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1. Introduction. This note is a supplementary document for the paper [23]:

Polynomial Approximation of One Parameter Families of (Un)Stable Manifolds with
Rigorous Computer Assisted Error Bounds

The note fills in technical details for the computations discussed in [23], especially
those concerned with rigorous computation of analytic Taylor models. Implementa-
tions of all computations discussed in this note and in [23] are found at [24]. The main
purpose of the present document is to explain our implementation of analytic Taylor
models and operations on them, as discussed in [23]. Taylor models have been imple-
mented by a number of other authors (see especially [18, 11, 10, 9, 4, 5]). However the
necessary classes and functions do not exist in the IntLab/MatLab environment and
we have implemented what we need for the present work. For thorough discussion of
algorithms behind the IntLab library we refer to [28] and the references therein.

One warning is that our analytic Taylor library as implemented is not truly ‘ob-
ject oriented’. The polynomial part of the analytic Taylor model is stored as a vector
of interval coefficients. The truncation errors and validated radii of convergence are
stored separately. The user is expected to manage the variables correctly. This is
usually accomplished via some naming scheme. The library could be substantially
improved by combining the polynomial, radii, and truncation errors into a true an-
alytic Taylor data structure under IntLab. Here the excellent and highly optimized
IntLab polynomial class could be used. (In fact we sometimes use the IntLab polyno-
mial class for polynomial multiplication and other manipulations, however we usually
convert back to matrix containers after the manipulation is performed).

The implementation developed here is meant to serve only as a support package
for the invariant manifold computations of [23]. Optimization for general use is beyond
the scope of the present work. On the other hand we have designed the library with
the philisophy of [23] in mind. In particular, all validated error bounds are obtained
via analytic, a-posteriori arguments in function space. No topoligical arguments in
phase space or on the graph of the functions are invoked.

The guide is organized as follows. Section 2 describes how to run the main
programs which execute the example computations of [23]. In Section 3 we develop
a set of tools for solving various kinds of equations using analytic Taylor models.
Our aim is to make clear how tail bounds are obtained after the completion of various
operations. This information is essential if the numerical implementation of the results
in the main body of the paper are to be transparent and reproducible.

Section 3.1 discusses a simple result about products of Taylor models. This pro-
vides a baseline against which other analytic Taylor model operations can be com-
pared. In Section 3.2 we show how to obtain an analytic Taylor model for the inverse
of a matrix whose coefficients are analytic Taylor models, while in Section 3.3 we see
that the composition of a Taylor model with an elementary function can be com-
puted at the cost of a Cauchy Product, as long as the elementary function is given
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by the solution of some first order linear differential equation (powers, roots, expo-
nentials, sines, cosines, etc). In Section 3.4 we discuss using analytic Taylor models
to parameterize one parameter families of solutions of finite dimensional nonlinear
equations.

In Secction 4 we show how the tools of Section (3) are used in order to obtain
analytic Taylor model representations of the linear data needed in [23]. We dis-
cuss example calculations for the fixed points, eigenvalues, eigenvectors, diagonalizing
transformations, and powers of the eigenvectors for the Hénon family. These are the
essential quantities that feed into the algorithms for computing families of invariant
manifolds. We also examine numerically the relationship between the order of the
Taylor Model, the size of the radius of convergence, the tail error bound, and the
computation time in some specific examples.

Some of the bounds required in the hypotheses of Theorems 4.8 and 4.9 of [23]
require information about infinitely many terms of some power series of several vari-
ables. In Section 5 we discuss how these series are bound in practice using only the
finite data available from the analytic Taylor models. We illustrate the computations
and derive explicit estimates for the Hénon and Lorenz systems.

2. Starting the Library and Running the Programs (a very brief tu-
torial). All of the codes for the project [23] can be found in a compressed folder
called

oneParameterFamily_codes.zip

located at [24]. The top directory contains the a startup file, a read me file, and all
the scripts discussed in [23]. These scripts cary out the main computations of the
paper. The top directory also contains sub-directories which constitute the analytic
Taylor library, and the support programs for the invariant manifold computations.

A warning: absolutely all of the programs require that the IntLab package for
interval arithmetic operations in MatLab has been installed. Anyone interested in
running our codes should first obtain a copy of IntLab.

Once the file has been unzipped we suggest starting MatLab from the directory
oneParameterFamily_codes (or starting MatLab and navigating to this directory).
Once this has been done the next step is to initialize our library. At the MatLab
command prompt simply type

>> startFamilySession

This command will initialize all of our library pathways. It will also start IntLab, so
if IntLab has not been installed the operation will fail at this juncture.

Once startup executes successfully the example computations are ready to be run.
Now one simply types at the MatLab command prompt

>> paperCodeName

where paperCodeName is one of the following file names:
1. paperCodeEx1

2. paperCodeEx2

3. paperCodeEx3

4. paperCodeEx4

5. paperCode_Ex_lorenzRes

6. paperCode_henonBranchProof

7. paperCode_henonBranchProof_II
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8. paperCode_henonBranchProof_III

9. paperCode_henonBranchProof_IV

10. paperCodePushProofs

11. validated2DLorenzBranch

The programs run “loud”, producing substantial output to the screen. This is messy
but gives one a sense of how long various parts of the computation are taking. A
general use implementation should produce less output. The programs usually result
in a several dozen variables being added to the workspace.

Another warning: all of the programs clear the workspace before execution. So
one should not run them with important unsaved data in the work space.

Beyond these simple remarks it is hoped that the programs are relatively self
documenting and easy to read. The names of functions are either self explanatory or
conform to the notation of [23]. Anyone having questions, comments, or who locates
bugs can reach the author at

jmireles@math.rutgers.edu

3. Operations on Analytic Taylor Models. Many of the convergence results
to follow depend on the following standard theorem of nonlinear analysis.
We use the following standard theorem of non-linear analysis.

Theorem 3.1 (Newton-Kantorovich Theorem). Let X,Y be Banach spaces and
F : X → Y be a differentiable mapping. Assume that there as an x̂ ∈ X and an r > 0
such that

(i) DF (x̂) is boundedly invertible and
(ii) ‖DF (x)−DF (y)‖B(X,Y ) ≤ κ‖x− y‖X for all x, y ∈ Dr(x̂).

If
(I)

εNK ≥ ‖DF (x̂)−1 F (x̂)‖Y ,

(II)

εNK ≤
r

2
,

and
(III)

4εNK κ ‖DF (x̂)−1‖B(X,Y ) ≤ 1,

then the equation

F (x) = 0,

has a unique solution in Dr(x̂).

(See [25] for an exposition of the proof in the language of English).

3.1. Products. We begin with the statement and proof of a simple Lemma
which results in an analytic Taylor model of the product of two analytic Taylor models.
The Lemma itself is almost trivial, but it will be instructive to compare the cost and
accuracy of other operations to the cost and accuracy of a product. The Lemma also
illustrates the a-posteriori philosophy in an simple setting.
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Lemma 3.2 (Product of Analytic Taylor Models). Let (fM , r, δf ) and (gM , r, δg)
be two analytic Taylor models. Then an analytic Taylor model (pM , r, δp) for the
product (f · g)(ω) is given by the M -th order polynomial pM whose coefficients given
by the Cauchy Product formula

pm =

M∑
k=0

am−kbk, (3.1)

(where ak and bk are the coefficient of fM and gM respectively). Moreover, defining
the a-posteriori error

EM (ω) = fM (ω)gM (ω)− pM (ω),

we have the explicit bound

δp ≤ ‖EM‖r + ‖fM‖rδg + ‖gM‖rδf + δfδg. (3.2)

Proof: That the coefficients of pM are given by Equation (3.1) is just the standard
Cauchy Product. We note that while we could obtain a bound on the product p
simply by bounding f · g, this does not provide an explicit truncation estimate for
pM . So we let ĥ,h̄, and h denote the analytic M -tails of f , g, and p respectively. We
have that

(fM + ĥ)(gM + h̄) = pM + h.

From this we obtain the bound

δp = ‖h‖r ≤ ‖fMgM − pM + fM h̄+ gM ĥ+ h̄ĥ‖r,

from which Equation (3.2) follows.

�

The cost of the computation is the cost of a Cauchy Product, plus the cost of the
evaluation of ‖EM‖r, ‖fM‖r and ‖gM‖r. Note that EM is a 2M -the order polynomial
as this is the order of the product fM · gM . However, because EM is obtained by
taking pM from fMgM and because the coefficients pM are determined by the Cauchy
Product, EM will be almost zero to M -th order. (The low order terms of EM capture
the “round off errors” associated with computing the Cauchy Product coefficients).
The cost of bounding the sup norms using the sigma norm is the cost of an inner
product. Then computing (pM , r, δp) is the cost of a Cauchy product, the cost of a
polynomial multiplication, and the cost of three inner products. The bound on the
truncation error of the product is the a-posteriori error plus terms proportional to the
individual truncation errors of the products.

3.2. Matrix Inversion and Linear Equations. Consider a K ×K matrix of
analytic functions

B(ω) =

 b11(ω) . . . b1K(ω)
...

. . .
...

bK1(ω) . . . bKK(ω)

 .
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Suppose that each of the bij(ω) are analytic on the ball Br ⊂ C. Suppose further
that associated with each bij is an analytic Taylor model (bMij , r, δij). We define the
matrix valued polynomial

BM (ω) =

M∑
m=0

Bmω
m,

with coefficients

Bm =

 bm11 . . . bm1K
...

. . .
...

bmK1 . . . bmKK

 ,

and truncation error with δB = Kmaxij(δij). Then we consider the data (BM , r, δB)
an analytic Taylor model for the matrix of functions B. Supposing that B is invertible
at the origin, we are interested in developing an analytic Taylor model for the matrix
inverse of B.

Lemma 3.3 (Matrix Inversion). Assume that B(0) = B0 is invertible, that B−1
0

is an interval enclosure of its inverse, and that (BM , r, δB) is an analytic Taylor model
of B. Moreover assume that there are M, τ > 0 so that

|B−1
0 |

(
τ

M∑
m=1

|Bm|τm−1 + δB

)
≤M < 1. (3.3)

Then there is an M -th order analytic Taylor model (CM , τ, δC) for C(ω) ≡ B−1(ω),
where the coefficients of CM are defined recursively by

C0 = B−1
0 , and Cm = −B−1

0

m−1∑
k=0

Bm−kCk for 1 ≤ m ≤M. (3.4)

Defining the a-posteriori error polynomial

EM (ω) = Id−BM (ω)CM (ω).

we have that the truncation error δC > 0 satisfies the explicit bound

δC ≤
|B−1

0 |
1−M

(‖EM‖τ + ‖CM‖τ δB) . (3.5)

Proof: The first part of the proof is formal. We seek

C(ω) =

∞∑
m=0

Cmω
m,

so that

B(ω)C(ω) = Id.

Expanding as series we have

B(ω)C(ω) =

( ∞∑
m=0

Bmω
m

)( ∞∑
m=0

Cmω
m

)

=

∞∑
m=0

m∑
k=0

Bm−kCkω
m

= Id + 0ω + 0ω2 + . . .
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Matching like powers of ω we have for m = 0 that

B0C0 = Id,

so that indeed C0 = B−1
0 . Similarly when m ≥ 1 we have that

m∑
k=0

Bm−kCk = 0,

which we solve for Cm in order to obtain that

Cm = −B−1
0

m−1∑
k=0

Bm−kCk,

as desired.
This formula is now used in order to compute the M -th order polynomial CM .

Let G : Br → GL
(
CK
)

denote the truncation error associated with B. Then G is a
K ×K matrix of analytic M -tails with ‖G‖r ≤ δ so that B(ω) = BM (ω) + G. Now
we seek a constant δC > 0 and a K ×K matrix of analytic M -tails H : Br → L

(
CK
)

so that ‖H‖τ ≤ δC and

C(ω) = CM (ω) +H(ω).

Since C is the inverse of B, this last equation is equivalent to the condition

(BM (ω) +G(ω))(CM (ω) +H(ω)) = Id,

for each ω ∈ Br. Then formally we have that

H(ω) = B−1(ω) [EM (ω) +G(ω)CM (ω)] . (3.6)

for each ω such that B is invertible. The Neuman series is used in order to obtain in
fact that B is invertible on Bτ . Moreover we have the explicit bound

‖B−1‖τ =

∥∥∥∥∥∥
(
B0 +

M∑
m=1

Bmω
m +G(ω)

)−1
∥∥∥∥∥∥
τ

≤

∥∥∥∥∥∥
(

Id +B−1
0 ω

M∑
m=1

Bmω
m−1 +B−1

0 G(ω)

)−1
∥∥∥∥∥∥
τ

|B−1
0 |

≤ |B
−1
0 |

1−M
, (3.7)

where we use that∥∥∥∥∥B−1
0 ω

M∑
m=1

Bmω
m−1 +B−1

0 G(ω)

∥∥∥∥∥
τ

≤ |B−1
0 |

(
τ

M∑
m=1

|Bm|τm−1 + δB

)
≤M < 1,

by the hypothesis that Equation (3.3) holds. Applying the bound of Equation (3.7)
to Equation (3.6) gives the bound on δC claimed in Equation (3.5)
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Now if (BM , r, δB) is an analytic Taylor model for an analytic matrix function
B(ω) and (qM , r, δq) is an analytic Taylor modle for a vector of analytic functions
q, then we consider the equation Bp = q. The following Lemma shows that we can
obtain an analytic Taylor model for p without first computing B−1(ω) directly. The
proof of the is almost identical the proof of the previous Lemma and is omitted.

Lemma 3.4 (Solutions of Linear Equations). Assume that B(0) = B0 is invert-
ible, that B−1

0 is an interval enclosure of its inverse and that (BM , r, δB) is an analytic
Taylor model of B. Let (qM , r, δq) be an analytic Taylor model of the analytic function
q. Assume in addition that there are M, τ > 0 satisfying the bound given in Equation
(3.3). Then there is an M -th order analytic Taylor model (pM , τ, δp) for the analytic
function p having

B(ω)p(ω) = q(ω) for ω ∈ Bτ .

The coefficients for the polynomial pM are defined recursively by

p0 = B−1
0 q0 and pm = B−1

0

(
qm −

m−1∑
k=0

Bm−kpk

)
, (3.8)

and that truncation estimate satisfies

δp ≤
|B−1

0 |
1−M

(‖EM‖τ + ‖pM‖τ δB + δq) ,

where EM is the a-posteriori error defined by

EM (ω) = qM (ω)−BM (ω)pM (ω).

3.3. Elementary Functions of Analytic Taylor Models. In this section we
consider the problem of computing an analytic Taylor model for F ◦ f where f is an
analytic Taylor model and F is an elementary function which solves a first order ode.
The next Lemma addresses the case when F is a power function. Other elementary
functions are similar. First an “error tail” lemma for powers.

Lemma 3.5. Suppose that E : BR ⊂ C → C is an analytic M -tail, K ∈ N
with K > 1, and that f : BR → C is an analytic function. Suppose in addition that
‖f‖R ≤ C and that

|f(ω)| ≥M for all ω ∈ BR.

Then the differential equation

f(ω)h′(ω)−Kf ′(ω)h(ω) = E(ω),

has a unique solution h : BR → C. Moreover h is an analytic M -tail with

‖h‖R ≤ R
(
C

M

)K
‖E‖R. (3.9)
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Proof: We note that since fK is analytic and nonzero on BR(0), f−K is analytic
and bounded on BR. Multiplying both sides of the equation by f−K(z) we obtain the
equivalent equation

f−Kh′ −KfK−1f ′h = f−KE,

or

d

dz

(
f−Kh

)
= f−KE, (3.10)

for any z ∈ BR(0). Since BR(0) is a convex neighborhood about the origin we have
that the line segment between the origin and z is contained in z. We parameterize
this line by γ : [0, 1]→ BR(0) by the formula

γ(t) = tz.

Taking the line integral over γ on both sides of Equation (3.10) we have∫ 1

0

d

dz

(
f−K [γ(t)]h[γ(t)]

)
γ′(t) dt =

∫ 1

0

f−K [γ(t)]E[γ(t)]γ′(t) dt.

Since BR(0) is simply connected we have that the left hand side is∫ 1

0

d

dz

(
f−K [γ(t)]h[γ(t)]

)
γ′(t) dt = f−K [γ(1)]h[γ(1)]− f−K [γ(0)]h[γ(0)]

= f−K(z)h(z),

as γ(0) = 0 and h is an analytic N -tail. Then

h(z) = fK(z)

∫ 1

0

f−K [γ(t)]E[γ(t)] γ′(t) dt,

and we note that h is an analytic N -tail due to the fact that E is. Now we bound

sup
|z|≤R

|h(z)| ≤ sup
|z|≤R

∣∣fK(z)
∣∣ ∣∣∣∣∫ 1

0

f−K [γ(t)]E[γ(t)]z dt,

∣∣∣∣
≤ CK 1

MK
‖E‖R R,

as desired.

�

Lemma 3.6. Suppose that (fM , r, δf ) is an analytic Taylor model for the analytic
function f and K ∈ R, K 6= 0. Denote the coefficients of the polynomial fM by am
for 0 ≤ m ≤M . Assume also that f(0) = a0 6= 0 and in fact that there are M, τ > 0
so that

|a0| − τ
M∑
m=1

|am|τm−1 − δf ≥M > 0. (3.11)
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Then for any 0 < σ ≤ 1 an analytic Taylor model for p(ω) ≡ fK(ω) is given by
(pM , R, δp) where

R = min
(
τ, re−σ

)
,

the coefficients of pM are defined recursively by

p0 = aK0 and pm =
1

ma0

m−1∑
k=0

(mK−k(K+1))am−kpk for 1 ≤ m ≤M, (3.12)

and moreover we have an explicit bound on the truncation error of fK = p given by

δp ≤
(
‖fM‖r + δf

M

)K
R

(
‖EM‖R +K‖pM‖R

2π

rσ
δf + ‖p′M‖Rδf

)
, (3.13)

where the a-posteriori error is defined by

EM (ω) = Kf ′M (ω)pM (ω)− fM (ω)p′M (ω). (3.14)

Proof: Of course we actually know that p = fK is analytic on the same disk Br as
f regardless of the magnitude of a0. The additional constraints are imposed in order
to obtain explicit bounds on the truncation error associated with the M -th order
approximation of p while obtaining a computational cost proportional to the cost of
a product.

The coefficients of pM are computed formally as follows. Let p′ denote the deriva-
tive of fK . Then we have

p′ = KfK−1f ′.

Multiplying both sides by f gives

fp′ = Kpf ′. (3.15)

Expanding f , f ′, p, and p′ as power series (with the coefficients of p unknown),
exploiting the Cauchy Product formula, matching like powers, and isolating the m-th
coefficient of p leads to the recursion relations given in Equation (3.12).

The functional relation given by Equation (3.15) also leads to an effective a-
posteriori analysis scheme for p. Let g denote the analytic M -tail so that f(ω) =
fM (ω) + g(ω) on Br and ‖g‖r ≤ δf . We seek an analytic M -tail h defined on BR so
that fK(ω) = pM (ω) + h(ω) on BR and ‖h‖R ≤ δp. Expanding Equation (3.15) gives
the first order linear differential equation for h defined by

f(ω)h′(ω)−Kf ′(ω)h(ω) = E(ω), (3.16)

where

E(ω) = EM (ω) +K pM (ω)g′(ω)− p′M (ω)g(ω),

and EM (ω) is the a-posteriori error given by Equation (3.14). The right hand side
has the bound

‖E‖R ≤ ‖EM‖R +
2K π‖pM‖R

rσ
δf + ‖p′M‖Rδf ,
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and the bound in Equation (3.13) is obtainde once we realize that Equation (3.16)
has the form discussed in Lemma (3.5) so that the Estimate given by Equation (3.9)
provides the needed bound on h.

�

Remark 3.7. Similar Lemmas can be obtained for other elementary functions
by utilizing that such functions can be expressed as solutions of linear differential
equations. For example if we want to compute sin and cos of an analytic Taylor
model then we define p by p(ω) ≡ eif(ω) = sin(f(ω)) + i cos(f(ω)) and note that

p′ = ipf ′.

Again the coefficients can be computed for the cost of a Cauchy Product. Taking real
and imaginary parts gives the sine and cosine series. The a-posteriori analysis of the
truncations errors can be done by exploiting the differential equation.

3.4. One Parameter Branches of Zeros for Finite Dimensional Non-
Linear Problems. For many applications we need to be able to compute an analytic
Taylor model of a function p which parameterizes a branch of solutions of a nonlinear
system of equations. Then suppose that f : Cn × C → Cn is a one parameter family
of analytic maps, that p0 ∈ Cn has f(p0, 0) = 0, and that D1f(p0, 0) is invertible.
(Here D1 applied to f(x, ω) means the differential with respect to the ‘first’ variable,
namely the variable x. Since x ∈ Cn D1f is an n × n matrix of analytic functions.
The entries of D1f are functions in the variables x ∈ Cn and ω ∈ C). In addition we
assume the existence of the following data.

Definition 3.1. [Validation Values for a One Parameter Branch of Zeros]
(1) Assume that B−1

0 is an interval inclosure of D1f(p0, 0)−1, and suppose that
(BM , r, δB) is an analytic Taylor model for

B(ω) = D1f(pM (ω), ω).

(2) Assume that there exist M, τ > 0 having that 0 < τ < r and

|B−1
0 |

(
τ

M∑
m=1

|Bm|τm−1 + δB

)
≤M < 1.

Then Lemma (3.3) allows us to construct an analytic Taylor model (CM , τ, δC)
so that C(ω) = B−1(ω). In particular we have that

‖C‖τ = sup
ω∈Bτ

∣∣[D1f(pM (ω), ω)]−1
∣∣ ≤ ‖CM‖τ + δC .

(3) Assume that there is an ε > 0 and an M -th order polynomial pM : Bτ ⊂ C→
CN having

|f (pM (ω), ω) | < ε for all ω ∈ Bτ .

Lemma 3.8 (A-Posteriori Validation of a Branch of Zeros). Suppose that f , p0,
B−1

0 , BM , τ , δB, ε, pM , M , CM , and δC are as in Definition (3.1). Let εNK > 0 be
any constant with

(‖CM‖τ + δC) ε ≤ εNK.
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Define

R = 2εNK.

Let C =
∑M
m=1 |pm|τm +R and define the set

U = {z ∈ Cn : |z − p0| ≤ C}.

Now let κ > 0 have that

n2 sup
x∈U

max
1≤i≤j≤n

‖∂ijf(x)‖ ≤ κ.

Suppose that

4εNKκ(‖CM‖τ + δC) < 1. (3.17)

Then there is a unique analytic M -tail h : Bτ → CN with

‖h‖τ ≤ R,

so that p(ω) = pM (ω)+h(ω) is a one parameter analytic branch of zeros of f . In other
words (pM , τ, R) is an analytic Taylor model for the analytic function p : Bτ → Cn
having

f [p(ω), ω)] = 0 for all ω ∈ Bτ .

Proof: Let X = Cω(Bτ ⊂ C,Cn) and define the operator Φ: X → X by

Φ[q](ω) = f [q(ω), ω].

Note that the domain of Φ is a Banach Space under the C0 norm. The Frechette
Derivative of Φ has DΦ ∈ L(X ,X ) and is given by

DΦ[q](ω) = D1f [q(ω), ω].

B(ω) = D1f [pM (ω), ω] ≡ DΦ[pM ] is invertible for all ω ∈ Bτ by hypothesis. Moreover
we have that

‖[DΦ(pM )]−1‖B(X ) ≤ ‖CM‖τ + δC .

Then

‖[DΦ(pM )]−1Φ[pM ]‖τ ≤ (‖CM‖τ + δC)ε ≤ εNK.

Let V = {v ∈ X : ‖v‖τ ≤ R}, where we recall that R = 2εNK. Then for any
q ∈ pM + U and ω ∈ Bτ we have that

‖p0 − (pM (ω) + q(ω))‖ ≤
M∑
m=1

|pm|τm +R = C.
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From this we see that image(pM +q) ⊂ p0 +U ⊂ Cn. It follows that for any q1, q2 ∈ V
we have that

‖DΦ[pM + q1]−DΦ[pM + q2]‖ ≤
(

sup
q∈pM+V

‖D2Φ[q]‖τ
)
‖q1 − q2‖τ

=

(
sup

q∈pM+V, ω∈Bτ
‖D2f [pM (ω) + q(ω), ω]

)
‖q1 − q2‖τ

≤
(

sup
x∈U, ω∈Bτ

‖D2f [x, ω]‖
)
‖q1 − q2‖τ

≤ κ‖q1 − q2‖τ ,

by the Mean-Value Theorem and the definition of κ. Recalling Equation (3.17), the
Newton-Kantorovich Theorem applied to Φ[pM ](ω) provides a unique h ∈ V so that
Φ[pM + h](ω) = f [pM (ω) + h(ω), ω] = 0 for all ω ∈ Bτ .

�

4. Using Analytic Taylor Models to Satisfy A1-A3-maps-flows. Lemma
(3.8) can be applied directly in order to validate analytic Taylor models for one pa-
rameter families of equilibria. Since fixed points of diffeomorphisms can be expressed
as zeros of some equations, Lemma (3.8) can also be used to validate analytic Taylor
models for families of fixed points. Similarily for one parameter branches eigenvalues
and eigenvectors, so that Lemma (3.8) can be used in order to validate polynomial
expnasions of all the linear data. We consider several examples.

4.1. A One Parameter Branch of Fixed Points for the Hénon Map.
Consider the one parameter family of Hénon mappings defined by

f(x, y, ω) =

[
y + 1− ax2

(b+ ω)x

]
, (4.1)

where we think of a and b as fixed. We begin by developing a formal expansion for a
branch of fixed points for the family. Let

x(ω) =

∞∑
n=0

xnω
n,

parameterize an analytic branch of the first component of a fixed point of Equation
(4.1). Then x(ω) solves

a[x(ω)]2 + x(ω)(1− b− ω)− 1 = 0. (4.2)

From this we see that

x0 =
b− 1±

√
(1− b)2 + 4a

2a
, and x1 =

d

dω
x(0) =

x0

2ax0 − b+ 1
. (4.3)

Matching like powers of ω in equation 4.2 gives that

xn =
1

2ax0 − b+ 1

[
xn−1 −

n−1∑
k=1

a xn−kxk

]
. for n ≥ 2. (4.4)
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M τ δp1 δp2 r1 r2 t
2 10−4 1.66× 10−13 1.75× 10−13 6.91× 10−14 6.92× 10−15 0.31(sec)
2 10−2 1.67× 10−7 1.73× 10−7 6.89× 10−8 6.90× 10−8 0.31(sec)
2 0.23 0.0024 0.0028 8.57× 10−4 8.57× 10−4 0.3(sec)
5 0.23 3.47× 10−7 2.85× 10−7 1.13× 10−7 1.13× 10−7 0.71(sec)
10 0.23 8.51× 10−13 5.89× 10−13 2.45× 10−13 2.45× 10−13 1.7(sec)
15 0.23 4.73× 10−15 7.33× 10−15 7.77× 10−16 8.88× 10−16 3.1(sec)

Table 4.1
Fixed Point Branch Performance Data for the Hénon Family: M is the parameterization

order, τ is the radius of the domain of the analytic Taylor model, i.e. each model is validated for
the real interval ω ∈ [−τ, τ ]. We compute models of a branch of fixed points for both p1 and p2. The
associated truncation errors (the δ values) are given for each model. The columns labeled r1 and r2
are qualitative assessments of the error. For each branch we evaluate the polynomial at ω = ±τ .
We include the truncation errors into the interval results. We compare this to values of the fixed
points given by the explicit formulas. r1 is the maximum error over ±τ for the first fixed point and
similarly for r2. Then r1 and r2 represent the observed error, while the δ’s give theoretical bounds
on the error. Note that the r’s are always smaller than the δ’s. The computation time for each fixed
point branch is given as well. We note that the proof fails for τ = 0.23 due to loss of control of the
bounds on the norm of the inverse of the differential. For τ = 0.23 the accuracy is not noticeably
increased by computing to higher order than fifteen.

We note that since the second component of the fixed point is given by y(ω) =
(b+ ω)x(ω) we now have

y0 = bx0, y1 = bx1 + x0 and yn = bxn + xn−1 n ≥ 2. (4.5)

We write p0(ω) to denote the branch of fixed points where we take the positive sign
in Equation (4.3) and p1(ω) to denote the branch where the minus is chosen.

These recursion relations can be used to define a polynomial approximation

pM (ω) =

M∑
m=0

[
xm
ym

]
ωm,

of a branch of fixed points for this Hénon family to any desired finite order M . Then
Lemma (3.8) can be applied in order to validate a branch of zeros of the map

F (pM (ω), ω) = f [pM (ω), ω]− pM (ω).

An analytic Taylor model for a branch of zeros of F is a model of a branch of
fixed points of the Hénon family. This calculation is carried out by the program
paperCodeEx1.m which can be found at [24]. Performance results for several program
parameters at the classic values of a = 1.4, b = 0.3 are given in Table (4.1).

4.2. One Parameter Family of Eigenvalues and Eigenvectors for a Fixed
Point of the Hénon Map. We now consider the eigenvalue problem at a fixed point
of the Hénon family. If λ0 is an eigenvalue of D(x,y)f(x, y, 0) then we seek

λ(ω) =

∞∑
n=0

λnω
n,

a branch of eigenvalues passing through λ0. Then λ(ω) satisfies the equation

λ(ω)2 + 2a x(ω)λ(ω)− ω − b = 0, (4.6)
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with λ(0) = λ0. We have that

λ0 = −ax0 ±
√
a2x2

0 + b, λ1 =
1− 2ax1λ0

2λ0 + 2ax0
, (4.7)

and

λn =
−1

2λ0 + 2ax0

(
n−1∑
k=1

λn−kλk +

n−1∑
k=0

2axn−kλk

)
, with n ≥ 2. (4.8)

Then the λn are formally well defined as long as λ0 6= −ax0, i.e. as long as λ0 is not
a repeated eigenvalue. Also note that the coefficient λn depends on the coefficients
of xi of x(ω) but only for 0 ≤ i ≤ n. Then if we want to compute λ(ω) to order M
we need only compute x(ω) up to order M . Now we choose an eigenvector ξ0 with
‖ξ‖2 = K̂ for some K̂ > 0, associated with the eigenvalue λ0. Denote by

ξ(ω) =
∞∑
n=0

ξnω
n,

a parameterizatoin of the branch of eigenvectors through ξ0, where the entire branch is

normalized to have length
√
K̂. Then ξ(ω) satisfies the system of nonlinear equations[

−2ax(ω)− λ(ω) 1
b+ ω −λ(ω)

](
ξ1(ω)
ξ2(ω)

)
=

(
0
0

)
ξ1(ω)2 + ξ2(ω)2 = K̂,

but since the matrix has one dimensional kernel, we drop the first row of the matrix
and have that ξ(ω) solves(

(b+ ω)ξ1(ω)− λ(ω)ξ2(ω)

ξ1(ω)2 + ξ2(ω)2 − K̂

)
=

(
0
0

)
. (4.9)

Matching like powers leads to[
b −λ0

2ξ1
0 2ξ2

0

](
ξ1
1(ω)
ξ2
1(ω)

)
=

(
λ1ξ

2
0 − ξ1

0

0

)
,

for the coefficient ξ1 and[
b −λ0

2ξ1
0 2ξ2

0

](
ξ1
n(ω)
ξ2
n(ω)

)
=

(
−ξ1

n−1 +
∑n−1
k=0 λn−kξ

2
k

−
∑n−1
k=1 ξ

1
n−kξ

1
k + ξ2

n−kξ
2
k

)
, (4.10)

for ξn when n ≥ 2. The coefficient ξn depends recursively on the coefficients of λ(ω)
to n-th order.

Now suppose that we use the recursion relations just described in order to com-
pute M -th order polynomial approximations λM (ω) and ξM (ω) for a branch of eigen-
values and eigenvectors for Hénon. We need to approximate the truncation error
associated with these polynomial approximations in order to obtain rigorous analytic
Taylor models. To do this we simply define the maps Feigenvalue : C × C → C and

Feigenvector : C2 × C→ C2 by

Feigenvalue(λ, ω) = λ2 + 2ax(ω)λ− ω − b,
14



and

Feigenvector =

(
(b+ ω)ξ1 − λ(ω)ξ2

ξ2
1 + ξ2

2 − K̂

)
.

Since Feigenvalue(λM (ω), ω) and Feigenvector(ξM (ω), ω) are approximately zero we

again use Lemma (3.8) in order to obtain rigorous rigorous bounds of the truncation
errors for the eigendata.

Note the first component of the branch of fixed points x(ω) in the definition of
Feigenvalue and the branch of eigenvalues λ(ω) in the definition of Feigenvectors
are only known up to analytic Taylor approximation. More precisely let (xM , τ, δx)
be the analytic Taylor model for the first component of the fixed point branch, and
(λM , τ, δλ) be the analytic Taylor model for the branch of eigenvalues through λ0.
The Newton-Kanrorivich a-posteriori errors have

‖Feigenvalue(λM (ω), ω)‖τ ≤ ‖λM (ω)2 + 2a xM (ω)λM (ω)− ω − b‖τ + 2a‖λM‖τδx,

and

‖Feigenvector(ξM (ω), ω)‖τ ≤
∥∥∥∥( bξ1

M (ω) + ωξ1
M (ω)− λM (ω)ξ2

M (ω)[
ξ1
M (ω)

]2
+
[
ξ2
M (ω)

]2 − K̂
)∥∥∥∥

τ

+ ‖ξ2
M‖τδλ,

where in each case the first term on the right depends only on multiplication of known
M -th order polynomials.

Finally, in both cases we must provide analytic Taylor models for the differentials
as these are functions of models themselves. For example if h(ω) is the truncation
error associated with the analytic Taylor model (xM , τ, δx) then we have

D1Feigenvalue(λM (ω), ω) = 2λM (ω) + 2a x(ω) + 2aδx.

So that (2λM + 2aξ1
M , τ, 2|a|δx) is an analytic Taylor model for the differential. Sim-

ilarly if hλ(ω) is the truncation error associated with the analytic Taylor model
(λM , τ, δλ) we have that

D1Feigenvector(ξM (ω), ω) =

M∑
m=0

Bmω
m +

(
0 −hλ(ω)
0 0

)
,

where

B0 =

(
b −λ0

2ξ1
0 2ξ2

0

)
, B1 =

(
1 −λ1

2ξ1
1 2ξ2

1

)
, and Bm =

(
0 −λm

2ξ1
m 2ξ2

m

)
,

so that (BM , τ, δλ) is an analytic Taylor model for D1Feigenvectors(ξM (ω), ω). Then

we can compute analytic Taylor models for

[D1Feigenvalues(λM (ω), ω)]−1, and [D1Feigenvectors(ξM (ω), ω)]−1,

using Lemma (3.3). Once this is done we have all the ingredients needed to apply
Lemma(3.8). An implementation of these computations can be found in paperCodeEx2.m

(see [24]). Some performance data is recorded in Table (4.2).
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M τ1 τ2 δλ1,λ2
δλ3,λ4

δξ1,ξ2 δξ3,ξ4 time
5 0.001 0.001 2.5× 10−14 3.7× 10−14 1.3× 10−14 7.9× 10−15 3.4 (sec)
5 0.13 0.14 1.5× 10−6 1.4× 10−7 1.9× 10−5 3.5× 10−7 3.4 (sec)
10 0.13 0.14 8.92× 10−11 9.7× 10−14 1.2× 10−9 2.9× 10−14 8.8 (sec)
25 0.13 0.14 4.4× 10−14 6.4× 10−14 5.3× 10−14 3.8× 10−14 43 (sec)

Table 4.2
Branch of Eigenvalues/vectors Performance Data for the Hénon Family: M is the

parameterization order, τ1 and τ2 are the parameterization domains for the branches associated
with fixed points one and two respectively. The eigenvalues and eigenvectors associated with fixed
point one are subscripted one and two, while the eigenvalues and eigenvectors associated with fixed
point two are subscripted three and four. δλ1,λ2

is the maximum truncation error over the two
eigenvalues and similarly for the remaining deltas.

4.3. One Parameter Families of Powers of the Eigenvalues for Hénon.
We now consider powers of the analytic Taylor models of the one parameter expansions
of the eigenvalues computed in the previous section. Consider for example the stable
eigenvalue associated with p1 for the Hénon map with a = 1.4 and b = 0.3. Recall
that the stable eigenvalue associated with the fixed point p1 has

λs ∈ [0.155946322302793, 0.155946322302794].

We begin by computing an analytic Taylor model for the one parameter branch of
eigenvalues through λs. We take a model (λMs (ω), τ, δ) for the eigenvalue branch with
M = 10, τ = 0.1, and δ = 4.8 × 10−12. Using Lemma (3.6) we compute an analytic
Taylor model for the fifth power of λs(ω) with M = 10, τ̄ = 0.995, and validated error
δ5 = 1.6× 10−10. Here we choose, somewhat arbitrarily, a loss of domain parameter
σ = 0.005 in order to apply Lemma (3.6). An analytic Taylor model for the twelfth
power of λs(ω) with the same loss of domain parameter has δ12 = 7.4 × 10−13 while
the analytic Taylor model for the twentieth and thirtith powers have δ20 = 6.2×10−15

and δ30 = ×1.9× 10−16. This decay in the truncation error is due to the fact that we
are working with the expansion of an eigenvalue whose norm is less than one. These
computations are implemented in the program paperCodeEx3.m found at [24].

Suppose instead we work with the unstable eigenvalue associated with p1, which
we recall has

λu ∈ [−1.923738858153409,−1.923738858153407],

and compute an analytic Taylor model for λu(ω) with M = 10, τ = 0.1, and δ =
4.8× 10−12. Now we compute analytic Taylor models for say the second, fifth, tenth
and twentieth powers of λu(ω) and obtain δ2 = 5.1 × 10−8, δ5 = 1.1 × 10−6, δ10 =
7.5×10−5, and δ20 = 0.299. We see that the truncation errors don’t decay, but rather
grow when the constant term of the original analytic Taylor model is greater than
one. This is not surprising when we observe that the same “wrapping” phenomenon
occurs when simply computing powers of intervals.

Fortunately when we validate the errors of stable/unstable manifolds for maps
using the techniques of [23] we never need to compute validated bounds on powers of
analytic functions whose constant terms have absolute value greater than one. The
reason for this is that we validate a polynomial expansion for the unstable manifold of
a diffeomorphism f by treating it as the stable manifold of the inverse map f−1. For
example when we validate the stable manifold of the inverse of the Hénon (i.e. the
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unstable manifold of Hénon) then instead of computing analytic Taylor models for
the powers λnu(ω) we compute analytic Taylor models for the function λ−1

u (ω) (which
of course has constant term with absolute value less than one) and consider powers of
this. We recall that an analytic Taylor model can be computed for λ−1

u (ω) by utilizing
Lemma (3.3) and the fact that a number can be thought of as a 1× 1 matrix and the
reciprocal as the matrix inverse. Using this scheme we obtain results for the powers
of the reciprocal of the unstable eigenvalues which are as good as the results above
for powers of the stable eigenvalues, i.e. we have the the truncation errors decay as a
function of the powers of n.

Note also that for differential equations we can have stable or unstable eigenval-
ues with absolute value greater than one because for differential equations stability is
determined instead by the sign of the real part of the eigenvalue. However for differ-
ential equations we are do not have to consider powers of eigenvalues at all (rather we
must only contend with linear combinations of eigenvalues) so this particular problem
does not arise at all.

4.4. Resonance Conditions/Bounds for the Lorenz System. Consider the
Lorenz System with parameter values σ = 10, β = 8/3, and ρ = 13.9265 (parameters
close to the classical homoclinic tangency). Using IntLab we compute the eigenvalue
enclosures

λ1 ∈ B
(
−18.12992478204046, 3.56× 10−15

)
,

λ2 ∈ B
(
−2.66666666666666, 4.45× 10−16

)
,

λ3 ∈ B
(
7.12992478204047, 6.22× 10−15

)
,

which are clearly real and distinct. Considering only the stable eigenvalues we take

µ∗ = 2.6 < min
1≤i≤2

|real(λi)| and µ∗ = 18.13 > max
1≤i≤2

|real(λi)|.

We can check that dµ∗/µ∗e = 7. Then if n1 + n2 > 7, we have that

n1λ1 + n2λ2 < −n1µ∗ − n2µ∗ < −7µ∗ < −µ∗ < λ1 < λ2,

which shows explicitly that n1 +n2 > 7 implies that n1λ1 +n2λ2 6= λi for 1 = 1, 2 and
we conclude there are no possible resonances with for multi-indices of order greater
or equal to 7. What remains is to check the 33 remaining non-resonance conditions
of the form

b(n1,n2) = min
1≤i≤2

|n1λ1 + n2λ2 − λi| > 0.

with 2 ≤ n1 + n2 ≤ 7. We compute b(n1,n2) using interval arithmetic and check that
the resulting interval does not contain zero. We tabulate the results and find the the
closest the system ever comes to resonance is when (n1, n2) = (0, 7), in which case

|0λ1 + 7λ2 − λ1| ∈ [0.53674188462619, 0.53674188462621].

This tells us that when we compute the analytic Taylor models which parameterize
the branches of stable eigenvalues, we have to take care with the equation

7λ2(ω)− λ1(ω) = 0.
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We compute the analytic Taylor models for λi, i = 1, 2 to order 12, and check the
resonance bounds for all 2 ≤ n1 + n2 ≤ 7. For the multi-indices with (n1, n2) 6= (0, 7)
we find that for τ as large as 1.3 we have that b(n1,n2)(τ) > 1. The difficult multi-
index is (0, 7) where we only have b(0,7)(1.3) > 0.01. However, we also report that
when τ = 1.4 we cannot guarantee that b(0,7)(1.4) > 0 using interval arithmetic and
the bounds given by Equation (??). On the other hand if we take τ ≤ 0.5 we have
b(n1,n2)(0.5) > 1 for all 2 ≤ n1 + n2 ≤ 7.

Remark 4.1 (Range Bounding Using Interval Arithmetic). Since the resonance
conditions always involve bounding functions of one variable away from zero we could
replace the arguments above with more sophisticated range bounding methods. This
could be especially useful for any multi-indices where there is a near resonance in the
ω = 0 equation, such as the multi-index (0, 7) for the homoclinic tangency parameters
in Lorenz discussed above. See [26] for a more sophisticated treatment of techniques
for obtaining range bounds using interval arithmetic. For the present work Equation
(??) is sufficient.

5. Analytic Taylor Model Bounds for the Error Term EN and Differen-
tial Term Df [PN ] for Hénon and Lorenz. We will illustrate how the a-posteriori
error estimates and the estimates on the differential terms required by the hypotheses
of Theorems 4.8 and 4.9 [23] are bound in practice. In particular we develop explicit
formulas for the Hénon and Lorenz systems. We note that even though both the
example systems are low dimensional we attempt to proceed in a general manner.
The fact that the Hénon and Lorenz systems are quadratic will hold the technical
difficulties to a minimum. Nevertheless the following examples illustrate the general
procedure.

5.1. Example: The Henon Map. We will focus on the stable manifold com-
putation. The unstable is the stable manifold of f−1, and the formulas and bounds
are similar. Suppose that

PN (θ, ω) =

N∑
n=0

an(ω)θn

= PMN (θ, ω) +HN (θ, ω)

=

N∑
n=0

M∑
m=0

a(n,m)ω
mθn +

N∑
n=0

hn(ω)θn

with ‖hn‖τ ≤ δn for 0 ≤ n ≤ N is the validated N -th order formal approximation to a
one parameter family of stable manifolds for the Hénon Maps as discussed in Section
4.5 of [23]. In order to apply Theorem 4.8 to PN we have to choose a validation
domain Dν ⊂ C and obtain bounds on both the a-posteriori error term

EN (θ, ω) = f [PN (θ, ω)]− PN [λ(ω)θ, ω]

and the inverse of the differential term

A(θ, ω) = Df [PN (θ, ω), ω]−1.

The complication is that we know the one parameter branch for the stable eigenvalue
λ(ω), and the one parameter branches of coefficients an(ω) only up to analytic Taylor
Model approximation. That is, the data that we know explicitly are the analytic
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Taylor models

λ(ω) = (λM (ω), τ, δλ) ,

λn(ω) = (λnM (ω), τ, δλn) , for 2 ≤ n ≤ N,

and

an(ω) =
(
aMn (ω), τ, δn

)
for 0 ≤ n ≤ N.

Given a ν > 0, our goal is to obtain computable bounds on ‖EN‖ν,τ and ‖A‖ν,τ in
terms of the known analytic Taylor models. Define

δN =

N∑
n=0

δnν
n.

We note that for Hénon, the matrix Df [x, y, ω] is a 2 × 2 matrix of functions
of three variables. We could develop an algorithm and validation theorem similar to
those of Section (3.2) for inverting matrices of functions of several variables, however
we find that this is usually unnecessary for problems where explicit formulas for f ,
f−1, their differentials and the inverses of their differential are known.

For Hénon we have that

Df(x, y, ω)−1 =
1

b+ ω

(
0 1

b+ ω 2ax

)
.

Then

‖Df [PN ]−1‖ν,τ ≤ 1 +
2|a|
b− τ

‖PN‖ν,τ ,

where

‖PN‖ν,τ ≤
N∑
n=0

M∑
m=0

|a(n,m)|νnτm + δN ,

a term which can be computed numerically. We must also require that 0 < τ < b.
This gives a bound on the inverse of the differential in terms of know quantities.

For the a-posteriori error consider

EN (θ, ω) = f [PMN +HN ](θ, ω)− [PMN +HN ](λ(ω)θ, ω).

The first term on the right hand side can be expressed explicitly in terms of the known
formula for the Hénon mapping. We see that

f [PMN +HN ](θ, ω) =

[
1 + P 2

MN +H2
N − a(P 1

MN )2 − 2aP 1
MNH

1
N − a(H1

N )2

bP 1
MN + bH1

N

]
(θ, ω)

= f [PMN (θ, ω)] +

[
H2
N − 2aP 1

MNH
1
N − a(H1

N )2

bH1
N

]
(θ, ω).

For the second term on the right we proceed more generally. Consider

[PMN +HN ](λ(ω)θ, ω) = PMN [(λ(ω)θ, ω)] +HN [λ(ω)θ, ω]
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=

N∑
n=0

M∑
m=0

a(m,n)ω
mλn(ω) θn +

N∑
n=0

∞∑
m=M+1

a(m,n)ω
mλn(ω) θn.

Using the analytic Taylor models of the powers of λ(ω) gives that

N∑
n=0

M∑
m=0

a(m,n)ω
mλn(ω) θn =

N∑
n=0

M∑
m=0

a(m,n)ω
m [λnM (ω) + hλn(ω)] θn

=

N∑
n=0

(
M∑
m=0

λnmω
m

)(
M∑
m=0

a(m,n)ω
m

)
θn +

N∑
n=0

M∑
m=0

hλn(ω)a(m,n)ω
mθn.

Define

(P ◦ λ)MN (ω, θ) ≡
N∑
n=0

(
M∑
m=0

λnmω
m

)(
M∑
m=0

a(m,n)ω
m

)
θn,

and note that this is 2M -th order polynomial in ω with explicitly known coefficients.
On the other hand, the error bounds on the coefficient functions give that

N∑
n=0

∞∑
m=M+1

a(m,n)ω
mλn(ω) θn =

N∑
n=0

λn(ω)hn(ω)θn.

Let

EMN (θ, ω) = f [PMN (θ, ω), ω]− (P ◦ λ)MN [θ, ω].

We note that this is a composition of only known polynomials and we can numerically
bound the quantity ‖EMN‖ν,τ using the usual sigma norms (the resulting sums are
finite). Let εMN be any numerical bound so obtained. We have proven the following
Lemma.

Lemma 5.1 (Total A-Posteriori Error for Hénon). The the validation value a-
posteriori error EN for the Hénon mapping satisfies the following bound;

‖EN‖ν,τ ≤ εNM + max(δN + 2|a|‖PMN‖ν,τδN + |a|δ2
N , |b|δN )

+

N∑
n=0

δλn
M∑
m=0

|a(m,n)|τmνn +

N∑
n=0

δn(µ∗)nνn.

5.2. Example: The Lorenz System. This time suppose that

PN (θ, ω) =

N∑
|α|=0

aα(ω)θα

= PMN (θ, ω) +HN (θ, ω)

=

N∑
|α|=0

M∑
m=0

a(α,m)ω
mθα +

N∑
|α|=0

hα(ω)θα
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with ‖hα‖τ ≤ δα for 0 ≤ |α| ≤ N is the validated N -th order formal approximation
to a one parameter family of two dimensional stable manifolds at the origin of the
Lorenz system as discussed in Section 4.5 of [23]. We have analytic Taylor models of
the stable eigenvalues which we denote by

Λ(ω) =

([
λ1
M (ω) 0

0 λ2
M (ω)

]
, τ, δΛ

)
,

and for the unstable eigenvalue

λ(ω) = (λM (ω), τ, δλ).

Let Σ(ω) = diag(λ1(ω), λ2(ω), λ(ω)). We also have analytic Taylor models

ξi(ω) = (ξiM (ω), τ, δξi) for i = 1, 2, 3,

for the associated eigenvectors.
An analytic Taylor model for Q is given by

Q(ω) = ([ξ1
M |ξ2

M |ξ3
M ], τ, δQ),

where δQ = max(δΛ, δλ). We assume that we also have a validated branch of Q−1,
represented by the analytic Taylor model

Q−1(ω) = (Q−1
M , τ, δQ−1),

obtained using Lemma (3.3).
Now consider that

Df(x, y, z, ω) =

 −σ σ 0
ρ+ ω − z −1 −x

y x −β

 .

Then

Df [PN (θ, ω), ω] = Q(ω)Σ(ω)Q−1(ω) +

N∑
|α|=1

Aα(ω)θα,

where

Aα(ω) =

M∑
m=0

A(α,m)ω
m +Hα(ω),

with

A(α,m) =

 0 0 0
a3

(α,m) 0 −a1
(α,m)

a2
(α,m) a1

(α,m) 0

 ,

for 1 ≤ |α| ≤ N , 0 ≤ m ≤M , and

‖Hα‖τ ≤ 2δα.
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Then take C1 to be a numerically computed constant having

‖Q‖τ‖Q−1‖ ≤ (‖QM‖τ + δQ)
(
‖Q−1

M ‖τ + δQ−1

)
≤ C1,

and C2 to be any numerically computed constant having

N∑
|α|=1

M∑
m=0

|A(α,m)|
µ∗|α|

τmν|α| +

N∑
|α|=1

δα
|α|µ∗

ν|α| ≤ C2.

Now consider the a-posteriori error

EN (θ, ω) = f [PMN (θ, ω) +HN (θ, ω), ω]−D1PMN (θ, ω)Λ(ω)θ −D1HN (ω)Λ(ω)θ.

Again for the first term on the right hand side it is advantageous to exploit the explicit
formula for the Lorenz field and obtain that

f [PMN (θ, ω)+HN (θ, ω), ω] = f [PMN (θ, ω), ω]+Df [PMN (θ, ω), ω]HN (θ, ω)+

 0
H1
NH

3
N

H1
NH

2
N

 .
For the second term on the left we have that

D1PMN (θ, ω)Λ(ω)θ = D1PMN (θ, ω)ΛM (ω)θ +D1PMN (θ, ω)hΛ(ω)θ,

while the third term on the right is

D1HN (ω)Λωθ =

 N∑
|α|=0

hα(ω)D1θ
α

Λ(ω)θ.

Again we define the term

EMN (θ, ω) = f [PMN (θ, ω), ω]−D1PMN (θ, ω)ΛM (ω)θ,

which is the explicitly polynomial part of the a-posteriori error, and which can be
easily bound numerically. Let εMN be any numerically computed constant with
‖EMN‖ν,τ ≤ εMN . We now have that

Lemma 5.2 (Total A-Posteriori Error for Lorenz). The validation value a-
posteriori error for the Lorenz system satisfies

‖EN‖ν,τ ≤ εNM + ‖Df [PMN ]‖ν,τδN + δ2
N + ‖D1PMN‖ν,τδΛν +

N∑
|α|=0

|α|δαµ∗ν|α|.
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