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Abstract

We develop a multiple shooting parameterization method for studying stable/unstable man-
ifolds attached to periodic orbits of systems whose dynamics is determined by an implicit rule.
We represent the local invariant manifold using high order polynomials and show that the
method leads to efficient numerical calculations. We implement the method for several exam-
ple systems in dimension two and three. The resulting manifolds provide useful information
about the orbit structure of the implicit system even in the case that the implicit relation is
neither invertible nor single-valued.
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1 Introduction
The qualitative theory of dynamical systems is built on invariant objects like fixed points, peri-
odic/quasiperiodic orbits, and invariant manifolds of diffeomorphisms and flows. Generalizations
of nonlinear dynamics to the setting of relations instead of functions, where neither uniqueness
of forward or backward iterates is required, appeared in the early 1990’s in the work of Akin [2]
and McGehee [43]. The Ph.D. dissertation of Sander generalized stable/unstable manifold theory
to the setting of relations [23], and work by Lerman [39] and Wather [53] studied transvers ho-
moclinic/heteroclinic phenomena in the setting of non-invertible dynamical systems, with a view
toward applications to semi-flows in infinite dimensions. Further work by Sander [51, 50, 52] studied
homoclinic bifurcations for noninvertible maps and relations.

The ideas of the authors just mentioned have been applied to models coming from Population
dynamics [3], Iterated difference methods/Numerical algorithms [41, 23], delay differential equations
[53], adaptive control [1], discrete variational problems [24, 55], and economic theory [36, 37, 38, 44].
Indeed, this list is far from comprehensive and the interested reader will find a wealth of additional
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references in the works just cited. We mention also the recent book on dynamical systems which
are defined by an implicit rule [42], where many further examples and references are found.

A complementary approach to the study of generalized dynamics, based on functional analytic
rather than topological tools, is given by the parameterization method. The idea of the param-
eterization method is to consider the equations describing a sufficiently recurrent orbit or orbits:
for example the stable/unstable manifold attached to a fixed or periodic orbit, or a quasiperiodic
family or orbts - that is an invariant torus. The equations describing special solutions may have
nicer properties than the Cauchy problem describing a generic orbit. While this observation is
important for classical dynamical systems defined by an invertible map, it can be even more useful
when studying dynamical systems which are not invertible, are ill posed, or are not even single
valued.

The parameterization method was originally developed for studying non-resonant invariant man-
ifolds attached to fixed points of infinite dimensional maps between Banach spaces in a series of
papers by Cabré, Fontich, and de la Llave [6, 7, 8], though the approach has roots going back to the
Nineteenth Century (see appendix B of [8]). The method has since been extended to the study of
parabolic fixed points [4], invariant tori and their stable/unstable fibers [28, 27, 29, 10, 34], for sta-
ble/unstable manifolds attached to periodic solutions of ordinary differential equations [33, 13, 47],
and to develop KAM arguments without action angle variables [18, 9]. See also the recent book of
Haro, Canadell, Figueras, Luque and Mondelo [26] a for much more complete overview.

More recently, the parameterization method has been extended to generalized dynamical systems
like those mentioned above. We refer for example to the work of [14, 15] on stable and center
manifolds for ill-posed problem, the work of [20, 56] on invariant tori for ill-posed PDEs and state
dependent delay differential equations [31, 30], the work of [17, 16] on periodic orbits and their
isochrones in state dependent perturbations of ODEs, and the the related work of [12] on computer
assisted existence proofs of periodic orbits for the Boussinesq equation.

The work of [19], which studies stable/unstable manifolds attached to fixed points of implicitly
defined discrete time dynamical systems, is especially important in the context of the present study.
We develop a multiple shooting parameterization method for computing stable/unstable manifolds
attached to periodic orbits of implicitly defined dynamical systems. In this sense the present work
can also be seen as extending the ideas of [25] to the setting of implicit maps. We illustrate the
use of the method to compute some one and two dimensional stable/unstable manifolds attached
to fixed and periodic orbits in application problems involving two and three dimensional implicitly
defined dynamical systems.

The remainder of the paper is organized as follows. In Section A we review some background
material dealing with classical discrete time dynamical systems defined by an explicit rule. Section
B deals with implicitly defined maps and develops the multiple shooting functional equations for
invariant manifolds attached to periodic orbits. In Section 4 we develop the formal series solu-
tions to the functional equations in several examples and illustrate the computation of high order
approximations of the stable/unstable manifolds.

All the MatLab codes discussed in the present work are found at

http://cosweb1.fau.edu/~jmirelesjames/parmImplicitMaps.html
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2 A brief overview of the parameterization methods for maps
We review some basic results about the parameterization method for stable/unstable manifolds
attached to fixed points and periodic orbits of discrete time dynamical systems.

2.1 Stable/unstable manifolds attached to fixed points
In this section we recall some basic results from the work of [6, 7, 8].

Lemma 2.1 (Parameterization method). Suppose that U ⊂ Rd is an open set, that F : U → Rd is
a Ck(U) mapping with k = 1, 2, 3, . . . ,∞, ω, that x∗ ∈ U is a fixed point of F , and that DF (x∗)
is invertible. Take ds = dim(Es) to be the dimension of the stable eigenspace/the number of stable
eigenvalues.

Let α, β > 0 have that
|λ| ≤ α < 1,

for all λ ∈ specs(x∗) and
1 < β ≤ |λ|,

for all λ ∈ specu(x∗). Let L ∈ N be the smallest natural number with

αL <
1

β
,

and assume that
L+ 1 < k.

Then there exists an open set Ds ⊂ Rds with 0 ∈ Ds, a polynomial K : Ds → Rds of degree not
more than L, and a Ck mapping P : Ds → Rd so that

P (0) = x∗,

the columns of DP (0) span Es and

F (P (θ)) = P (K(θ)), (1)

for all θ ∈ Ds. Moreover, P is unique up to the choice of the scalings of the columns of DP (0).

Several additional comments are in order. First, we remark that the columns of DP (0) can
be taken as stable eigenvectors of DF (x∗), so that DP (x∗) is unique up to the choice of the
scalings of the eigenvectors. Once these scalings are determined, the parameterization P is uniquely
determined.

Note also that if k = ∞ or k = ω then L + 1 < k is automatically satisfied. Consider the case
when k = ω, that is F (real) analytic at x∗, and suppose that the scalings of DP (0) are fixed. Then
P , and hence it’s power series expansion at 0, are uniquely determined. In practice then K and
P can be worked out by power matching arguments, leading to useful numerical schemes. In fact,
the scalings of the eigenvectors can be chosen so that the power series coefficients of P decay at a
desired exponential rate. Numerical schemes for determining the optimal scalings of eigenvectors
are developed in [5].

The following is often very useful for determining the polynomial mapping K in the case that
some (generic) conditions hold between the stable eigenvalues.
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Lemma 2.2 (Non-resonant eigenvalues implies K linear ). Let λ1, . . . , λds ∈ C denote the stable
eigenvalues of DF (x∗). Assume that for all (n1, . . . , nds) ∈ Nds with

2 ≤ n1 + . . .+ nds ≤ L,

we have that
λn1
1 . . . λ

nds

ds
6= λ, (2)

for all λ ∈ spces(x∗). Then we can choose K to be the linear mapping

K(θ) = Λθ,

where θ = (θ1, . . . , θds) ∈ Rds and Λ is the ns × ns matrix

Λ =



λ1 0 . . . 0 0

0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λns−1 0

0 0 . . . 0 λns


.

That is, Λ is the matrix with the stable eigenvalues on the diagonal entries and zeros in all other
entries.

We say that the stable eigenvalues are non-resonant when the condition given by Equation (2)
is satisfied. We say there is a resonance at (n1, . . . , nds) ∈ Nds if

λn1
1 . . . λ

nds

ds
∈ specs(x0).

In this case, the K is required to have a monomial term of the form cθn1
1 . . . θ

nds

ds
with non-zero

c ∈ Rds . That is, even in the non-resonant case the form of the polynomial K can be determined
by examining the resonances between the stable eigenvalues. Numerical procedures for determining
P and K in the resonant case are developed in [54].

It is worth remarking that when F is analytic and the stable eigenvalues are non-resonant, then
Equation (1) reduces to

F (P (θ)) = P (Λθ), θ ∈ Ds ⊂ Rds . (3)

Note that P is the only unknown in this equation. The equation can be viewed as requiring a
conjugacy between the dynamics on the image of P and the diagonal linear map given by the stable
eigenvalues. Note that in case Equation (3) holds it is easy to see that P parameterizes a local
stable manifold. Indeed, let θ ∈ Ds, then since P is continuous (in fact Ck) we have that

lim
n→∞

Fn(P (θ)) = lim
n→∞

F (P (Λnθ))

= F
(
P
(

lim
n→∞

Λnθ
))

= F (P (0))

= F (x∗)

= x∗,
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so that image(P ) ⊂ W s(x∗). Noting that image(P ) is a ds dimensional manifold tangent to Es at
x∗ gives equality rather than inclusion.

Remark 2.3 (Generality). Lemma 2.1 follows trivially from Theorem 1.1 of [6, 7, 8]. In the much
more general work just cited U is taken to be an open subset of a Banach space, and the infinite
dimensional complications result in more delicate spectral assumptions. The finite dimensional
setting of the present work, and the fact the we parameterize the full stable manifold simplify
somewhat the statement of Lemma.

Remark 2.4 (Unstable manifold parameterization). Note that in Lemma 2.1, the assumption
that DF (x∗) is invertible implies that F is a local diffeomorphism. Then, in a small enough
neighborhood of x∗ there is a well defined Ck inverse mapping F−1. So, let Σ denote the diagonal
matrix of unstable eigenvalues of DF−1(x∗), so that Σ−1 is the matrix of stable eigenvalue of
DF−1(x∗). Assume that these stable eigenvalues are non-resonant. Then there exists an open set
Du and a Ck mapping Q so that

F−1(Q(σ)) = Q(Σ−1σ), σ ∈ Du.

Applying F to both sides of the equation and composing with Σ leads to the equation

Q(Σσ) = F (Q(σ)), σ ∈ Du.

In other words, the stable and unstable parameterizations satisfy exactly the same invariance equa-
tion when the eigenvalues are non-resonant. Only the conjugating matrix changes.

2.2 Stable/unstable manifolds attached to periodic orbits
The material in this section provides a brief review of the techniques developed in [25] for param-
eterization of stable/unstable manifolds attached to periodic orbits. The main idea is to exploit
multiple shooting schemes to avoid function compositions.

Let x1, , ..., xN ∈ Rd be the points along a hyperbolic period N orbit. Let λ1, . . . , λd be the
multipliers of the periodic orbit, and let

Λ =



λ1 0 . . . 0 0

0 λ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . λns−1 0

0 0 . . . 0 λns


,

denote the ds × ds diagonal matrix of stable multipliers (similarly Σ denote the du × du diagonal
matrix of unstable multipliers). The following is paraphrased from Section 3 of [25].

Suppose that λ1, . . . , λds ∈ C be the stable multipliers associated with a non-degenerate period
N orbit {x1, . . . , xN} ⊂ Rd for the Ck mapping F . For 1 ≤ j ≤ ds, let ξj,1, . . . , ξj,ds ⊂ Cd denote
the eigenvectors of DF (xj) associated with the eigenvalue λj .
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Assume that the stable multipliers are non-resonant, in the sense of Lemma 2.2. Then, by
Lemma 2.2, there is an open set Ds ⊂ Rds and are unique P1, . . . PN : Ds → Rd so that

P1(0) = x1

...
PN (0) = xN

and

DP1(0) = [ξ1,1, . . . , ξ1,ds ]

...
DPN (0) = [ξN,1, . . . , ξN,ds ],

having that

FN (P1(θ)) = P1(Σθ)

...

FN (PN (θ)) = PN (Σθ)

The difficulty with these equations is that they involve the composition mapping FN , which is
in general a much more complicated map than F . The main result of [25] (see Section 3) is that
the parameterizations admit a composition free formulation.

Lemma 2.5 (Composition free invariance equations). Under the hypotheses above (non-degenerate
periodic orbit and non-resonant multipliers), the functions P1, . . . , PN : Ds → Rd satisfy the system
of composition free equations

F (P1(θ)) = P2

(
Λ̃θ
)

F (P2(θ)) = P3

(
Λ̃θ
)

...

F (PN−1(θ)) = PN

(
Λ̃θ
)

F (PN (θ)) = P1

(
Λ̃θ
)

where

Λ̃ =



N
√
λ1 0 . . . 0 0

0 N
√
λ2 . . . 0 0

...
...

. . .
...

...

0 0 . . . N
√
λns−1 0

0 0 . . . 0 N
√
λns


,
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is the diagonal matrix of N -th roots of the multipliers. (Here it is sufficient to choose any branch
of the N -th root).

From the perspective of numerical calculations it is much easier to solve simultaneously the
system of equations given in Lemma 2.5 than it is to apply the parameterization method directly
to the composition mapping FN . This is illustrated by examples in [25]. Note also that the N -
th roots of the multipliers are the eigenvalues of the derivative of the multiple shooting map, see
Equation (20). If the periodic orbit is obtained by finding G(x1, . . . , xN ) = 0 then by computing
the eigenvalues of DG(x1, . . . , xN ) we have the entries of Λ̃.

3 Parameterization methods for implicitly defined maps
Basic definitions for discrete dynamical systems defined by implicit maps are reviewed in Section
B. The critical point is that we are interested in the dynamics of a mapping of the form

F (x) = y,

if and only if
T (y, x) = 0.

That is, we solve an implicit equation to find the image of x under F . This view of the implicit
map F is now combined with the parameterization method for F . We review the paramterization
method for fixed points of implicit maps as introduced in [19], and then extend these ideas via a
multiple shooting scheme to periodic orbits of implicit systems.

3.1 Stable/unstable manifolds attached to fixed points
The main result of [19] can be paraphrased as follows.

Theorem 3.1. Suppose that U, V ⊂ Rd are open sets and that T : U × V → Rd is a Ck mapping
with fixed point x∗ ∈ U ∩ V , that is

T (x∗, x∗) = 0.

Assume that

• D1T (x∗, x∗) is invertible.

• Let λ1, . . . , λds ∈ C denote the stable eigenvalues and ξ1, . . . , ξds ∈ Cd associated eigenvec-
tors of D1T (x∗, x∗)

−1D2T (x∗, x∗). Assume that the stable eigenvalues are distinct (otherwise
choose the appropriate ξj as generalized eigenvectors).

• Let
α = max

1≤j≤ds
|λj |,

β = max
λ∈specu(x∗)

∣∣λ−1∣∣ ,
and 2 ≤ L be the smallest integer so that

αLβ < 1.

Assume that L+ 1 ≤ k.
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• Assume that for all (n1, . . . , nds) ∈ Nds with 2 ≤ n1 + . . .+ nds ≤ L we have that

λn1
1 . . . λ

nds

ds
6= λj

for 1 ≤ j ≤ λds .

Then there exists an open set Ds ⊂ Rds with 0 ∈ Ds, and a Ck mapping P : Ds → Rd so that

P (0) = x∗,

DP (0) = [ξ1, . . . , ξds ],

and
T (P (Λθ), P (θ))) = 0, θ ∈ Ds (4)

where Λ is the ds × ds matrix with the stable eigenvalues on the diagonal entries and zero entries
elsewhere. P parameterizes a local stable manifold attached to the fixed point x∗ of the implicitly
defined mapping F . P is unique up to the choices of the scalings of the eigenvectors.

The proof is a simple matter of translating the assumptions about T , its derivative, and its
eigenvalues/eigenvectors into equivalent statements about F , and then applying Lemma 2.1 to the
implicitly defined mapping F . Recalling for example that F (x) = y if and only if T (y, x) = 0, then
by letting y = P (Λθ) and x = P (θ), Equation (4), is equivalent to

F (P (θ)) = P (Λθ), θ ∈ Ds,

and this is precisely Equation (3).

3.2 Stable/unstable manifolds attached to periodic orbits
We now introduce a multiple shooting version of the parameterization method for implicitly defined
systems.

Theorem 3.2. Suppose that U, V ⊂ Rd are open sets and that T : U × V → Rd is a Ck mapping,
and that x1, . . . , xN ∈ U ∩ V have

T (x2, x1) = 0

...
T (xN−1, xN ) = 0

T (x1, xN ) = 0

Assume that:

• the matrices D1T (x2, x1), . . . , D1T (xN , xN−1), D1T (x1, xN ) are invertible.

• Let λ1, . . . , λds ∈ C denote the stable multipliers and for 1 ≤ j ≤ N let ξj,1, . . . , ξj,N ∈ Cd
denote associated eigenvectors. Assume that the stable multipliers are distinct (otherwise
choose the appropriate generalized eigenvectors).

8



• Let
α = max

1≤j≤ds
|λj |,

β = max
λ∈specu(x∗)

∣∣λ−1∣∣ ,
and 2 ≤ L be the smallest integer so that

αLβ < 1.

Assume that L+ 1 ≤ k.

• Assume that for all (n1, . . . , nds) ∈ Nds with 2 ≤ n1 + . . .+ nds ≤ L we have that

λn1
1 . . . λ

nds

ds
6= λj

for 1 ≤ j ≤ λds .

Then there exists an open set Ds ⊂ Rds with 0 ∈ Ds, and Ck mappings P1, . . . , PN : Ds → Rd so
that

P1(0) = x1, . . . , PN (0) = xN

DP1(0) = [ξ1,1, . . . , ξ1,ds ], . . . , DPN (0) = [ξN,1, . . . , ξN,ds ],

and
T (P2(Λ̃θ), P1(θ))) = 0

T (P3(Λ̃θ), P2(θ))) = 0

...

T (PN (Λ̃θ), PN−1(θ))) = 0

T (P1(Λ̃θ), PN (θ))) = 0

(5)

for all θ ∈ Ds. Here Λ̃ is the ds×ds matrix with N -th roots of the stable eigenvalues on the diagonal
entries and zero entries elsewhere. Pj parameterizes a local stable manifold attached to the periodic
point xj of the implicitly defined mapping F . The Pj are unique up to the choices of the scalings
of the eigenvectors.

The theorem follows by applying Lemma 2.5 to the implicit map F defined by T (y, x) = 0. We
remark that the knowledge that P exists (or that the Pj exist), and solves the functional equations
leads to efficient methods. Indeed, if T is analytic then P (or the Pj) will be analytic as well, and
it makes sense to look for power series solutions of the functional equations. This topic is pursued
in the next section.

4 Formal series solutions
We illustrate the computation of the formal series coefficients of parameterizations of several one and
two dimensional stable/unstable manifolds attached to fixed and periodic orbits in some polynomial
examples in two and three dimensions. It is fairly straight forward to generalize these computations
to any polynomial system. Indeed, computations for non-polynomial systems are handled using
automatic differentiation for power series. Non-polynomial nonlinearities are discussed in greater
detail in [26]. See also [35, 19, 25].
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4.1 Parameterized stable/unstable manifolds attached to fixed points of
the implicit Hénon system

As a first example we derive a formal series solution of the invariance equation given in Equation
(4) for the stable/unstable manifold attached to a fixed point if the explicit Hénon system given in
Equation 27.

Let x∗ ∈ R2 have Tε(x∗,x∗) = 0, let λ ∈ C be the stable eigenvalue and ξ ∈ C2 an associated
eigenvector. Indeed, note that λ ∈ R (as the only other eigenvalue is stable), so that we can choose
ξ ∈ R2. This data is computed numerically following the discussion in Section C.1.

Motivated by Theorem 3.1 we seek P : (−τ, τ)→ R2 so that

P (0) = x∗, P ′(0) = ξ,

and
Tε(P (λθ), P (z)) = 0,

for θ ∈ (−τ, τ). Observe that since λ is the only stable eigenvalue, the resonance conditions of
Theorem 3.1 are automatically satisfied.

Since T is analytic in both variables we look for analytic P of the form

P (θ) =

 ∑∞
n=0 anθ

n∑∞
n=0 bnθ

n

 .

Note that

T (P (λθ), P (θ)) = T

( ∞∑
n=0

λnanθ
n,

∞∑
n=0

λnbnθ
n,

∞∑
n=0

anθ
n,

∞∑
n=0

bnθ
n

)
= 0

has component equations

∞∑
n=0

λnanθ
n − 1 + α

[ ∞∑
n=0

anθ
n

]2
−
∞∑
n=0

bnθ
n − ε

[ ∞∑
n=0

λnanθ
n

]5
= 0

∞∑
n=0

λnbnθ
n − β

∞∑
n=0

anθ
n + ε

[ ∞∑
n=0

λnbnθ
n

]5
= 0.

(6)

Define the infinite sequence {δn}∞n=0 by

δn =

{
1 n = 0

0 n ≥ 1
,

the power series coefficients of the constant function taking the value 1. Then we can rewrite
Equation (6) as

∞∑
n=0

[λnan − δn + α(a ∗ a)n − bn − ελn(a ∗ a ∗ a ∗ a ∗ a)n] θn = 0

∞∑
n=0

[λnbn − βan + ελn(b ∗ b ∗ b ∗ b ∗ b)n] θn = 0.
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Recalling the notation for the Cauchy “hat products” given in Section D, we observe that

(a ∗ a)n = 2a0an + (â ∗ a)n,

and that
(a ∗ a ∗ a ∗ a ∗ a)n = 5a40an + ( ̂a ∗ a ∗ a ∗ a ∗ a)n,

and similarly for the coefficients involving the 5-th power of b. Matching like powers of θ in both
sides of (6), and recalling that the first order coefficients n = 0 and n = 1 are already known, we
obtain for n ≥ 2

anλ
n − bn + 2αa0an + α(â ∗ a)n − 5εa40λ

nan − ελn( ̂a ∗ a ∗ a ∗ a ∗ a)n = 0

λnbn − βan + 5εb40λ
nbn + ελn( ̂b ∗ b ∗ b ∗ b ∗ b)n = 0

(7)

and note that the “hat” products depend only on terms of order lower that n.
Isolating terms of order n on the left and lower order terms on the right leads to the Homological

equations  λn + 2αa0 − 5εa40λ
n −1

−β 5εb40λ
n + λn

 an

bn

 =

 S1
n

S2
n

 (8)

for n ≥ 2, where,
S1
n = −α(â ∗ a)n + ελn( ̂a ∗ a ∗ a ∗ a ∗ a)n

S2
n = −ελn( ̂b ∗ b ∗ b ∗ b ∗ b)n.

(9)

This is a linear equation for (an, bn), where the right hand side depends only on terms of lower
order. We can solve the homological equations to any desired order, provided that the matrices are
invertible.

Remark 4.1 (Non-resonances and uniqueness). Again, if the fixed point is a saddle, then λn is
never resonant, and Equation (8) has a unique solution for all n ≥ 2. It follows that the formal
power series solution is unique up to the choice of the scaling of the eigenvector. This comment in
fact holds generally. See [6].

4.2 Parameterized stable/unstable manifolds attached to period two points
of the implicit Hénon system

Suppose now that x1 = (x1, y1) and x2 = (x2, y2) is a period two point for the implicit Hénon
system, which is computed numerically – along with its first order data – as discussed in Section
C.1. Motivated by Theorem 3.2, we seek parameterizations P,Q : (−τ, τ)→ R2 so that

Tε(Q(λθ), P (θ)) = 0

Tε(P (λθ), Q(θ)) = 0.
(10)

Letting

P (θ) =

∞∑
n=0

 an

bn

 θn, Q(θ) =

∞∑
n=0

 cn

dn

 θn,
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Equation (10) becomes

∞∑
n=0

anλ
nθn −

1− α

[ ∞∑
n=0

cnθ
n

]2
+

∞∑
n=0

dnθ
n + ε

[ ∞∑
n=0

anλ
nθn

]5 = 0

∞∑
n=0

bnλ
nθn − β

∞∑
n=0

cnθ
n + ε

[ ∞∑
n=0

bnλ
nθn

]5
= 0

∞∑
n=0

cnλ
nθn −

1− α

[ ∞∑
n=0

anθ
n

]2
+

∞∑
n=0

bnθ
n + ε

[ ∞∑
n=0

cnλ
nθn

]5 = 0

∞∑
n=0

dnλ
nθn − β

∞∑
n=0

anθ
n + ε

[ ∞∑
n=0

dnλ
nθn

]5
= 0

. (11)

Expanding the powers as Cauchy products and extracting the terms of order n, we have

∞∑
n=0


λnan − δn + α(c ∗ c)n − dn − ελn(a ∗ a ∗ a ∗ a ∗ a)n

λnbn − βcn + ελn(b ∗ b ∗ b ∗ b ∗ b)n
λncn − δn + α(a ∗ a)n − bn − ελn(c ∗ c ∗ c ∗ c ∗ c)n

λndn − βan + ε(d ∗ d ∗ d ∗ d ∗ d)n

 θn =


0

0

0

0

 . (12)

Extracting from the Cauchy products terms of order n and matching like powers of θ leads to the
equations

λnan + 2αc0cn + α(ĉ ∗ c)n − dn − ελn5a40an − ελn( ̂a ∗ a ∗ a ∗ a ∗ a)n = 0

λnbn − βcn + ελn5b40bn + ελn( ̂b ∗ b ∗ b ∗ b ∗ b)n = 0

λncn + 2αa0an + α(â ∗ a)n − bn − ελn5c40cn − ελn( ̂c ∗ c ∗ c ∗ c ∗ c)n = 0

λndn − βan + ελn5d40dn + ελn( ̂d ∗ d ∗ d ∗ d ∗ d)n = 0

for n ≥ 2. Observing that these equations are linear in (an, bn, cn, dn) we isolate the terms of order
n on the left and have the homological equations

λn − 5εa40λ
n 0 2αc0 −1

0 λn + 5εb40λ
n −β 0

2αa0 −1 λn − 5εc40λ
n 0

−β 0 0 λn + 5εd40λ
n




an

bn

cn

dn

 =


S1

S2

S3

S4

 (13)

Where
S1 = −α(ĉ ∗ c)n + ελn( ̂a ∗ a ∗ a ∗ a ∗ a)n

S2 = −ελn( ̂b ∗ b ∗ b ∗ b ∗ b)n
S3 = −α(â ∗ a)n + ελn( ̂c ∗ c ∗ c ∗ c ∗ c)n
S4 = −ελn( ̂d ∗ d ∗ d ∗ d ∗ d)n.

(14)
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Once the period two point and it’s eigenvectors are known, so that we have the first and second
order coefficients, we solve the homological equations order by order for 2 ≤ n ≤ N to find the
coefficients of the parameterization to order N . Indeed, the scheme just described generalizes to
manifolds attached to periodic orbits of any period in an obvious way.

4.3 Parameterized stable/unstable manifolds attached to fixed points of
the implicit Lomelí system

Consider the implicit Lomelí system defined in Equation (31). At the parameter values studied in
the present work the Lomelí map has a pair of hyperbolic fixed points. One of the fixed points
has 2d unstable and 1d stable manifold, while for the other it is vice versa. For small ε 6= 0 these
features persist into the implicit system, and we will compute the formal series expansion for the
parameterization of a two dimensional stable manifold of the implicit system. We focus on the case
of complex conjugate eigenvalues, but the real distinct case is similar.

So, let x∗ = (x∗, y∗, z∗) ∈ R3 denote the fixed point, λ1, λ2 ∈ C the stable eigenvalues, and
ξ1, ξ2 ∈ C3 be associated stable eigenvectors. Note that λ2 = λ1 and we choose eigenvectors with
the same symmetry. This data is computed numerically as outlined in Section C.2.

Let
Br(0) =

{
(θ1, θ2) ∈ R2 |

√
θ21 + θ22 < 1

}
.

Motivated again by Theorem 3.1, we seek a smooth function P : B1(0)→ R3 solving the invariance
equation

Tε(P(λ1θ1, λ2θ2),P(θ1, θ2) = 0, (θ1, θ2) ∈ Br(0), (15)
of the form

P(θ1, θ2) =


P (θ1, θ2)

Q(θ1, θ2)

R(θ1, θ2)



=


∑∞
m=0

∑∞
n=0 umnθ

m
1 θ

n
2∑∞

m=0

∑∞
n=0 vmnθ

m
1 θ

n
2∑∞

m=0

∑∞
n=0 wmnθ

m
1 θ

n
2

 .

The first order constraints require that
u00

v00

w00

 =


x∗

y∗

z∗

 , and that


u10

v10

w10

 = ξ1 and


u01

v01

w01

 = ξ2.

To work out the higher order terms we plug the power series into the invariance equation and have
P (λ1θ1, λ2θ2)− ρ− τP (θ1, θ2)−R(θ1, θ2)−N(θ1, θ2) + εH1(λ1, θ1, λ2, θ2)

Q(λ1θ1, λ2θ2)− P (θ1, θ2) + εγH2(λ1θ1, λ2θ2)

R(λ1θ1, λ2θ2)−Q(θ1, θ2)

 =


0

0

0

 .
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where
N(θ1, θ2) = aP (θ1, θ2)2 + bP (θ1, θ2)Q(θ1, θ2) + cQ(θ1, θ2)2,

H1(λ1θ1, λ2θ2) = αQ(λ1θ1, λ2θ2)5 + βR(λ1θ1, λ2θ2)5,

and
H2(λ1θ1, λ2θ2) = γR(λ1θ1, λ2θ2)5.

Define {δmn}∞m+n=0 by

δmn =

{
1 m = n = 0

0 otherwise
,

the power series coefficients of the constant function taking value one. Then

∞∑
m=0

∞∑
n=0


λm1 λ

n
2umn − ρδmn − τumn − wmn −Nmn + εH1

mn

λm1 λ
n
2 vmn − umn + εH2

mn

λm1 λ
n
2wmn − vmn

 θm1 θ
n
2 =


0

0

0

 ,

where

Nmn = a(u ∗ u)mn + b(u ∗ v)mn + c(v ∗ v)mn

= 2au00umn + a(û ∗ u)mn + bu00vmn + bv00umn + b(û ∗ v)mn + 2cv00vmn + c(v̂ ∗ v)mn

H1
mn = αλm1 λ

n
2 (v ∗ v ∗ v ∗ v ∗ v)mn + βλm1 λ

n
2 (w ∗ w ∗ w ∗ w ∗ w)mn

= 5αλm1 λ
n
2 v

4
00vmn + αλm1 λ

n
2 ( ̂v ∗ v ∗ v ∗ v ∗ v)mn

+ 5βλm1 λ
n
2w00wmn + βλm1 λ

n
2 ( ̂w ∗ w ∗ w ∗ w ∗ w)mn

and

H2
mn = 5γλm1 λ

n
2w00wmn + γλm1 λ

n
2 ( ̂w ∗ w ∗ w ∗ w ∗ w)mn.

Here again we recall the definition of the Cauchy “hat products” given in Section D. We define

N̂mn = a(û ∗ u)mn + b(û ∗ v)mn + c(v̂ ∗ v)mn

Ĥ1
mn = αλm1 λ

n
2 ( ̂v ∗ v ∗ v ∗ v ∗ v)mn + βλm1 λ

n
2 ( ̂w ∗ w ∗ w ∗ w ∗ w)mn

and

Ĥ2
mn = γλm1 λ

n
2 ( ̂w ∗ w ∗ w ∗ w ∗ w)mn,

so that
Nmn = 2au00umn + bu00vmn + bv00umn + 2cv00vmn + N̂mn,

H1
mn = 5αλm1 λ

n
2 v

4
00vmn + 5βλm1 λ

n
2w00wmn + Ĥ1

mn,

and
H2
mn = 5γλm1 λ

n
2w00wmn + Ĥ2

mn,

are all terms of order mn plus lower order terms. Matching like powers of θ leads to

λm1 λ
n
2umn − τumn − wmn − 2au00umn − bu00vmn − bv00umn − 2cv00vmn − N̂mn

+5εαλm1 λ
n
2 v

4
00vmn + 5εβλm1 λ

n
2w00wmn + εĤ1

mn = 0

λm1 λ
n
2 vmn − umn + 5εγλm1 λ

n
2w00wmn + εĤ2

mn = 0

λm1 λ
n
2wmn − vmn = 0
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This leads to linear homological equations for (umn, vmn, wmn) when m+ n ≥ 2 of the form

Amn


umn

vmn

wmn

 =


S1
mn

S2
mn

0

 , (16)

where

Amn =


λm1 λ

n
2 − τ − 2au00 − bv00 −bu00 − 2cv00 + 5εαv400λ

m
1 λ

n
2 −1 + 5εβw4

00λ
m
1 λ

n
2

−1 λm1 λ
n
2 5εγw4

00λ
m
1 λ

n
2

0 −1 λm1 λ
n
2

 ,

and the components of the right hand side are given by

S1
mn = N̂mn − εĤ1

mn

S2
mn = −εĤ2

mn.

Note that the homological equations can be solved order by order for 2 ≤ m + n ≤ N to any
desired N , as long as the Amn are invertible. Note that, just as in the examples above, the matrix
is invertible as long as the non-resonance conditions are met.

4.4 Parameterized stable/unstable manifolds attached to period four
points of the implicit Lomelí system

Once again consider the implicit Lomelí system defined in Equation (31). We consider the case of
a period four orbit with stable saddle-focus stability. That is, we assume that the periodic orbit
has that λi1 = λi2 with |λi1| < 1 for i = 1, 2, 3, 4. Let

λ̃1 = (λ11)
1/4

, and λ̃2 = (λ12)
1/4

.

Motivated by Theorem 3.2, we seek smooth functions Pi : B21(0)→ R3 for 1 ≤ i ≤ 4 having

Pi(0) = x∗i ,

∂

∂j
Pi(0) = ξij ,

for 1 ≤ j ≤ 4 and
Tε(P1(λ̃1z1, λ̃2z2), P4(z1, z2)) = 0

Tε(P2(λ̃1z1, λ̃2z2), P1(z1, z2)) = 0

Tε(P3(λ̃1z1, λ̃2z2), P2(z1, z2)) = 0

Tε(P4(λ̃1z1, λ̃2z2), P3(z1, z2)) = 0.

(17)
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We write

Pi(z1, z2) =

∞∑
n1=0

∞∑
n2=0

pin1,n2
zn1
1 zn2

2 =


∑∞
n1=0

∑∞
n2=0 u

i
n1,n2

zn1
1 zn2

2∑∞
n1=0

∑∞
n2=0 v

i
n1,n2

zn1
1 zn2

2∑∞
n1=0

∑∞
n2=0 w

i
n1,n2

zn1
1 zn2

2

 ,

and have that

Pi(λ1z1, λ2z2) =


∑∞
m=0

∑∞
n=0 u

i
m,nλ̃

m
1 λ̃

n
2 z
m
1 z

n
2∑∞

m=0

∑∞
n=0 v

i
m,nλ̃

m
1 λ̃

n
2 z
m
1 z

n
2∑∞

m=0

∑∞
n=0 w

i
m,nλ̃

m
1 λ̃

n
2 z
m
1 z

n
2

 ,

where

pi0,0 =


u
(i)
00

v
(i)
00

w
(i)
00

 = x∗i , pi1,0 =


u
(i)
10

v
(i)
10

w
(i)
10

 = ξi1, pi0,1 =


u
(i)
01

v
(i)
01

w
(i)
01

 = ξi2,

for i = 1, 2, 3, 4.
Plugging the power series for Pi(z1, z2) and Pi(λ1z1, λ2z2) into the equation (17), expanding

Cauchy products, matching like powers of z1, z2, extracting the coefficients of order m,n from the
Cauchy products, and isolating them from the lower order terms just as in the other formal series
calculations above leads to the homological equation for (m+ n)th term as follows

Amnvmn = Smn. (18)

The explicit formulas for Amn and Smn are recorded in Section E, as they are needed in the
numerical implementation. Once again, solving these equations order by order gives the coefficients
of the parameterizations to any desired accuracy. Moreover, the parameterizations of manifolds
attached to longer period orbits are similar.

5 Numerical Results
We illustrate the utility of the explicit homological equations derived in the previous section with
some example calculations.

5.1 Numerical example: stable/unstable manifolds attached to fixed
points of the implicit Hénon system

As a first example we consider stable/unstable manifolds attached to fixed points of the implicit
Hénon system defined in Equation (27). We compute a fixed point, and it’s stable/unstable eigen-
values and eigenvectors as discussed in Section B.1. The results are summarized in Figure 1, and
this first order data is what is needed to compute the parameterizations of the Stable/unstable
manifolds order by order, solving the homological equations given in Equation (8). This allows us

16



First order data: implicit Hénon

parameter fixed point eigenvalues eigenvectors

ε = 0.01 p0 ≈

 0.6317

0.1895

 λu ≈ −1.939

λs ≈ 0.1559
ξu ≈

 −0.9882

0.1529

 ξs ≈

 −0.4612

−0.8873


ε = 0.03 p0 ≈

 0.6326

0.1898

 λu ≈ −1.971

λs ≈ 0.1559
ξu ≈

 −0.9886

0.1505

 ξs ≈

 −0.4613

−0.8873


ε = 0.0315 p0 ≈

 0.6326

0.1898

 λu ≈ −1.973

λs ≈ 0.1559
ξu ≈

 −0.9886

0.1503

 ξs ≈

 −0.4613

−0.8872


ε = 0.04 p0 ≈

 0.6330

0.1900

 λu ≈ −1.987

λs ≈ 0.1560
ξu ≈

 −0.9888

0.1492

 ξs ≈

 −0.4613

−0.8872


Table 1: Fixed point/stability data: the table reports the location and stability of one of
the fixed points of the implicit Hénon system as the parameter ε varies. Data is given to four
decimal places. More accurate values (approximately machine precision) are obtained by running
the programs.

to compute the Taylor coefficients of parameterizations of the manifolds to any desired order. Some
results are reported for the unstable manifold in Figure 1.

The results in the Figure illustrate the fact that, while small changes in ε result in small changes
in the first order data, the global dynamics are greatly effected. Note also that the scaling of the
eigenvector has to be decreased as ε increases. This reflects the fact that the domain of analyticity
of the parameterization shrinks as ε increases. See also the remark below. We note that while
the parameterized manifold is not terribly large (roughly order one) many terms are needed to
conjugate the nonlinear to the linear dynamics.

The program which generates the results discussed here is

henonPaperEx_fixedPoint.m

Remark 5.1 (Loss of the hypotheses of the implicit function theorem). Following the discussion
in Section C, we see that the implicit Hénon equations define a local diffeomorphism whenever

D1T (x2, y2) = Id + ε

 −5εx4 0

0 5εy4

 ,

is invertible. For ε > 0 the matrix is singular on the vertical line through

x∗(ε) =

(
1

5ε

)1/4

.

Note that when ε = 0.01 we have that

x∗(0.01) ≈ 2.115,
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Figure 1: Implicit Hénon –stable/unstable manifolds attached to fixed points: four cal-
culations of the local unstable manifold of the fixed point with data as in Table 1. The unstable
manifold is colored dark blue, and eight of its forward iterates are lighter. In each case we computed
N = 75 Taylor coefficients, with the eigenvector scalings as reported below. Top left: ε = 0.01.
The eigenvector is scaled by α = 1.0. Top right: ε = 0.031. The eigenvector is scaled by α = 0.85.
Bottom left: ε = 0.0315. The eigenvector is scaled by α = 0.8. Bottom right: ε = 0.4. The
eigenvector is scaled by α = 0.6. These scalings insure that the highest order coefficient computed
has magnitude on the order of machine epsilon.

and the singular line is far from the attractor. However as ε increases the singular line moves closer
to the attractor, disrupting the assymptotic dynamics dramatically. In particular note that

x∗(0.0315) ≈ 1.59,

and
x∗(0.04) ≈ 1.495,

so that the singular line eventually moves into the attractor, creating the jumps, or breaks see in
the bottom left and right frames of Figure 1.
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Figure 2: Implicit Hénon –stable/unstable manifolds attached to period 2 orbits: two
calculations of the local unstable manifolds attached to a period two orbit of the implicit Hénon
system. In each case we computed N = 50 Taylor coefficients, with eigenvector scalings as reported
below. left: ε = 0.0315. The eigenvector is scaled by α = 0.75. right: ε = 0.04. The eigenvector is
scaled by α = 0.5. These scalings insure that the highest order coefficient computed has magnitude
on the order of machine epsilon.

5.2 Numerical example: stable/unstable manifolds attached to periodic
orbits of the implicit Hénon system

We now illustrate the computation of the stable/unstable manifolds attached a period two point
for the implicit Hénon systems. For the period two problem we consider only the two larger values
of ε. When ε = 0.0315 there is a period two orbit located at

p1 ≈

 −0.4945

0.2940

 p2 ≈

 0.9802

−0.1483


with multipliers

λu ≈= −3.807, and λs ≈= −0.0279.

We choose the square roots

λ̃u ≈ 1.951i, and λ̃s ≈ 0.1670i.

and eigenvectors

ξu1 ≈

 0.7868

−0.0919

 ξu2 ≈

 −0.5982

−0.1210

 ξs1 ≈

 0.3958

−0.5076

 and ξs2 ≈

 0.2829

0.7110

 .
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Similarly, when ε = 0.04 the data is

p1 ≈

 −0.4995

0.2943

 p2 ≈

 0.9814

−0.1499


with multipliers

λu ≈= −4.080, and λs ≈= −0.0274.

We choose the square roots

λ̃u ≈ 2.020i, and λ̃s ≈ 0.165i.

and eigenvectors

ξu1 ≈

 0.7800

−0.0902

 ξu2 ≈

 −0.6083

−0.1158

 ξs1 ≈

 0.3923

−0.5107

 and ξs2 ≈

 0.2821

0.711

 .

The results are reported with only four significant figures. More accurate data is obtained by
running the computer programs.

In both cases these are taken as initial data for computation of the stable/unstable parame-
terizations, whose Taylor coefficients for orders 2 ≤ n ≤ N are found by recursive solution or the
homological equations defined explicitloy in Equations (13) and (14). The resulting local manifolds
and a number of forward iterations are illustrated in Figure 2. See Remark 5.1 for the explication
of the “tear” in the attractor.

The programs which generate the results discussed here are

more_iteration.m

and

henonForPaper_per2.m

Remark 5.2 (Heteroclinic/homoclinic connections: infinite forward and backward time orbits).
Figure 3 illustrates the stable and unstable local parameterizations attached to the fixed points and
the period two orbit when ε = 0.04. At this parameter value the singular value has moved into the
basin of attraction and strongly disrupts the system. Nevertheless, the intersection of unstable and
stable manifolds illustrated in the figure suggest the existence of heteroclinic and homoclinic orbits
existing for all forward and backward time. The figure is meant to illustrate that, even though
simulating the system for long times is very difficult (as the singular set intersects the attractor) we
obtain a great deal of useful information about the global dynamics by studying the parameterized
manifolds.

5.3 Numerical example: stable/unstable manifolds attached to fixed
points of the implicit Lomelí system

In this section we compute and extend the two dimensional local stable/unstable manifolds attached
to fixed points of the implicit Lomelí system defined by Equation (31) with parameter values
ρ = 0.344444444, τ = 1.333333333, a = 0.5, b = 0.5, c = 1, α = 1, β = 1, γ = 1, and ε = 0.01.
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Figure 3: Implicit Hénon – connecting orbits: Stable and unstable manifolds when ε = 0.04.
The green curves represent the unstable manifolds of the two fixed points. The blue curves represent
unstable manifolds attached to the period two orbit. Similarly, the cyan curves represent the stable
manifolds of the two fixed points, and the red curves the stable manifolds of the period two orbit. We
see that the blue and cyan curves intersect, and the green and the red intersect. These intersections
provide compelling evidence for the existence of transverse connecting orbits from the period two
orbit to the fixed point and from the fixed point to the period two. These connections also appear
to be isolated away from the singular set, so that their existence implies the existence of a geometric
horseshoe. It also appears that if the blue curve were extended a little it would intersect with the
red. This would imply the existence of a homoclinic tangle. We did not iterate the manifold in
this picture as the goal is to illustrate how much dynamics can be seen just by computing the
parameterized manifolds.

We also compute the two dimensional local stable/unstable manifolds associated with a period
four orbit. The results illustrated in Figures 4 and 5 are obtained by solving order by order the
homological equations given in Equations (16) and (18) respectively.

The local manifolds in Figures 4 have been iterated (forward for the unstable manifolds and
backwards for the stable) and seem to intersect transversally. This suggests that the heteroclinic
arcs of the ε = 0 system studied in [46] persist into the implicit system at least for small ε. Numerical
values of the fixed points, period orbits, and their first order data can be found by running the
computer programs.

The program generating the results discussed here is

TwoD_Manifold_period4.m
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Figure 4: Implicit Lomelí systems– stable/unstable manifolds attached to fixed points:
the local invariant manifold parameterizations and a number of forward/backward iterations. The
image on the right illustrates both manifolds superimposed together, and suggests that the manifolds
intersect transversally.

A Definitions and Background
In this section we review some basic definitions from the qualitative theory of nonlinear dynamical systems. We also
review the main results from [6, 7, 8] about the parameterization method for fixed points of local diffeomorphisms,
and results from [25] extending these results to periodic orbits. The reader familiar with this material may want to
skim or skip this section upon first reading, referring back to it only as needed.

A.1 Discrete time semi-dynamical systems: Maps
The material in this section is standard, and an excellent reference is [49]. Suppose that U ⊂ Rd is an open set and
F : U → U is a Ck(U) mapping, with k = 0, 1, 2, . . . ,∞, ω. For x0 ∈ U , define the sequence x1 = F (x0), x2 = F (x1),
and in general xn+1 = F (xn) for n ≥ 0. We refer to the set {xn}∞n=0 as the forward orbit of x0 under F , and write
orbit(x0, F ) to denote this set. Let F 0(x) = x, F 1(x) = F (x), F 2(x) = F (F (x)) and in general Fn(x) denote the
composition of F with itself n times applied to x. When F is understood we simply write orbit(x0) and talk about
the orbit of x0. Then

orbit(x0) =

∞⋃
n=0

Fn(xn).

A sequence {xn}0n=−∞ ⊂ U with F (x−1) = x0 and F (xn) = xn+1 for all n < 0 is a backward orbit of x0
under F . The pair (U, F ) is referred to as a semi-dynamical system, as, while forward orbits are uniquely defined,
backwards orbits need not exist and when they do exist they need not be unique.
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Figure 5: Implicit Lomelí systems– stable/unstable manifolds attached to a period 4
orbit: the local invariant manifold parameterizations.

A.2 Local stable/unstable manifolds for fixed points/periodic orbits
Let F ∈ Ck(U) with k ≥ 1 and suppose that x∗ ∈ U is a fixed point, so that

F (x∗) = x∗.

We write spec(x∗) = {λ1, . . . , λd} ⊂ C to denote the set of eigenvalues of DF (x∗). Let ξ1, . . . , ξd ∈ Cd be an
associated choice of (possibly generalized) eigenvectors. Let D1 ⊂ C denote the open unit disk in the complex plane,
and S1 denote the unit circle. Define

specs(x∗) = spec(x∗) ∩D1

specc(x∗) = spec(x∗) ∩ S1

specu(x∗) = spec(x∗)\ (specs(x∗) ∪ specc(x∗)) ,

and note that specs(x∗) is the set of eigenvalues with complex absolute vale less than one, specc(x∗) is the set of
eigenvalues with complex absolute value equal to on, and specu(x∗) is the set of eigenvalues with complex absolute
vale greater than one. There are referred to as the stable, center, and unstable eigenvalues respectively, and we note
that any of two of these sets could be empty. If specc(x∗) = ∅ then we say that x∗ is a hyperbolic fixed point.
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Define the vector spaces

Es = {ξj |λj ∈ specs(x∗)}
Ec = {ξj |λj ∈ specc(x∗)}
Eu = {ξj |λj ∈ specu(x∗)} .

These are referred to as the stable, center, and unstable eigenspaces of M respectively, they are invariant linear sub-
spaces for the dynamics induced by M , and they have corresponding invariant nonlinear manifolds for the dynamics
induced by F . Let

ds = dim(Es)
dc = dim(Ec)
du = dim(Eu),

denote the dimension of the stable/center/unstable eigenspaces, or equivalently the number (counted with multiplic-
ity) of stable/center/unstable eigenvalues.

Define the sets

W s(x∗) =
{
x ∈ U : lim

n→∞
Fn(x) = x∗

}
Wu(x∗) =

{
x ∈ U : there exists a backward orbit {xn} of x with lim

n→−∞
xn = x∗

}
.

These are referred to as the stable and unstable sets for x∗ respectively. In a similar fashion, for any open set V ⊂ U
with x∗ ∈ V , define

W s
loc(x∗, V ) = {x ∈ V : Fn(x) ∈ V for all n ≥ 0, and Fn(x)→ x∗ as n→∞}

Wu
loc(x∗, V ) =

{
x ∈ V : there is a backward orbit for x in V with lim

n→−∞
xn → x∗ as n→ −∞

}
,

and note that for any V ⊂ U we have that W s
loc(x∗, V ) ⊂W s(x∗), and Wu

loc(x∗, V ) ⊂Wu(x∗).
The following stable manifold theorem says that if x∗ is hyperbolic then there exist local stable/unstable sets

with especially nice properties.

Theorem A.1 (Local stable manifold theorem). Suppose that x∗ is a hyperbolic fixed point for F . Then there
exists an open set V ⊂ U with x∗ ∈ V so that W s

loc(x∗, V ) and Wu
loc(x∗, V ) are respectively ds and du dimensional

embedded disks – as smooth as F– and tangent at x∗ to Es and Eu respectively.

The theorem gives that the stable/unstable sets are locally smooth manifolds. If F is a diffeomorphism then the
full stable/unstable sets are obtained by iterating F and F−1, hence the stable/unstable sets are smooth manifolds
(which can nevertheless be embedded in U in very complicated ways). However, if F is not invertible the global
stable/unstable sets might misbehave in a number of ways.
• Connectedness: While the unstable set must be connected ( image of a disk is connected under iteration of

a continuous map) the stable set can in general be disconnected. The unstable set can have self intersections.

• Dimension: both the stable/unstable sets can increase in dimension outside a neighborhood of x∗.

• Smoothness: the stable/unstable sets need not be smooth manifolds away from x∗. At points where DF (x)
has an isolated non-singularity the set can develop corners or cusps.

Examples of each of these phenomena are discussed in [52], and many explicit examples are given. See also [23].

A.3 Multiple shooting for periodic orbits
With U ⊂ Rd an open set, and F : U → Rd a smooth mapp, suppose that x1, . . . , xN ∈ U have

F (x1) = x2

...
F (xN−1) = xN

F (xN ) = x1
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Then {x1, . . . , xN} is a periodic orbit orbit for F . If the xj , 1 ≤ j ≤ N are distinct, then N is the lest period. We
refer to xj , 1 ≤ j ≤ N as a period N point. If DF (xj) is invertible for each 1 ≤ j ≤ N we say that the periodic orbit
is non-degenerate.

Note that x̄ ∈ U is a period N point for F if and only if x̄ is a fixed point of the composition FN . If the orbit of
x̄ is non-degenerate and least period N then DFN (x̄) is invertible. We note that if {x1, . . . , xN} is a non-degenerate
periodic orbit then the matrices DFN (xj), 1 ≤ j ≤ N have the same eigenvalues. These are also referred to as the
multipliers of the periodic orbit.

If DFN (x̄) has no eigenvalues on the unit circle we say that the periodic orbit is hyperbolic and Theorem A.1
applies to the composition mapping FN . In particular, there are local stable and unstable manifolds attached to the
points of the periodic orbit.

Let UN = U × . . .× U ⊂ RNd denote the product of N copies of U . Define G : UN → RNd by

G(x1, x2, . . . , xN−1, xN ) =



F (xN )

F (x1)

F (x2)

...

F (xN−1)


. (19)

and observe that if (x1, . . . , xN ) ∈ RNd is a fixed point of G then {x1, . . . , xN} is a period N orbit for F . We refer
to G as a multiple shooting map for a period N orbit of F . In practice numerically computing fixed points of G is
more stable than computing fixed points of FN .

Note also that if

DG(x1, . . . , xN ) =


0 0 . . . 0 DF (xN )

DF (x1) 0 . . . 0 0

0 DF (x2) . . . 0 0

0 0 . . . DF (xN−1) 0

 (20)

is invertible then the periodic orbit is non-degenerate. In fact, λ ∈ C is an eigenvalue of DG(x1, . . . , xN ) if and
only if λN is an eigenvalue of DFN (xj). Moreover, one can check that if ξ = (ξ1, . . . , ξN ) ∈ CdN is an eigenvector
associated with the eigenvalue λ of the matrix DG(x1, . . . , xN ), then for 1 ≤ j ≤ N we have that (λN , ξj) is an
eigenvalue/eigenvector pair for the matrix DFN (xj). That is, the multipliers of the periodic orbit and the eigenspaces
of DFN (xj) are easily recovered from the eigenvalues/eigenvectors of DG(x1, . . . , xN ). The interested reader will
find a more thorough discussion of the relationship between multiple shooting maps and periodic orbits in [25].

B Implicitly defined dynamical systems
We now come to the main complication or the present work, which is that the formula for F may not be explicitly
given. Rather it may be only implicitly defined via some relation. In the present work we focus on the case that F (x)
is the unique solution of some system of equations where we think of x as a parameter. To formalize the discussion
let us introduce some notation.

Let U, V ⊂ Rd be open sets and suppose that T : U × V → Rd is a smooth function. We are interested in the
existence of open sets D ⊂ U , R ⊂ V and a mapping F : D → R ⊂ Rd defined by the rule

F (x) = y, (21)

if and only if for a fixed given input x ∈ D, y is the unique solution of the equation

T (y, x) = 0, (22)

with y ∈ R. We say that the mapping F is implicitly defined by the rule given in Equation (22). Note that F need
not be one-to-one or even single valued globally.

Suppose that x0 ∈ D0 6= ∅ and let F (x0) = x1 ∈ R0 6= ∅. If x1 ∈ U ∩ V , then it is possible to repeat process
and look for the image of x1 under F . Should this exists we have F (x1) = x2 ∈ V . If x2 ∈ U ∩ V we can repeat yet
again. It is of course an interesting question to ask: “does there exists x0 ∈ U ∩ V so that x0 has an orbit under F?
The question is a fundamental to the present work, and will be taken up in a moment.
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An more elementary preliminary observation is as follows: if T (x1, x0) = 0, that is if F (x0) = x1, then a local con-
dition guaranteeing that F is well defined in a neighborhood of x0 is as follows. Let D1T (y, x) and D2T (y, x) denote
the partial derivatives of T with respect to the first and second variables respectively. (Note thatD1T (y, x), D2T (y, x)
are d × d matrices). If D1T (x1, x0) is invertible then, by the implicit function theorem [48], there exists an r > 0
and a function F : Br(x0) ⊂ U → Rd so that F (x0) = x1 and

T (F (x), x) = 0, (23)

for all x ∈ Br(x0). Moreover, the mapping F is as smooth as T and by differentiating (23) we have that DF (x0)
solves the equation

D1T (x1, x0)DF (x0) = −D2T (x1, x2), (24)
with D1T (x1, x0) invertible.

The discussion above motivates the following definition.

Definition 1. We say that x̄ ∈ U is a regular point for F if there exists a unique ȳ ∈ V such that

T (ȳ, x̄) = 0,

and D1T (ȳ, x̄) is invertible. Note that, by the implicit function theorem as above, x̄ is in the interior of D = dom(F ).
Moreover, F is a local diffeomorphism of a neighborhood of x̄ into a neighborhood of ȳ.

Remark B.1 (Numerical evaluation of F ). Evaluation of F (x) requires solving the nonlinear equation T (y, x) = 0
with x given. In practice we use Newton’s method as follows. Let x̄ be fixed and y0 be an approximate solution in
the sense that

‖T (y0, x̄)‖ ≈ 0.

For n ≥ 0, define
yn+1 = yn + ∆n,

where ∆n solves the linear equation
D1T (yn, x̄)∆n = −T (yn, x̄).

If x̄ is a regular point for F and F (x̄) = ȳ, then D1T (ȳ, x̄) is invertible. Moreover, since invertibility is an open
condition, for yn close enough to ȳ the matrices D1T (yn, x̄) are invertible as well– and hence the Newton sequence
{yn}∞n=0 is well defined. Moreover, by the classic convergence analysis of Newton’s method, yn → ȳ as n→∞.

B.1 Fixed and periodic points
Assume that x∗ ∈ U ∩ V ⊂ Rd is a regular point for F having

T (x∗, x∗) = 0.

Then there exists an open neighborhood D ⊂ U of x∗ so that F is a local diffeomorphism on D and

F (x∗) = x∗.

This is the simplest possible case in which the full forward orbit of x∗ is defined. Note that we do not rule out the
possibilities that either T (x∗, x) = 0 or T (y, x∗) = 0 have other solutions – that is, F need not be globally one-to-one
or even single valued on U .

Exploiting the formula for the derivative in Equation (24), we have that

DF (x∗) = −D1T (x∗, x∗)
−1D2T (x∗, x∗),

where D1T (x∗, x∗) is invertible thanks to the assumption that x∗ is a regular point for F . Assume that x∗ is
a hyperbolic fixed point, and let λ1, . . . , λds ∈ C be the stable eigenvalues of DF (x∗). Let ξ1, . . . , ξds ∈ Cd be
associated stable eigenvectors.

In a similar fashion, suppose instead that x1, . . . , xN ∈ U ∩ V have

T (x2, x1) = 0

T (x3, x2) = 0

...
T (xN , xN−1) = 0

T (x1, xN ) = 0
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Then x1, . . . , xN is a periodic orbit for F . If the x1, . . . , xN are distinct then N is the least period. We assume that
the orbit is non-degenerate, so that the entire periodic orbit is interior to D = dom(F ).

To find the multipliers and eigenvectors, proceed as follows. Recall from Section A.2 that the multipliers are
found by computing the eigenvalues and eigenvectors of the derivative of the multiple shooting map. The formula for
the derivative is in Equation (20), and exploiting again the formula for the derivative of F given in Equation (24),
and the fact that the periodic orbit is non-degenerate, the non-zero entries of DG(x1, . . . , xN ) are

DF (x1) = −D1T (x2, x1)−1D2T (x2, x1)

DF (x2) = −D1T (x3, x2)−1D2T (x3, x2)

...

DF (xN−1) = −D1T (xN , xN−1)−1D2T (xN , xN−1)

DF (xN ) = −D1T (x1, xN )−1D2T (x1, xN ).

C A class of examples: perturbations of explicitly defined
maps

We now specify the class of examples with which we work in the remainder of the paper. Suppose that V ⊂ Rd is
open and let f : U → Rd be a Cω diffeomorphism (or analticomorphism). Then for any and x0 ∈ U , f defines a
dynamical system by the rule

f(xn) = xn+1,

for n = 0, 1, 2, . . .. Define the function T : Rd × U → Rd by

T (y, x) = y − f(x),

and note that for a given x̄ ∈ U , ȳ is the unique solution of the equation T (y, x̄) = 0 if and only if

ȳ = f(x̄).

In this case the problem T (y, x) = 0 implicitly defines the original dynamical system f(x) = y. Now let V be
an open subset of Rd and H : U × V → Rd be a Ck function. Consider the one parameter family of problems
Tε : U × V × R→ Rd by

Tε(y, x) = y − f(x) + εH(x, y), (25)
and note that for any (ȳ, x̄) ∈ V × U we have that

D1Tε(ȳ, x̄) = Id + εD1H(x̄, ȳ).

Note that D1T0(ȳ, x̄) = Id, so that –by the implicit function theorem – there is a δ > 0 and a smooth curve
y : (−δ, δ)→ V ⊂ Rd so that y(0) = ȳ and

Tε(y(ε), x̄) = 0,

for all ε ∈ (−δ, δ).
Moreover, for a possibly smaller δ > 0 we have that

D1Tε(y(ε), x̄) = Id + εDH(y(ε), x̄),

is invertible for each ε ∈ (−δ, δ), by the Neumann theorem. Then there exists an r > 0 and a family of functions
Fε : Br(x̄)× (−δ, δ)→ Rd so that

F0(x) = f(x),

and
Tε(Fε(x), x) = 0,

for all x ∈ Br(x̄) and ε ∈ (−δ, δ). The family Fε depends smoothly on ε and is Ck for each fixed ε. Moreover, for
small ε 6= 0 and x̄ ∈ U we take ȳ = f(x̄) as an approximate zero for Tε(y, x̄) and apply Newton’s method to find y(ε)
so that Tε(y(ε), x̄) = 0. That is, for small ε we can compute images of the implicitly defined mapping Fε(x) using
Newton’s method. For larger ε we perform numerical continuation from the ε = 0 case.

Finally, suppose that x̄ ∈ U is a hyperbolic fixed point of f , and recall that F0(x) = f(x). Since Fε depends
smoothly on ε, it follows that for small ε 6= 0 the map Fε(x) has a hyperbolic fixed point near x̄ by the usual
perturbation argument for maps.
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The discussion just given shows that problems of the form given in Equation (25) provide a natural class of
examples - perturbations of diffeomorphisms - for which our method applies. The two main specific examples studied
below are when f is either the classic Hénon map or it’s three dimensional generalization to the Lomelí map. The
main purpose of the calculations below is to illustrate the formal series solution of the parameterization method
invariance equations in explicit examples.

C.1 Example 1: the Hénon map
Let x = (x1, y1),y = (x2, y2) denote points in the plane. The Hénon map is actually a two parameter family of
quadratic mappings defined by

f(x) = f(x1, y1) =

 1 + y1 − αx21
βx1

 (26)

The mapping is a classic example of complex dynamics and was originally introduced in [32]. See also the books of
[21, 49]. We define an implicit Hénon system Tε : R2 × R2 × R→ R2 given by

Tε(y,x) = Tε(x2, y2, x1, y1) =

 x2 − (1− αx21 + y1 + εx52)

y2 − βx1 + εy52

 . (27)

Here we choose, somewhat arbitrarily, the perturbation term of the form

H(x, y) =

 x5

y5

 .

The equation for a fixed point is Tε(x,x) = 0, or x1 − (1− αx21 + y1 + εx51)

y1 − βx1 + εy51

 =

 0

0

 .

Similarly, the multiple shooting equations for a period two orbit are

Tε(x2,x1) = 0

Tε(x1,x2) = 0,
(28)

or
x2 − (1− αx21 + y1 + εx52) = 0

y2 − βx1 + εy52 = 0

x1 − (1− αx22 + y2 + εx51) = 0

y1 − βx2 + εy51 = 0

(29)

The implicit equations for fixed points or periodic orbits are solved using Newton’s method. Eigenvalues and eigen-
vectors we compute using the approach outlined in Section B.1.

For classical parameters a, b ∈ R the Hénon map has a pair of hyperbolic fixed points, each with one stable
and one unstable eigenvalue. Then for small epsilon the same is true for the perturbation. The numerical value of
the unperturbed fixed points serve as initial guesses for the perturbed fixed points in the Newton method. Similar
comments hold for periodic orbits.

C.2 Example 2: the Lomelí map
In this section we consider the five parameter family of maps f : R3 → R3 given by

f(x, y, z) =


z +Q(x, y)

x

y

 (30)

where Q(x, y) = ρ+γx+ax2 +bxy+cy2 and one usually takes a+b+c = 1. The system is known as the Lomelí map,
and it is a normal form quadratic volume preserving maps with quadratic inverse. In that sense it can be thought of
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as a three dimensional generalization of the area preserving Hénon map. The map was first introduced in [40], and
was subsequently studied by a number of authors including [40, 22, 45, 46, 11, 25].

Let x = (x1, y1, z1),y = (x2, y2, z2) ∈ R3. In the present work we study an implicit Lomelí system Tε : R3×R3 →
R3 defined by

Tε(y,x) = Tε(x2, y2, z2, x1, y1, z1)

=


x2 − ρ− τx1 − z1 − ax21 − bx1y1 − cy22 + ε

(
αy52 + βz52

)
y2 − x1 + εγz52

z2 − y1

 . (31)

Note that Tε is analytic in all variables. We remark that the perturbation is chosen so that the system still preserves
volume.

Fixed of points of the implicit Lomelí system (31) are obtained as solutions of
x− ρ− τx− z − ax2 − bxy − cy2 + ε(αy5 + βz5)

y − x+ εγz5

z − y

 =


0

0

0

 (32)

Similarly, a period four orbit for the Lomelí system solves the equations

Tε(x4,x1) = 0

Tε(x1,x2) = 0

Tε(x2,x3) = 0

Tε(x3,x4) = 0.

(33)

That is
x1 − ρ− τx4 − z4 − ax24 − bx4y4 − cy24 + ε(αy51 + βz51) = 0

y1 − x4 + εγz51 = 0

z1 − y4 = 0

x2 − ρ− τx1 − z1 − ax21 − bx1y1 − cy21 + ε(αy52 + βz52) = 0

y2 − x1 + εγz52 = 0

z2 − y1 = 0

x3 − ρ− τx2 − z2 − ax22 − bx2y2 − cy22 + ε(αy53 + βz53) = 0

y3 − x2 + εγz53 = 0

z3 − y2 = 0

x4 − ρ− τx3 − z3 − ax23 − bx3y3 − cy23 + ε(αy54 + βz54) = 0

y4 − x3 + εγz54 = 0

z4 − y3 = 0

(34)

Suppose that x1,x2,x3,x4 ∈ R3 is a period 4 orbit and that for i = 1, 2, 3, the λi1, λi2, λi3 ∈ C, and ξi1, ξi2, ξi3 ∈ C3

are the multipliers and eigenvectors for xi, computed as discussed in Section A.3. The equations for fixed and
periodic orbits are amenable to Newton’s method, just as in Example 1.

D Operations on formal power series
Consider two infinite sequences of complex numbers {an}∞n=0, {bn}∞n=0 ⊂ C and the corresponding power series

f(z) =

∞∑
n=0

anz
n and g(z) =

∞∑
n=0

bnz
n.

Suppose that λ ∈ C. Then

f(λz) =
∞∑
n=0

λnanz
n.
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Also, for any α, β ∈ C the linear combination αf + βg has power series

αf(z) + βg(z) =

∞∑
n=0

(αan + βbn)zn.

Moreover, the product of two power series is given by the Cauchy product

f(z)g(z) =
∞∑
n=0

(a ∗ b)nzn,

where

(a ∗ b)n =
∑

k1+k2=n

ak1bk2

=

n∑
k=0

an−kbk.

Higher order products are defined analogously. For example suppose that f1, . . . , fN are power series given by

fi(z) =
∞∑
n=0

ainz
n, 1 ≤ i ≤ N.

Then

f1(z) . . . fN (z) =

∞∑
n=0

(
a1 ∗ . . . ∗ aN

)
n
zn,

where the N -th Cauchy product is given by

(a1 ∗ . . . ∗ aN )n =
∑

k1+...+kN=n

a1k1 . . . a
N
kN

=

n∑
k1=0

k1∑
k2=0

. . .

kN−3∑
kN−2=0

kN−2∑
kN−1=0

a1n−k1a
2
k1−k2 . . . a

N−1
kN−2−kN−1

aNkN−1
.

Note that the first form of the sum is easier to read, but that the second can be easily implemented as a loop.
Another important operation in the formal series calculations below is the extraction of the coefficients of n-th

order from the n-th term of a Cauchy product. For example, we have that

(a ∗ b)n = b0an + a0bn +

n−1∑
n=1

an−kbk.

We write

(â ∗ b)n =

n−1∑
n=1

an−kbk,

to denote the terms in the Cauchy product depending only on lower order terms. Note that this is

(â ∗ b)n = (a ∗ b)n − a0bn − b0an =
∑

k1+k2=n

k1,k2 6=n

ak1bk2

Similarly, define
( ̂a1 ∗ . . . ∗ aN )n = (a1 ∗ . . . ∗ aN )n − a10 . . . a

N−1
0 aNn − . . .− a20 . . . aN0 a1n,

which is equivalent to
( ̂a1 ∗ . . . ∗ aN )n =

∑
k1+...+kN=n

k1,...,kN 6=n

a1k1 . . . a
N
kN
.

The discussion generalizes to power series in any number of variables. We review the case of two variables, as
this is what is needed below. So, for

f(z1, z2) =
∞∑
m=0

∞∑
n=0

amnz
m
1 z

n
2 , and g(z1, z2) =

∞∑
m=0

∞∑
n=0

bmnz
m
1 z

n
2 ,
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we have that

αf(z1, z2) + βg(z1, z2) =
∞∑
m=0

∞∑
n=0

(αamn + βbmn)zm1 z
n
2 ,

f(λ1z1, λ2z2) =

∞∑
m=0

∞∑
n=0

λm1 λ
n
2 amnz

m
1 z

n
2 ,

and

f(z1, z2)g(z1, z2) =
∞∑
m=0

∞∑
n=0

(a ∗ b)mnzm1 zn2 ,

where the coefficients of the two variable Cauchy product are given by

(a ∗ b)mn =
∑

j1+j2=m

k1+k2=n

aj1k1bj2k2

=
m∑
j=0

n∑
k=0

am−j,n−kbjk.

If f1, . . . , fN are power series given by

fi(z1, z2) =

∞∑
m=0

∞∑
n=0

aimnz
m
1 z

n
2 1 ≤ i ≤ N,

then

f1(z1, z2) . . . fN (z1, z2) =
∞∑
m=0

∞∑
n=0

(a1 ∗ . . . ∗ aN )mnz
m
1 z

n
2 ,

where

(a1 ∗ . . . ∗ aN )mn =
∑

j1+...+jN=m

k1+...+kN=n

a1j1k1 . . . a
N
jNkN

=
m∑
j1=0

j1∑
j2=0

. . .

jN−2∑
jN−1=0

n∑
k1=0

k1∑
k2=0

. . .

kN−2∑
kN−1=0

a1m−j1,n−k1 . . . a
N
jN−1kN−1

For coefficient extraction define
(â ∗ b)mn = (a ∗ b)mn − b00amn − a00bmn,

and similarly

( ̂a1 ∗ . . . ∗ aN )mn = (a1 ∗ . . . ∗ aN )mn − a100 . . . a
N−1
00 aNmn − . . .− a200 . . . aN00a1mn,

to be the Cauchy product of order m,n with the m,n-th order coefficients removed.
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E Explicit formulas for the period four homological equations
of the implicit Lomelí system

We have that Amn is the12 by 12 matrix

Amn =



A1,1 A1,2 A1,3 A1,4 A1,5 A1,6 A1,7 A1,8 A1,9 A1,10 A1,11 A1,12

A2,1 A2,2 A2,3 A2,4 A2,5 A2,6 A2,7 A2,8 A2,9 A2,10 A2,11 A2,12

A3,1 A3,2 A3,3 A3,4 A3,5 A3,6 A3,7 A3,8 A3,9 A3,10 A3,11 A3,12

B1,1 B1,2 B1,3 B1,4 B1,5 B1,6 B1,7 B1,8 B1,9 B1,10 B1,11 B1,12

B2,1 B2,2 B2,3 B2,4 B2,5 B2,6 B2,7 B2,8 B2,9 B2,10 B2,11 B2,12

B3,1 B3,2 B3,3 B3,4 B3,5 B3,6 B3,7 B3,8 B3,9 B3,10 B3,11 B3,12

C1,1 C1,2 C1,3 C1,4 C1,5 C1,6 C1,7 C1,8 C1,9 C1,10 C1,11 C1,12

C2,1 C2,2 C2,3 C2,4 C2,5 C2,6 C2,7 C2,8 C2,9 C2,10 C2,11 C2,12

C3,1 C3,2 C3,3 C3,4 C3,5 C3,6 C3,7 C3,8 C3,9 C3,10 C3,11 C3,12

D1,1 D1,2 D1,3 D1,4 D1,5 D1,6 D1,7 D1,8 D1,9 D1,10 D1,11 D1,12

D2,1 D2,2 D2,3 D2,4 D2,5 D2,6 D2,7 D2,8 D2,9 D2,10 D2,11 D2,12

D3,1 D3,2 D3,3 D3,4 D3,5 D3,6 D3,7 D3,8 D3,9 D3,10 D3,11 D3,12


with entries

A1,1 = λn1
1 λn2

2 A1,2 = 5εαv
(1)
00 λ

n1
1 λn2

2 A1,3 = 5εβw
(1)
00 λ

n1
1 λn2

2 A1,4 = 0 A1,5 = 0 A1,6 = 0

A1,7 = 0 A1,8 = 0 A1,9 = 0 A1,10) = −γ − 2αu
(4)
00 − bv

(4)
00 A1,11 = −bu(4)00 − 2cv

(4)
00 A1,12 = −1

A2,1 = 0 A2,2 = λn1
1 λn2

2 A2,3 = 5εγw
(1)
00 λ

n1
1 λn2

2 A2,4 = 0 A2,5 = 0 A2,6 = 0

A2,7 = 0 A2,8 = 0 A2,9 = 0 A2,10 = −1 A2,11 = 0 A2,12 = 0

A3,1 = 0 A3,2 = 0 A3,3 = λn1
1 λn2

2 A3,4 = 0 A3,5 = 0 A3,6 = 0

A3,7 = 0 A3,8 = 0 A3,9 = 0 A3,10 = 0 A3,11 = −1 A3,12 = 0

B1,1 = −γ − 2αu
(1)
00 − bv

(1)
00 B1,2 = −bu(1)00 − 2cv

(1)
00 B1,3 = −1 B1,4 = λn1

1 λn2
2 B1,5 = 5εαv

(2)
00 λ

n1
1 λn2

2

B1,6 = 5εβw
(2)
00 λ

n1
1 λn2

2 B1,7 = 0 B1,8 = 0 B1,9 = 0 B1,10 = 0 B1,11 = 0 B1,12 = 0

B2,1 = −1 B2,2 = 0 B2,3 = 0 B2,4 = 0 B2,5 = λn1
1 λn2

2 B2,6 = 5εγw
(2)
00 λ

n1
1 λn2

2

B2,7 = 0 B2,8 = 0 B2,9 = 0 B2,10 = 0 B2,11 = 0 B2,12 = 0

B3,1 = 0 B3,2 = −1 B3,3 = 0 B3,4 = 0 B3,5 = 0 B3,6 = λn1
1 λn2

2

B3,7 = 0 B3,8 = 0 B3,9 = 0 B3,10 = 0 B3,11 = 0 B3,12 = 0

C1,1 = 0 C1,2 = 0 C1,3 = 0 C1,4 = −γ − 2αu
(2)
00 − bv

(2)
00 C1,5 = −bu(4)00 − 2cv

(4)
00 C1,6 = 0

C1,7 = λn1
1 λn2

2 C1,8 = 5εαv
(3)
00 λ

n1
1 λn2

2 C1,9 = 5εβw
(3)
00 λ

n1
1 λn2

2 C1,10 = 0 C1,11 = 0 C1,12 = 0

C2,1 = 0 C2,2 = 0 C2,3 = 0 C2,4 = −1 C2,5 = 0 C2,6 = 0 C2,7 = 0

C2,8 = λn1
1 λn2

2 C2,9 = 5εγw
(3)
00 λ

n1
1 λn2

2 C2,10 = 0 C2,11 = 0 C2,12 = 0

C3,1 = 0 C3,2 = 0 C3,3 = 0 C3,4 = 0 C3,5 = −1 C3,6 = 0

C3,7 = 0 C3,8 = 0 C3,9 = λn1
1 λn2

2 C3,10 = 0 C3,11 = 0 C3,12

D1,1 = 0 D1,2 = 0 D1,3 = 0 D1,4 = 0 D1,5 = 0 D1,6 = 0

D1,7 = −γ − 2αu
(3)
00 − bv

(3)
00 D1,8 = −bu(3)00 − 2cv

(3)
00 D1,9 = −1 D1,10 = λn1

1 λn2
2

D1,11 = 5εαv
(4)
00 λ

n1
1 λn2

2 D1,12 = 5εβw
(4)
00 λ

n1
1 λn2

2
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D2,1 = 0 D2,2 = 0 D2,3 = 0 D2,4 = 0 D2,5 = 0 D2,6 = 0

D2,7 = −1 D2,8 = 0 D2,9 = 0 D2,10 = 0 D2,11 = λn1
1 λn2

2 D2,12 = 5εγw
(4)
00 λ

n1
1 λn2

2

D3,1 = 0 D3,2 = 0 D3,3 = 0 D3,4 = 0 D3,5 = 0 D3,6 = 0

D3,7 = 0 D3,8 = −1 D3,9 = 0 D3,10 = 0 D3,11 = 0 D3,12 = λn1
1 λn2

2 .

Similarly, the right hand side

Smn = (S1
mn, S

2
mn, 0, S

3
mn, S

4
mn, 0, S

5
mn, S

6
mn, 0, S

7
mn, S

8
mn, 0)T

has components

S1
mn = a(û4 ∗ u4)mn + b(û4 ∗ v4)mn + c(v̂4 ∗ v4)mn

− αελ̃m1 λ̃n2 ( ̂v1 ∗ v1 ∗ v1 ∗ v1 ∗ v1)mn − βελ̃m1 λ̃n2 ( ̂w1 ∗ w1 ∗ w1 ∗ w1 ∗ w1)mn

S2
mn = γελ̃m1 λ̃

n
2 ( ̂w1 ∗ w1 ∗ w1 ∗ w1 ∗ w1)mn

S3
mn = a(û1 ∗ u1)mn + b(û1 ∗ v1)mn + c(v̂1 ∗ v1)mn

− αελ̃m1 λ̃n2 ( ̂v2 ∗ v2 ∗ v2 ∗ v2 ∗ v2)mn − βελ̃m1 λ̃n2 ( ̂w2 ∗ w2 ∗ w2 ∗ w2 ∗ w2)mn

S4
mn = γελ̃m1 λ̃

n
2 ( ̂w2 ∗ w2 ∗ w2 ∗ w2 ∗ w2)mn

S5
mn = a(û2 ∗ u2)mn + b(û2 ∗ v2)mn + c(v̂2 ∗ v2)mn

− αελ̃m1 λ̃n2 ( ̂v3 ∗ v3 ∗ v3 ∗ v3 ∗ v3)mn − βελ̃m1 λ̃n2 ( ̂w3 ∗ w3 ∗ w3 ∗ w3 ∗ w3)mn

S6
mn = γελ̃m1 λ̃

n
2 ( ̂w3 ∗ w3 ∗ w3 ∗ w3 ∗ w3)mn

S7
mn = a(û3 ∗ u3)mn + b(û3 ∗ v3)mn + c(v̂3 ∗ v3)mn

− αελ̃m1 λ̃n2 ( ̂v4 ∗ v4 ∗ v4 ∗ v4 ∗ v4)mn − βελ̃m1 λ̃n2 ( ̂w4 ∗ w4 ∗ w4 ∗ w4 ∗ w4)mn

S8
mn = γελ̃m1 λ̃

n
2 ( ̂w4 ∗ w4 ∗ w4 ∗ w4 ∗ w4)mn.

Note that while the formulas defining the components of Amn are correct, we have suppressed the dependence on
(m,n) in the variables names themselves.

References
[1] R. A. Adomaitis and I. G. Kevrekidis. Noninvertibility and the structure of basins of attraction

in a model adaptive control system. J. Nonlinear Sci., 1(1):95–105, 1991.

[2] E. Akin. The general topology of dynamical systems, volume 1 of Graduate Studies in Mathe-
matics. American Mathematical Society, Providence, RI, 1993.

[3] D. G. Aronson, M. A. Chory, G. R. Hall, and R. P. McGehee. Bifurcations from an invariant
circle for two-parameter families of maps of the plane: a computer-assisted study. Comm.
Math. Phys., 83(3):303–354, 1982.

[4] I. Baldomá, E. Fontich, R. de la Llave, and P. Martí n. The parameterization method for one-
dimensional invariant manifolds of higher dimensional parabolic fixed points. Discrete Contin.
Dyn. Syst., 17(4):835–865, 2007.

[5] M. Breden, J.-P. Lessard, and J. D. Mireles James. Computation of maximal local (un)stable
manifold patches by the parameterization method. Indag. Math. (N.S.), 27(1):340–367, 2016.

[6] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds.
I. Manifolds associated to non-resonant subspaces. Indiana Univ. Math. J., 52(2):283–328,
2003.

33



[7] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds.
II. Regularity with respect to parameters. Indiana Univ. Math. J., 52(2):329–360, 2003.

[8] X. Cabré, E. Fontich, and R. de la Llave. The parameterization method for invariant manifolds.
III. Overview and applications. J. Differential Equations, 218(2):444–515, 2005.

[9] R. C. Calleja, A. Celletti, and R. de la Llave. A KAM theory for conformally symplectic
systems: efficient algorithms and their validation. J. Differential Equations, 255(5):978–1049,
2013.

[10] M. Canadell and A. Haro. Computation of quasi-periodic normally hyperbolic invariant tori: al-
gorithms, numerical explorations and mechanisms of breakdown. J. Nonlinear Sci., 27(6):1829–
1868, 2017.

[11] M. J. Capiński and J. D. Mireles James. Validated computation of heteroclinic sets. SIAM J.
Appl. Dyn. Syst., 16(1):375–409, 2017.

[12] R. Castelli, M. Gameiro, and J.-P. Lessard. Rigorous numerics for ill-posed PDEs: periodic
orbits in the Boussinesq equation. Arch. Ration. Mech. Anal., 228(1):129–157, 2018.

[13] R. Castelli, J.-P. Lessard, and J. D. M. James. Parameterization of invariant manifolds for
periodic orbits i: Efficient numerics via the floquet normal form. SIAM Journal on Applied
Dynamical Systems, 14(1):132–167, 2015.

[14] H. Cheng and R. de la Llave. Stable manifolds to bounded solutions in possibly ill-posed PDEs.
J. Differential Equations, 268(8):4830–4899, 2020.

[15] R. de la Llave. A smooth center manifold theorem which applies to some ill-posed partial differ-
ential equations with unbounded nonlinearities. J. Dynam. Differential Equations, 21(3):371–
415, 2009.

[16] R. de la Llave, G. Gimeno, and J. Yang. Numerical computation of periodic orbits and isochrons
for state dependent delay perturbations of an ode in the plane. (Submitted) 2020.

[17] R. de la Llave, G. Gimeno, and J. Yang. Parameterization method for state-dependent delay
perturbation of an ordinary differential equation. (Submitted) 2020.

[18] R. de la Llave, A. González, À. Jorba, and J. Villanueva. KAM theory without action-angle
variables. Nonlinearity, 18(2):855–895, 2005.

[19] R. de la Llave and H. E. Lomelí. Invariant manifolds for analytic difference equations. SIAM
J. Appl. Dyn. Syst., 11(4):1614–1651, 2012.

[20] R. de la Llave and Y. Sire. An a posteriori KAM theorem for whiskered tori in Hamiltonian
partial differential equations with applications to some ill-posed equations. Arch. Ration. Mech.
Anal., 231(2):971–1044, 2019.

[21] R. L. Devaney. An introduction to chaotic dynamical systems. Studies in Nonlinearity. Westview
Press, Boulder, CO, 2003. Reprint of the second (1989) edition.

[22] H. R. Dullin and J. D. Meiss. Quadratic volume-preserving maps: invariant circles and bifur-
cations. SIAM J. Appl. Dyn. Syst., 8(1):76–128, 2009.

34



[23] C. E. Frouzakis, L. Gardini, I. G. Kevrekidis, G. Millerioux, and C. Mira. On some properties
of invariant sets of two-dimensional noninvertible maps. Internat. J. Bifur. Chaos Appl. Sci.
Engrg., 7(6):1167–1194, 1997.

[24] C. Golé. Symplectic twist maps, volume 18 of Advanced Series in Nonlinear Dynamics. World
Scientific Publishing Co., Inc., River Edge, NJ, 2001. Global variational techniques.

[25] J. Gonzalez and J. D. Mireles James. High-order parameterization of stable/unstable manifolds
for long periodic orbits of maps. SIAM Journal on Applied Dynamical Systems, 16(3):1748–
1795, 2017. https://doi.org/10.1137/16M1090041.

[26] A. Haro, M. Canadell, J.-L. s. Figueras, A. Luque, and J.-M. Mondelo. The parameteriza-
tion method for invariant manifolds, volume 195 of Applied Mathematical Sciences. Springer,
[Cham], 2016. From rigorous results to effective computations.

[27] À. Haro and R. de la Llave. A parameterization method for the computation of invariant tori
and their whiskers in quasi-periodic maps: numerical algorithms. Discrete Contin. Dyn. Syst.
Ser. B, 6(6):1261–1300 (electronic), 2006.

[28] A. Haro and R. de la Llave. A parameterization method for the computation of invariant
tori and their whiskers in quasi-periodic maps: rigorous results. J. Differential Equations,
228(2):530–579, 2006.

[29] A. Haro and R. de la Llave. A parameterization method for the computation of invariant tori
and their whiskers in quasi-periodic maps: explorations and mechanisms for the breakdown of
hyperbolicity. SIAM J. Appl. Dyn. Syst., 6(1):142–207 (electronic), 2007.

[30] X. He and R. de la Llave. Construction of quasi-periodic solutions of state-dependent delay dif-
ferential equations by the parameterization method II: Analytic case. J. Differential Equations,
261(3):2068–2108, 2016.

[31] X. He and R. de la Llave. Construction of quasi-periodic solutions of state-dependent delay
differential equations by the parameterization method I: Finitely differentiable, hyperbolic case.
J. Dynam. Differential Equations, 29(4):1503–1517, 2017.

[32] M. Hénon. A two-dimensional mapping with a strange attractor. Comm. Math. Phys., 50(1):69–
77, 1976.

[33] G. Huguet and R. de la Llave. Computation of limit cycles and their isochrons: fast algorithms
and their convergence. SIAM J. Appl. Dyn. Syst., 12(4):1763–1802, 2013.

[34] G. Huguet, R. de la Llave, and Y. Sire. Computation of whiskered invariant tori and their
associated manifolds: new fast algorithms. Discrete Contin. Dyn. Syst., 32(4):1309–1353, 2012.

[35] À. Jorba and M. Zou. A software package for the numerical integration of ODEs by means of
high-order Taylor methods. Experiment. Math., 14(1):99–117, 2005.

[36] J. Kennedy. Inverse limits, economics, and backward dynamics. Rev. R. Acad. Cienc. Exactas
Fís. Nat. Ser. A Mat. RACSAM, 102(1):39–73, 2008.

[37] J. Kennedy, D. R. Stockman, and J. A. Yorke. Inverse limits and an implicitly defined difference
equation from economics. Topology Appl., 154(13):2533–2552, 2007.

35

https://doi.org/10.1137/16M1090041


[38] J. A. Kennedy and D. R. Stockman. Chaotic equilibria in models with backward dynamics. J.
Econom. Dynam. Control, 32(3):939–955, 2008.

[39] L. M. Lerman and L. P. Shilnikov. Homoclinic structures in infinite-dimensional systems.
Sibirsk. Mat. Zh., 29(3):92–103, 220, 1988.

[40] H. E. Lomelí and J. D. Meiss. Quadratic volume-preserving maps. Nonlinearity, 11(3):557–574,
1998.

[41] E. N. Lorenz. Computational chaos—a prelude to computational instability. Phys. D,
35(3):299–317, 1989.

[42] A. C. J. Luo. Discretization and implicit mapping dynamics. Nonlinear Physical Science.
Higher Education Press, Beijing; Springer, Heidelberg, 2015.

[43] R. McGehee. Attractors for closed relations on compact Hausdorff spaces. Indiana Univ. Math.
J., 41(4):1165–1209, 1992.

[44] R. Michener and B. Ravikumar. Chaotic dynamics in a cash-in-advance economy. J. Econom.
Dynam. Control, 22(7):1117–1137, 1998.

[45] J. D. Mireles James. Quadratic volume-preserving maps: (un)stable manifolds, hyperbolic
dynamics, and vortex-bubble bifurcations. J. Nonlinear Sci., 23(4):585–615, 2013.

[46] J. D. Mireles James and H. Lomelí. Computation of heteroclinic arcs with application to the
volume preserving Hénon family. SIAM J. Appl. Dyn. Syst., 9(3):919–953, 2010.

[47] J. D. Mireles James and M. Murray. Chebyshev-Taylor parameterization of stable/unstable
manifolds for periodic orbits: implementation and applications. Internat. J. Bifur. Chaos Appl.
Sci. Engrg., 27(14):1730050, 32, 2017.

[48] J. R. Munkres. Analysis on manifolds. Addison-Wesley Publishing Company, Advanced Book
Program, Redwood City, CA, 1991.

[49] R. C. Robinson. An introduction to dynamical systems: continuous and discrete. Pearson
Prentice Hall, Upper Saddle River, NJ, 2004.

[50] E. Sander. Hyperbolic sets for noninvertible maps and relations. ProQuest LLC, Ann Arbor,
MI, 1996. Thesis (Ph.D.)–University of Minnesota.

[51] E. Sander. Hyperbolic sets for noninvertible maps and relations. Discrete Contin. Dynam.
Systems, 5(2):339–357, 1999.

[52] E. Sander. Homoclinic tangles for noninvertible maps. Nonlinear Anal., 41(1-2, Ser. A: Theory
Methods):259–276, 2000.

[53] H. Steinlein and H.-O. Walther. Hyperbolic sets, transversal homoclinic trajectories, and
symbolic dynamics for C1-maps in Banach spaces. J. Dynam. Differential Equations, 2(3):325–
365, 1990.

[54] J. B. van den Berg, J. D. Mireles James, and C. Reinhardt. Computing (un)stable manifolds
with validated error bounds: non-resonant and resonant spectra. J. Nonlinear Sci., 26(4):1055–
1095, 2016.

36



[55] A. P. Veselov. Integrable mappings. Uspekhi Mat. Nauk, 46(5(281)):3–45, 190, 1991.

[56] F. Wang and R. de la Llave. Response solutions to quasi-periodically forced systems, even to
possibly ill-posed PDEs, with strong dissipation and any frequency vectors. SIAM J. Math.
Anal., 52(4):3149–3191, 2020.

37


	Introduction
	A brief overview of the parameterization methods for maps
	Stable/unstable manifolds attached to fixed points
	Stable/unstable manifolds attached to periodic orbits

	Parameterization methods for implicitly defined maps
	Stable/unstable manifolds attached to fixed points
	Stable/unstable manifolds attached to periodic orbits

	Formal series solutions
	Parameterized stable/unstable manifolds attached to fixed points of the implicit Hénon system
	Parameterized stable/unstable manifolds attached to period two points of the implicit Hénon system
	Parameterized stable/unstable manifolds attached to fixed points of the implicit Lomelí system
	Parameterized stable/unstable manifolds attached to period four points of the implicit Lomelí system

	Numerical Results
	Numerical example: stable/unstable manifolds attached to fixed points of the implicit Hénon system
	Numerical example: stable/unstable manifolds attached to periodic orbits of the implicit Hénon system
	Numerical example: stable/unstable manifolds attached to fixed points of the implicit Lomelí system

	Definitions and Background
	Discrete time semi-dynamical systems: Maps
	Local stable/unstable manifolds for fixed points/periodic orbits
	Multiple shooting for periodic orbits

	Implicitly defined dynamical systems
	Fixed and periodic points

	A class of examples: perturbations of explicitly defined maps
	Example 1: the Hénon map
	Example 2: the Lomelí map

	Operations on formal power series
	Explicit formulas for the period four homological equations of the implicit Lomelí system

