(ω) be the matrix of eigenvectors for Df [p(ω), ω].

Suppose that Mα is any positive constant with

max
1≤i≤k

sup
|ω|≤τ

|λi(ω)− α1λ1(ω)− . . .− αkλk(ω)|−1 ≤Mα.

Let aMα (ω) be the M -th order solution of Equation (4.15) obtained by solving the
homological Equation (4.12). Define the a-posteriori error polynomial

EαM (ω) = sMα (ω)−
(
Df [pM (ω), ω]− (α1λ

M
1 (ω) + . . .+ αkλ

M
k (ω)Idn

)
aMα (ω),

and the total a-posteriori error bound

εα = ‖EαM‖τ + δs + (δA + |α|δΛ)‖aMα ‖τ .

Then there is a unique analytic M -tail hα : Bτ → Cn so that aMα + hα = aα is the
exact solution of Equation (4.15). Moreover we have the bound

‖hα‖τ ≤ ‖Q‖τ ‖Q−1‖τMαεα.

Proof: Let aα(ω) = aMα (ω) + hα(ω) where the function hα is to be determined. We
re-write Equation (4.15) as

(Df [pM (ω) + hp(ω), ω]− 〈ΛM (ω) +HΛ(ω), α〉 Id)
[
aMα (ω) + hα(ω)

]
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= sMα (ω) + hs(ω).

or

[Df [p(ω), ω]− 〈Λ(ω), α〉 Id]hα(ω) =

EαM + hs(ω)− [HA(ω)− 〈HΛ(ω), α〉 Id] aMα (ω). (4.16)

Let Ê(ω) denote the right hand side of Equation (4.16) and note that Ê is an analytic
M -tail with ‖Ê‖τ ≤ εα. Utilizing the diagonalizing transformation Q(ω) we have[

Q(ω)Σ(ω)Q−1(ω)− 〈Λ(ω), α〉 Id
]
hα(ω) = Ê(ω).

We now make the change of variables

Q(ω)wα(ω) = hα(ω),

and re-write the equation as

(Σ(ω)− 〈Λ(ω), α〉 Id)wα(ω) = Q−1(ω)Ê(ω),

which is diagonalized. Under the assumption that the eigenvalues are a non-resonant
branch, we obtain the component equations

[wα(ω)]j =
1

λj(ω)− α1λ1(ω)− . . .− αkλk(ω)
[Q−1(ω)Ê(ω)]j for 1 ≤ j ≤ n.

Then wα exists and is an analytic M -tail. Now since hα = Qwα and we see that hα
is an analytic M -tail as desired. Moreover we have the estimate

‖hα‖τ ≤ ‖Q‖τ max
1≤j≤n

sup
|ω|≤τ

∣∣∣∣ 1

λj(ω)− α1λ1(ω)− . . .− αkλk(ω)
[Q−1(ω)Ê(ω)]j

∣∣∣∣
≤ ‖Q‖τ‖Q−1‖τMαεα,

as desired.

�

Note that the Mα = 1/bα(τ), where bα(τ) is defined as in Section (4.4) is used to
obtain the Mα bounds in practice. Similar considerations apply for diffeomorphisms
and lead to the following theorem.

Theorem 4.5 (hα Bounds for Diffeomorphisms). Assume that λi(ω), 1 ≤ i ≤ k
are non-resonant on Bτ in the sense of diffeomorphisms. Assume that we have ana-
lytic Taylor model representations (λMi , τ, δi), 1 ≤ i ≤ k, (sMα , τ, δs), and (pM , τ, δp)
respectively for the functions λi, sα and the fixed point branch p. Define δΛ = maxi δi.
Let (AM , τ, δA) be an analytic Taylor model of the differential of f at p having

A(ω) = Df [p(ω), ω] = Df [pM (ω), ω] +HA(ω),

with ‖HA‖τ ≤ δA. We also assume that (ΛαM , τ, δΛα) is an analytic Taylor model for
the scalar function Λα(ω). Let Q(ω) be the matrix of eigenvectors of Df [p(ω), ω].
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Define

Mα = max
1≤i≤k

sup
|ω|≤τ

|λi(ω)− λα1
1 (ω) · . . . · λαkk (ω)|−1

.

Let aMα (ω) be the M -th order solution of Equation (4.15) obtained by solving the
homological equations. Define the a-posteriori error polynomial

EαM (ω) = sMα (ω)− (Df [pM (ω), ω]− ΛαM (ω)Idn) aMα (ω),

and the total a-posteriori error bound

εα = ‖EαM‖τ + δs + (δA + δΛα)‖aMα ‖τ .

Then there is a unique analytic M -tail hα : Bτ → Cn so that aMα + hα = aα is the
exact solution of Equation (??). Moreover we have the bound

‖hα‖τ ≤ ‖Q‖τ ‖Q−1‖τMαεα.

The proof is almost identical to the proof of Theorem (4.4.)
Remark 4.6 (Computational Cost of Computing δα). The theorems say that in

order to bound hα we must compute the a-posteriori error polynomial EαM , as well
as the sigma-norms of EαM and aMα . Note that the cost of computing EαM in both
cases is the cost of a Cauchy product of two polynomials of order M . The cost of
evaluating the sigma norms are the cost of an inner product.

4.6. A-Posteriori Analysis of The Full Truncation Error. In this section
we state and prove the main theorems of the paper; one theorem for flows and one
for maps. Throughout the section we take f , ρ, ν, p(ω), D1 f [p(ω), ω], k, λi(ω) and
ξi(ω) for 1 ≤ i ≤ k, Λ(ω), and A(ω) to be as in either A1-A3-flows or A1-A3-
maps from Section (1) depending on wether we are discussing differential equations
or diffeomorphisms. In either case we assume that that PN : Dν×Bτ ⊂ Ck×C→ Cn
is an N -th order polynomial in θ ∈ Dν(0) ⊂ Ck with coefficients analytic in the
variable ω ∈ Bτ (0) ⊂ C, so that PN has power series expansion

PN (θ, ω) =

N∑
|α|=0

aα(ω)θα =

N∑
|α|=0

∞∑
m=0

a(m,α)ω
mθα,

convergent on Dν×Bτ . Moreover suppose that PN satisfies the first order constraints

PN (0, ω) = p(ω), and D1PN (0, ω) = [ξ1(ω)| . . . |ξk(ω)].

Suppose that the power series of the differential

Df [PN (θ, ω), ω] =

∞∑
|α|=0

∞∑
m=0

A(α,m) ω
m θα,

also converges on Dν × Bτ . Take Q,Q−1 : Bτ ⊂ C→ Matn×n(C) to be the transfor-
mations which diagonalize Df [p(ω), ω]; i.e. Q is the matrix whose columns are all of
the stable and unstable eigenvectors, and Q−1 it’s inverse.

Finally, assume that PN solves either Equation (1.1) or Equation (1.3) in the case
of diffeomorphisms exactly to N -th order in the sense of power series: i.e. suppose
that the coefficients of PN are exact solutions of the homological equations for a
one parameter family of stable manifolds given by Equation (4.15) or its analogue
for diffeomorphisms. In the next two subsections we consider the bounds on the
remainder associated with PN .
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4.6.1. Differential Equations. Define the total a-posteriori error

EN (θ, ω) = f [PN (θ, ω), ω]−D1PN (θ, ω)Λ(ω)θ, (4.17)

for the case of vector fields.

Definition 4.1. [Validation Values for an N -th Order Solution of Equation
(1.1)] A set of positive real constants, ε, ρ′, µ∗, µ

∗, M1, M2, C1, and C2 are called
validation values for PN if

(i): ‖E‖ν,τ ≤ ε,
(ii):

min
1≤i≤k

inf
|ω|≤τ

real (λi(ω)) ≤ µ∗ and µ∗ ≤ max
1≤i≤k

sup
|ω|≤τ

real (λi(ω))

(iii)

‖Q‖τ‖Q−1‖τ ≤ C1,

(iv)

∞∑
|α|=1

∞∑
m=0

|A(α,m)|M
µ∗|α|

τmν|α| ≤ C2.

(v) M1 is the number of second partial derivatives of fi(z, ω), 1 ≤ i ≤ n with
respect to z which are not identically zero for all z, and ω, and M2 is any
uniform bound of the form

max
1≤i≤n

max
|β|=2

sup
ω∈Bτ

sup
|z−p0|≤ρ

∥∥∥∂β1 fi(z, ω)
∥∥∥ ≤M2.

(vi): ρ′ has 0 < ρ′ < ρ, with

sup
|θ|≤ν

sup
|ω|
‖PN (θ, ω)− PN (0, 0)‖ ≤ ρ′.

so that for each ω ∈ Bτ the image of PN is contained in the interior of Dρ(p0),
the ball where we have bounds on the second derivatives of f .

Theorem 4.7 (A-Posteriori Error for a One Parameter Branch of Stable Man-
ifolds for an Equilibria of a Vector Field). Suppose that ε, ρ′, µ∗, µ

∗, M1, M2, C1,
and C2 are validation values for a one parameter branch of local stable manifolds at
an equilibria of a vector field.

Assume that N ∈ N and δ > 0 are such that
•

(N + 1) >
µ∗

µ∗
, (4.18)

•

δ < e−1 min

{
(N + 1)µ∗ − µ∗

2nπM1M2C1eC2
, ρ− ρ′,

}
(4.19)
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• and

2C1e
C2

(N + 1)µ∗ − µ∗
ε < δ. (4.20)

Then there is a unique one parameter family of analytic N -tails H : Dν × Bτ ⊂
Ck × C→ Cn with

‖H‖ν,τ ≤ δ,

so that

P (θ, ω) = PN (θ, ω) +H(θ, ω),

is the exact solution of Equation (1.1) on Dν ×Bτ .
Proof. We seek a one parameter family of bounded analytic N -tails so that

f [PN (θ, ω) +H(θ, ω), ω] = D1[PN (θ, ω) +H(θ, ω)]Λ(ω)θ (4.21)

for all (θ, ω) ∈ Dν × Bτ . Image(PN ) ⊂ B(p0, ρ
′) and f is analytic on B(p0, ρ) so we

can expand the left hand side of Equation (4.21) to second order and obtain

f [PN (θ, ω)+H(θ, ω), ω] = f [PN (θ, ω)]+Df [PN (θ, ω)]H(θ, ω)+R[H(θ, ω), PN (θ, ω), ω],

where R is the quadratic remainder term. Rearranging Equation (4.21) we have

D1H(θ, ω)Λ(ω)θ −Df [PN (θ, ω), ω]H(θ, ω) = EN (θ, ω) +R[H(θ, ω), PN (θ, ω), ω].

Letting

A(θ, ω) = Df [PN (θ, ω), ω],

and recalling the definition of Lflow from Section (3.1) we note that this is

Lflow[H](θ, ω) = EN (θ, ω) +R[H(θ, ω), PN (θ, ω), ω], (4.22)

which has the form of the non-linear operator equation considered in Corollary (3.4).
An application of Lemma 3.10 shows that Lflow is boundedly invertible, and gives
the needed bound on the norm of the inverse. The proof follows by a straight forward
application of Corollary 3.4.

4.6.2. Maps. Define the total a-posteriori error

EN (θ, ω) = f [PN (θ, ω), ω]− PN (Λ(ω)θ, ω), (4.23)

for the case of diffeomorphisms.

Definition 4.2. [Validation Values for an N -th Order Solution of Equation (1.3)]
A set of positive real constants, ε, ρ′, µ∗, µ

∗, M1, M2, and C are called validation
values for PN if

(i): ‖E‖ν,τ ≤ ε,
(ii):

0 < µ∗ ≤ min
1≤i≤k

inf
|ω|≤τ

|λi(ω)| , and max
1≤i≤k

sup
|ω|≤τ

|λi(ω)| ≤ µ∗ < 1,
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(iii)

∞∑
|α|=1

∞∑
m=0

|A(α,m)|M
µ∗|α|

τmν|α| ≤ C.

(iv) M1 is the number of partial derivatives of f(z, ω) with respect to z which are
not identically zero for all ω, and M2 is any uniform bound of the form

max
1≤i≤∈n

max
|β|=2

sup
ω∈Bτ

sup
|z−p0|≤ρ

‖∂βfi(z, ω)‖ ≤M2.

(v) and that there is a 0 < ρ′ < ρ with

sup
|θ|≤ν

sup
|ω|
‖PN (θ, ω)− PN (0, 0)‖ ≤ ρ′,

so that the image of PN is contained in the interior of Dρ(p0).

Theorem 4.8 (A-Posteriori Error for a Solution of Equation (1.3)). Suppose
that ε, ρ′, µ∗, µ

∗, M1, M2, and C are a collection of validation values for PN .
Assume that N ∈ N and δ > 0 are such that
•

(µ∗)N+1C < 1, (4.24)

•

δ < e−1 min

{
1− C (µ∗)N+1

2nπCM1M2
, ρ− ρ′,

}
(4.25)

• and

2C

1− C(µ∗)N+1
ε < δ. (4.26)

Then there is a unique one parameter family of analytic N -tails H : Dν × Bτ ⊂
Ck × C→ Cn with

‖H‖ν,τ ≤ δ,

so that

P (θ, ω) = PN (θ, ω) +H(θ, ω),

is the exact solution of Equation (1.3) on Dν ×Bτ .
The proof is almost identical to the proof of Theorem 4.7. The difference is that

now we are now looking for a one parameter family of bounded analytic N -tails so
that

f [PN +H](θ, ω) = [PN +H](Λ(ω)θ, ω) (4.27)

for all (θ, ω) ∈ Dν × Bτ . Image(PN ) ⊂ B(p0, ρ
′) and f is analytic on B(p0, ρ). As

before for the case of differential equations we take the Taylor expansion of the left
hand side of Equation (4.27) and rearrange in order to obtain

H[Λ(ω)θ, ω]−Df [PN (θ, ω), ω]H(θ, ω) = EN (θ, ω) +R[H(θ, ω), PN (θ, ω), ω].
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M N τ τ̄ ν δH δ time
1 1 10−6 0.995× 10−6 10−8 4.48× 10−13 3.22× 10−11 0.3 (sec)
3 5 10−2 0.995× 10−2 0.1 2.1× 10−9 1.95× 10−6 1.7 (sec)
6 10 10−2 0.995× 10−2 0.1 5.1× 10−15 3.28× 10−12 6.1 (sec)
10 10 10−1 0.995× 10−1 0.5 2.5× 10−10 1.04× 10−6 10.7 (sec)
20 10 10−1 0.995× 10−1 0.5 1.4× 10−13 6.12× 10−10 28.6 (sec)
20 10 0.2 0.1991 0.75 2.1× 10−11 2.46× 10−7 28.5 (sec)
20 10 0.25 0.248 0.75 9.36× 10−9 1.3× 10−4 28.4 (sec)

Table 5.1
Branch of Stable Manifold Performance Data for the Hénon Family.

Recalling the definition of Lmap from Section (3.1) we note that this is

Lmap[H](θ, ω) = EN (θ, ω) +R[H(θ, ω), PN (θ, ω), ω], (4.28)

with

A(θ, ω) = Df [PN (θ, ω), ω].

The remainder of the proof is now an application of Theorem (3.1) and Corollary
(3.4),

Remark 4.9. In practice the methods of Section (2.4) provide us with only
analytic Taylor models for the analytic branches of fixed points/equilibria p(ω), stable
eigenvalues λi(ω), stable eigenvectors ξi(ω), the inverse transformation Q−1(ω), and
for the case of diffeomorphisms the powers of the stable eigenvalues. Similarly the
methods of Section (4.5) provide analytic Taylor models for the coefficients

aα(ω) =

∞∑
m=0

a(α,m)ω
m.

In other words all terms are known up to interval enclosures of the M -th order taylor
polynomials, plus a validated error term on the complex parameter disk Bτ , and we
don’t actually know exactly the polynomial PN hypothesized in Definitions (4.1) and
(4.2). Instead we have an interval inclosure with validated error bounds. However we
do know that a polynomial satisfying all the conditions of the theorems is enclosed by
our Taylor model. Moreover all the conditions of the theorems are checked using only
the information provided by the Taylor model. The reader interested in the details
can consult the user guide [55] and the source code [56].

5. Numerical Computation of Families of Invariant Manifolds with Rig-
orous Error Bounds for Hénon and Lorenz. We now discuss some numerical
results for computations based on the techniques developed in the present work. The
reader interested in more details for the numerical computations should consult the
user guide [55] and also the source code itself [56].

We consider first the Hénon map with the classical parameter values of a = 1.4
and b = 0.3. We expand in parameter space about b (i.e. our parameter is b + ω
with b = 0.3). We compute analytic Taylor Models of the fixed points, eigenvalues,
and eigenvectors of the system to order M = 20 on a validated domain of τ = 0.1
using the methods discussed in the user guide [55]. Table (5.1) shows the results of
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a number of validated computations for the one parameter family of stable manifold
at one of the fixed points. The results of a set of validated computations for the
stable and unstable manifolds at both of the system fixed points is shown in Figure
5.1. The MatLab/IntLab implementations of these computations are found at [56].
The specific files for the stable/unstable computations at both fixed points are in
the separate files paperCode_henonBranchProof.m versoins I − IV . The program
paperCodePushProof.m uses some hand optimized estimates for the eigenvalues and
eigenvectors of the Hénon map, and is used to obtain the results reported in the last
two rows of Table (5.1).

For the sake of comparison we also include Figure 5.2, which shows the plots of the
same manifolds on a domain of τ = 0.15 and ν ≈ 4 for each of the manifolds (see the
caption under the figure for more details). We note that while we have not validated
the parameterizations for domains of this size, the approximations are still “good” in
the sense that the residuals are small for each expansion (numerical residual smaller
than 10−6 in all cases). Figure 5.2 gives some idea of what the global dynamics are
for parameters near b = 0.3 and also highlights that the methods of the present work
provide heuristic insight into the dynamics of the one parameter family of dynamical
systems even in the absence of rigorous proofs.

Fig. 5.1. Stable and Unstable Manifolds of the Fixed Points of the Hénon Family: the stable
manifolds are shown in red and the unstable in blue. The parameterized arcs of fixed points are
shown as white arcs. The blue axes are the phase space variable and the white axis is the family
parameter. The manifolds are plotted for −0.12 ≤ τ ≤ 0.12. The manifolds shown in the picture
have been validated and have truncation errors smaller than 10−5.

We cary out similar computations at the origin of Lorenz System in order to
obtain a three variable polynomial approximation to the one parameter family of two
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Fig. 5.2. The figure highlights the fact that the the Parameterization method has value as both
a rigorous and non-rigorous numerical method. The manifolds are shown over the same parameter
range as in Figure (5.1), but now but the polynomials are evaluated on a larger domain than where the
computer aided estimates hold. Nevertheless the figure gives some indication of the global dynamics
over the parameter region where the rigorous computations were carried out. Note that numerous
transverse intersections of the stable and unstable manifolds are detected. We also point out that in
the top left corner of the picture the blue (unstable) manifold folds back sharply on itself, leading to a
tangency with the red (stable) manifold. The development of this tangency signals the birth/death of
the Hénon attractor, as for parameters before the tangency the system has and attractor, while after
the tangency orbits can cross the stable manifold on the left and escape to infinity along the other
unstable manifold. This is verified by iterating some test orbits before and after the tangency. The
point of this comment is simply to indicate that the parameter range in the validated computation is
large enough for interesting global dynamics to occur, even though none are visible in the validated
figure. We remark also that the intersections seen in this non-rigorous figure could be validated
using “shooting” methods as in [54]

dimensional stable manifolds. We center the expansion at the parameter set σ = 10,
β = 8/3, and ρ = 13.9265, and expand the family of manifolds in the ρ parameter.
The results of this computation for several different program inputs are shown in
Table (5.2). Since the resulting manifolds are three dimensional we omit graphical
results. The MatLab/IntLab program which perform the computations for the Lorenz
system just described is called validated2DLorenzBranch.m and is found at [56].
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System. Discrete Contin. Dyn. Syst. Ser. B 11 (2009), no. 4, 1039-1055.

[64] D. Wilczak. Uniformly hyperbolic attractor of the Smale-Williams type for a Poincaré map in
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