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 TRANSACTIONS OF THE
 AMERICAN MATHEMATICAL SOCIETY
 Volume 290, Number 2, August 1985

 THE DE BRANGES THEOREM

 ON UNIVALENT FUNCTIONS

 BY

 CARL H. FITZGERALD AND CH. POMMERENKE

 ABSTRACT. We present a simplified version of the de Branges proof of the Lebedev-

 Milin conjecture which implies the Robertson and Bieberbach conjectures. AS an

 application of an analysis of the technique, it is shown that the method could not be

 used directly to prove the Bieberbach conjecture.

 1. Introduction. Let S denote the class of all functions

 00

 (1.1) f (z) = z + E anz
 )? =2

 that are analytic and univalent in the unit disk §. Louis de Branges recently proved

 [3-5] the following inequality which implies the Bieberbach conjecture.

 DE BRANGES THEOREM. Suppose f E S and define Ck:

 (1.2) log f( ) = E CkZk forz in§.
 k=1

 Then,forn = 1,2,....

 (1.3) E k(n + 1-k)lekl2 < 4 , n + 1-k
 k=1 k=1

 The inequality (1.3) was conjectured by N. A. Lebedev and I. M. Milin [10] in

 1971. The Lebedev-Milin exponentiation inequality [9, 10] (see e.g. [11, Lemma 3.3])

 shows inequality (1.3) implies a conjecture made by M. S. Robertson [12] in 1936: If

 f is an odd function in S, then

 m

 (1.4) E la2k_ll < m form = 1,2,....
 k=1

 An elementary application of inequality (1.4) to the odd function df ( z 2 ) proves a

 conjecture made by L. Bieberbach [2] in 1916: If f is a function in S, then

 (1.5) lan| < n .
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 684  C. H. FITZGERALD AND CH. POMMERENKE

 Furthermore, Robertson [13] (see e.g. [11, Corollary 2.2]) has shown that inequal-
 ity (1.4) proved by de Branges has the following consequence.

 COROLLARY. Iff(z) = alz + a2z2 + * * * satisfies
 (1.6) If (z)| < Ig(z(z))l, where I(P(Z)I < I
 for z E 9 and g E S, then (1.5) holds.

 In short, de Branges has proved the Bieberbach conjecture in its most general
 form. The proof was announced by de Branges in lectures he gave in the Leningrad
 geometric function theory seminar. A distillation of his argument by E. G. Emel'anov,
 G. V. Kuz'mina and I. M. Milin was circulated; he published a similar version [3]. A
 more formal presentation is to appear [4].

 The proof of de Branges is surprisingly short in light of the great effort that has

 gone into trying to prove the Bieberbach conjecture. His argument [3] was made in
 two steps. First he proves a more general result on bounded univalent functions by
 the ordinary Lowner differential equation which describes a contracting flow on the
 unit disk. Then he applies this result to prove his inequality (1.3).

 We shall give an even shorter version of that proof by making a technical change.
 We will use the linear partial differential equation of Lowner that describes an
 expanding flow in the plane. One result is that certain approximations in the first
 step can be dispensed with. De Branges independently makes a similar change in the proof [4].

 We can also settle the case of equality. (With some effort, the same conclusion
 follows from de Branges's method of proof [3], and the result appears explicitly in
 [4].)

 THEOREM. Iff E S and

 (1.7) f(Z)t ( D )2 forsomeeCwith|D|=1,
 then strict inequality holds in (1.3).

 It follows that if f E S and inequality (1.7) holds, then lanl < n for n = 2, 3,....
 that is, the only functions of S for which equality holds in the Bieberbach estimate
 for some n are rotations of the Koebe function.

 Finally we make some remarks about the proof. It is pointed out that the more
 general inequality of de Branges follows by a slight change of our proof. Then the
 choice of weight functions is motivated. Since they are essentially unique, it becomes
 possible to ask whether the de Branges method of proof could be directly applied to
 the Bieberbach conjecture. The answer shows the important role of the Lebedev-Milin
 conJecture.

 2. The special function system of de Branges. To avoid interrupting the proof, we
 will first make some observations about a system of functions introduced by
 de Branges.

 Fix a positive integer n. For k = 1, 2, . . ., n, let
 (2.1) Tk(t) = k E (_l)^(2k +(r + 1)^(2k + 2v + 2)n k-^e (^+k),
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 THE DE BRANGES THEOREM ON UNIVALENT FUNCTIONS  685

 where (a),, denotes a(a + l)(a + 2) (a + v-1). Let Tn+l(t)--O. Direct calcu-
 lation shows

 (2 .2) tk ( t ) tk + 1 ( t ) = _ k ( ) - k + 1 ( t )

 Let Pj(ct,,l]) denote the Jacobi polynomials (see e.g. [14]). It is easily deduced [1,
 p. 717] from (2.1) that

 )?-k

 (2.3) Tk(t) = -ke kt E p(2k,0)(1 _ 2e-t)
 l =O

 Since PJ(a'°)(-l)= (-1)J [14, p. 59], it follows that Tk(°)= -k if n - k is even and
 Tk(°) = O if n-k is odd. Hence equality (2.2) implies tk(°)-tk+1(°) = 1; and
 descending induction shows that

 (2.4) tk(°) = n + 1-k.

 It follows from (2.3) by the result of Askey and Gaspar [1, Theorem 3] that

 (2.5) tk (t ) < O for O < t < + so .

 Gasper [7] has recently given a differcnt proof of inequality (2.5) where (2.3) is
 formulated in terms of generalized hypergeometric functions instead of Jacobi
 polynomials.

 3. Proof of the de Branges Theorem. In 1923 Lowner [8] (e.g. [6, Chapter 3])
 proved the following representation theorem: If f iS a function in S such that

 (3 .1) f (§2 ) = C \ J, where J is a Jordan arc entending to infinity,

 then there is a parametrized family of univalent functions

 (3.2) f (Z' t) = etz + * * * for z E D and O < t < + O0
 such that t(z, O) = z(z ) and

 (3 3) aatt(Z t) = 1 + K(t)z Z aa f (Z, t),

 where IK(t)l = 1 and K(t) iS a continuous function on [O, so). The functionsf that
 satisfy (3.1) are dense in S with respect to uniform convergence on compact subsets
 of §. Hence it is sufficient to prove inequality (1.3) for these functions.

 For O < t < 00 define ck(t) by

 (3 4) log = S ck(t )z for z E g
 e z k = 1

 so that Ck(O) = Ck by (1.2). The following equations are obtained by the application
 of a/at to (3.4), the use of (3.3) and the application of a/az to (3.4):

 (3 5) 1 + E ck ( t ) z 1 - K ( t ) z Z [ az f ( z k t ) ] /f ( z, t )

 ( k-1 ) ( k-1 )
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 686  C. H. FITZGERALD AND CH. POMMERENKE

 From (3.5) we obtain
 k - 1

 (3.6) Ck(t) = 2 E jCy(t)K(t) + kck(t) + 2K(t) -
 ,8=1

 Let bo(t) = O and
 k

 (3 7) bk(t) = E jCj(t)K(t)
 =1

 for k = 1, 2,.... Equation (3.6) can be simplified to

 (3.8) Ck(t) = K(t) [bk(t) + bk_l(t) + 2]
 Let n be a fixed positive integer. Define

 (3 9) (p(t) = (klCk(t)l - k ) Tk(t) for O < t < + oo.

 We now suppress the variable t. By (3.7), kCk = (bk-bk_l)Kk. By using (3.8) and
 differentiating (3.9), we conclude that

 n

 p' = L 2Re[(bk - bk_l)(bk + bk-1 + 2)] tk
 k=l

 E ( | bk bk- 1 | - 4) tk -
 k=l

 Note Re[ ] = Ibkl2 _ Ibk_ ll2 + 2 Re bk-2 Re bk_ l, and recall bo = O and + 1 = °
 By partial summation we obtain

 (3.10) zp' = E (2|bk| + 4Rebk)(Tk - tk+l) + E (lbk bk-ll 4) k

 Now it follows from the differential equation (2.2) that the first summation in
 (3.10) is

 F (2|bk| + 4Rebk)( k + k + 1 )

 ,, ,

 = - E (2|bk| + 4 Re bk + 2|bk_11 + 4 Re bk-1) k

 Hence we see from (3.10) that

 (3.11) ( ) E Ibk_l(t) + bk(t) + 21 k(t)

 From inequality (2.5) we conclude

 (3.12) Iap'(t) > O forO < t < + oo.
 This inequality is the key.

 Now we use that e-tf(z, t) belongs to S; (3.2) shows the normalization conditions

 are satisfied. Since S is compact, if k is fixed, Ick(t)l remains bounded as t + oo.

 Also note that (2.1) implies that sk(t) tends to zero as t tends to infinity for each k.

 From (3.9) it follows that (+ oo) = O, and from inequality (3.12),

 (3.13) L (kick(0)l -k )(n + 1 - k) = - t 9'(t) dt < O.
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 THE DE BRANGES THEOREM ON UNIVALENT FUNCTIONS  687

 Since f(z,O) - f(z), inequality (1.3) is proved for functions of S satisfying (3.1) and

 therefore for all functions in S.

 4. Equality. Now we prove the theorem stated in the first section. We assume

 inequality (1.7) holds. Then la2l < 2 as Bieberbach [2] (see e.g. [11, Theorem 1.5])

 has shown. We choose a sequence of functions fm E S which satisfy (3.1) and

 converge to t uniformly on compact subsets of §. We add the subscript to the

 corresponding coefficients. From (1.1) and (1.2), for some number a,

 (4.1) |cl ml = la2 ml < a

 at t = 0 for large m.

 The Lowner differential equation is used in the form given by (3.6). It follows that

 |Cl nll {cl m(t) + 2K,tI(t)| < |a2 m(t)| + 2 < 4.

 Hence from (4.1), we see that cl m(t) < (x + 4t. From (3.10) and inequality (2.5),

 (pm(t) > Icl m(t)K,,I(t) + 21 (-tl(t)) > (2 - xx - 4t)2(-Tl(t))

 for 0 < t < (2 - a)/4 and m large. Hence by (3.13)

 E (klck ml -k)(n + 1-k)

 {(2-a)/8 t 2 _ a 02 r(2_a)/g ,

 < -J gm(t) dt < t 2 J Jo Tl(t) dt

 ( 2 _ a )2[ ( 2 - ot ) ( )]

 Letting m tend to infinity, we conclude strict inequality holds in (1.3) and conse-

 quently in the Bieberbach estimate.

 5. Remarks. (1) De Branges has proved a more general inequality; specifically, if

 f E s and If(Z)l < eT, then
 (5.1)

 E k(n + 1-k)lCk + qkl %: klPk| tk(T) + k(n + 1-k-h(T))

 h=l h=l h-=l

 where the Pk are arbitrary complex numbers and the qk are determined by

 00 0t

 (s.2) E qkZ = E pke f (Z)
 k=l k=l

 His inequality (1.3) follows by letting Pk-O and T tend to oo. By a slight change in

 (3.4), our proof also gives inequality (5.1). Use the coefficients of the expansion of

 log t + E P ke f ( Z, t )
 e z k = 1

 to define (p. Integrate -' < O from 0 to T.

 (2) The choice of the weight functions Tk made by de Branges can be motivated

 and shown to be unique in a certain sense.
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 688  C. H. FITZGERALD AND CH. POMMERENKE

 For the Koebe function c ( z ) = z (1 + z ) - 2 we have

 (5.3) (t)--1 and Ck(t)-- (-l)kk fork = 1,2,....

 Hence the contribution (4/k)k(t) in (3.9) cannot be changed if we want to obtain

 an estimate that is sharp for the Koebe function.

 Now consider the properties of univalent functions used to prove 9/(t) > O. The

 proof uses Lowner's differential equation (3.3) only as it prescribes the motion of

 cl(t), c2(t),...,cn(t) as given in the differential equation (3.6). Whether

 Cl(t)n...Cn(t) actually arise from a univalent function related to the choice of K(t)

 is not considered.

 If we agree that only (3.6) is to be used to show (pt(t) > 0 we are free to prescribe

 cl(to),. . . ,cn(to) and a continuous K(t) with IK(t)l = 1. Then (3.6) has local solutions

 and the inequalities resulting from '(to) > O give requirements of the functions tTk.

 LetK(t)--1 and,forsomeL = l,...,nandO < to < x,let

 Ck(to) = ( 1) (2 + 71)/L for k-L,

 where 71 is a complex number of small magnitude.

 Equation (3.6) then implies

 {O fork < L,

 Ck = 4 (-1) a7 fork = L,

 t 2(-1) L71 for k > L,

 where the argument to is dropped. Hence

 n s?

 9 = E Re [ 2 CkCk ] tTk + E ( k | Ck 1 4/k ) tk > °

 k=l k=l

 implies that, as n tends to zero,

 1 /

 Re 4717L + E 8(-1) 7}Tk + 471 L + °(l71l ) > °
 k=L+l _

 Since the argument of 77 is arbitrary,

 n w

 (5 4) fL + 2 E (-1) + LTk + - = °
 k = L + 1

 If L < n, we also consider (5.4) for L + 1 and add; we obtain

 ( 5 5 ) T - 'T + - + L + 1 = 0

 If L = n, then (5.5) follows at once from (5.4) where Tn+l = ° Now (5.5) is

 equivalent to the differential equation (2.2) of de Branges for (t = to)* The initial

 conditions tTk(°) = n + 1-k are specified by the inequality to be proved. Equation

 (2.2) and the initial conditions determine the function Tk uniquely.
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 THE DE BRANGES THEOREM ON UNIVALENT FUNCTIONS  689

 Furthermore, ' > 0 implies each fL < 0 at t = to. To show this fact we construct

 cksuchthatlbk + bk+l + 21= Ofork + Landpositivefork = Landuse(3.11).

 (3) Knowing how to find the appropriate weight functions, we can consider

 whether the Bieberbach conjecture could be proved by the de Branges method

 applied directly. Let f(z, t) = etz + a2(t)z2 + a3(t)z3 + * * - . We restrict to the

 case n = 3 and look for real-valued weight functions wl(t) and w2(t) with wl(0) = 0

 and w2 (0) = 1 such that

 (5.6) {(t) =la21 wl(t) +|a3(t)| w2(t)-(4wl(t) + 9w2(t))e2t

 satisfies +'(t) > 0 and +(x) = 0. Note that the last term in (5.6) is determined by

 the requirement that A(t)-- 0 forf(z, t) = etz(l + Z)-2.

 The proof that +' > 0 should use only that

 (5.7) a2 = 2a2 + 2K(t)et and a3 = 3a3 + 4sa2 + 2K2et.

 If we use (5.6) and (5.7), it is easy to express +' as a polynomial in a2 and a3:

 (5 .8) {' = 4la2l wl + |a2| wl + (6|a3| + Re 8Ka3a2)W2 + la31 wl + ,

 where the remaining terms are of lower order. Consider K(to) = -I and a2(t0) = 2x

 and a3(tO) = 3x for a real variable x. From (5.8),

 (5.9) +' = (16wl + 4wl + 6w2 + 9w2)x2 + O(lxl) as x oo.

 Since we can pick x arbitrarily large, +'(to) > 0 implies the coefficient of the leading

 term in (5.9) must be nonnegative.

 On the other hand, making small variations from the Koebe fllnction as in the

 previous remark, we deduce from +' > 0, wl(0) = 0 and w2(0) = 1 that wl = 6e-3t

 - 6e-4t and w2 = e-4t. Then for to= 0, the coefficient of x2 in (5.9) is -6 in

 contradiction to the conclusion that it must be nonnegative

 Hence la31 < 3 cannot be proved by this direct approach. What de Branges did

 (rewritten in the present context) was to consider

 (5.10) la 12e 2t,T + 21a3-la2e-tl e-2tT2-(4T1 + 2z2)

 instead of (5.6). This gives 2la2l2 + 2la3-2a212 < 10 which implies

 la3| < 2|a2| + 715-la21 < 3

 Clearly the Milin conjecture has motivated an appropriate combination of coeffi-

 cients in expression (5.10).

 ACKNOWLEDGEMENT. We are grateful to Professor S. Warschawski for his meticu-

 lous translation of the first Russian preprint of the de Branges proof. Also we

 appreciate communications from Professors D. Hamilton, J Korevaar and G.

 Schober.
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