
The Bieberbach Conjecture
Solved

1 Notation and some terminology

If z ∈ C and r > 0, then D(z, r) denotes the open disc of center z radius r;
D(z, r) = {w ∈ C : |w− z| < r}. We write D for D(0, 1). An analytic function
f : U → C, where U is an open subset of C, is said t be univalent iff it is
injective. Functions declared univalent will always be assumed to be analytic.
We set

S = {f : D → C : f is univalent,f(0) = 0, f ′(0) = 1}.
The Koebe function is the function k : D → C defined by

k(z) =
z

(1 − z)2
.

It is easily seen to be in S. Moreover

k(z) =

∞
∑

n=1

nzn = z + 2z2 + 3z3 + · · ·

for |z| < 1.
If f ∈ S, then f(z) = z +

∑

n=2 anz
n. The Bieberbach conjecture states

if f(z) = z +
∑

n=2 anz
n ∈ S, then |an| ≤ n for all n ≥ 2. A strong version

adds: If equality holds for some n ≥ 2; i.e., if |an| = n for some n ≥ 2, then f
is essentially the Koebe function, specifically

f(z) = e−iαk(eiαz) =
z

(1− eiαz)2

for all z ∈ D, where α ∈ R.

A path is a continuous map γ : I → C, where I is an interval in R; not
necessarily a closed or bounded interval. We denote by γ∗ the points on the
path; γ∗ = {γ(t) : t ∈ I}

2 A Sketch of the Proof.

I will sketch here the proof. This could be most of the presentation. The section
that follow contain the needed proofs of details, so most references are to results
in the following sections.

I stated the Bieberbach conjecture in the previous section. In 1936 M.S.
Robertson made the following stronger conjecture: If f(z) =

∑∞
k=1 b2k+1z

2k+1
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is an odd function in S, then

n−1
∑

k=0

|b2k+1|2 ≤ n for n ∈ N. This conjecture, if

true, implies the Bieberbach conjecture. In fact, assuming it true, we can apply
it to the odd function F coming from f by Lemma 8, if F (z) =

∑∞
k=0 ckz

2k+1,
the Robertson conjecture implies

n−1
∑

k=0

|ck|2 ≤ n

for all n ∈ N. By (7), if f(z) =
∑∞

n=1 anz
n (a1 = 1), then (by the Cauchy

Schwarz inequality)

an =
n−1
∑

k=0

ckcn−k−1 ≤
(

n−1
∑

k=0

|ck|2
)1/2(n−1

∑

k=0

|cn−k−1|2
)1/2

=

(

n−1
∑

k=0

|ck|2
)1/2(n−1

∑

k=0

|ck|2
)1/2

=

n−1
∑

k=0

|ck|2 ≤ n.

In 1971 N.A. Lebedev and I.M. Milin made an even stronger conjecture, and
that was what De Branges proved: Let f ∈ S and define ck ∈ C by

log
f(z)

z
=

∞
∑

k=1

ckz
k

for z ∈ D. Then

n
∑

k=1

k(n+ 1− k)|ck|2 ≤ 4

n
∑

k=1

n+ 1− k

k
. (1)

As will be used perhaps more than once, f(z)/z is analytic in D since f(0) = 0.
Moreover f(z)/z 6= 0 for z ∈ D; it can’t be 0 at 0 since f ′(0) = 1; it can’t
be 0 anywhere else since f is univalent and already 0 at 0. Thus there is an
analytic determination of log(f(z)/z); we choose the one satisfying log 1 = 0.
The proof that the Lebedev Milin conjecture implies the Robertson conjecture
is not easy. It depends on the following inequality known as the second Lebedev-
Milin inequality.

Theorem 1 Let ϕ(z) =
∑∞

n=1 αnz
n be analytic in some neighborhood of the

origin (notice ϕ(0) = 0) and let ψ(z) = eϕ(z) =
∑∞

n=0 βnz
n. Then

n−1
∑

k=0

|βk|2 ≤ n exp

(

1

n

(

n−1
∑

k=1

k(n− k)|αk|2 −
n−1
∑

k=1

n− k

k

))

(2)

for n = 2, 3, . . .. Equality occurs if and only if there exists γ ∈ C, |gm| = 1 such
that αk = 1

kγ
k for k = 1, 2, . . . , n− 1.
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The proof of this theorem will be postponed (perhaps forever). Assuming it, we
can prove that if the Lebedev-Milin conjecture is true then so is the Robertson
conjecture, as follows. Let f be an odd function in S, say

f(z) =
∞
∑

k=0

b2k+1z
2k+1.

Then f2 is an even analytic function in D, hence has a power series involving
only even powers of z and we can define∗ g : D → C by g(z2) = f(z)2. Then
g ∈ S. In fact, g(0) = 0 is clear; differentiating both sides of the equality
g(z2) = f(z)2 we get

2zg′(z2) = 2f(z)f ′(z), thus g′(z2) =
f(z)

z
f ′(z) → f ′(0)2 = 1

as z → 0; thus g′(0) = 1. If g(z1) = g(z2), then let w1, w2 ∈ D such that z1 =
w2

1 , z2 = w2
2. Then f(w1)

2 = f(w2)
2 thus f(w1) = ±f(w2). Since f is univalent

and odd, if f(w1) = f(w2) we get w1 = w2. If f(w1) = −f(w2) = f(−w2) then
w1 = −w2. In either case w2

1 = w2
2 ; i.e., z1 = z2. Let ck be defined by

log
g(z)

z
=

∞
∑

k=1

ckz
k.

Now f(z)/z is an even function, so we can replace z by
√
z (any determination)

to get an analytic function in z; we denote it by f(
√
z)
√
z. We have g(z2)/z2 =

(f(z)/z)2 so that

g(z)

z
=

(

f(
√
z)√
z

)2

;

taking logs,

log

(

f(
√
z)√
z

)

=
1

2
log

g(z)

z
=

∞
∑

k=1

1

2
ckz

k,

thus
f(
√
z)√
z

= e
∑

∞

k=1

1

2
ckz

k

.

We can now apply (2) with

ψ(z) =
f(
√
z)√
z

=

∞
∑

k=0

b2k+1z
k, ϕ(z) =

∞
∑

k=1

1

2
ckz

k

to get

n−1
∑

k=0

|b2k+1|2 ≤ n exp

(

1

n

(

n−1
∑

k=1

k(n− k)
|ck|2
4

−
n−1
∑

k=1

n− k

k

))

.

∗f(z)2 =
∑∞

n=1
cnz2n for some coefficients cn (with c0 = 0 since f(0) = 0); set g(z) =∑∞

n=1
cnzn.
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By the Lebedev-Milin conjecture (1), which we assume is true, the argument
inside the exponential is non-positive, thus we get

n−1
∑

k=0

|b2k+1|2 ≤ n

as Robertson conjectured. A thing to notice here is that while the Robert-
son conjecture is a nice but mild extension of the Bieberbach conjecture, the
Lebedev-Milin conjecture was a much stronger, deeper result.

And now to the sketch of how De Branges proved that the Lebedev-Milin
conjecture is true. I break it up into numbered segments, or steps.
1. It suffices to prove (1) for slit maps; these are elements f ∈ S such that
f(D) = C\Γ∗, where Γ : [0,∞) → C is a Jordan arc going to infinity; that is
Γ is continuous and injective and limt→∞ |Γ(t)| = ∞. As is proved in Theorem
19 below, slit maps are dense in S, in the topology of uniform convergence over
compact subsets of D. If {fn} converges in this way to f , then it is clear that
{log(fn/z)} converges to log(f/z) uniformly over compact subsets of D. Then
for each k ∈ N ∪ {0} the sequence of k-th Taylor coefficients of {log(fn/z)}
converges to the k-th Taylor coefficient of log(f/z) (see Theorem 4). Since (1)
only involves a finite number of coefficients, proving it for slit maps is enough.
From now on assume f is a slit map, f(z) = z+

∑∞
n=1 anz

n, and assume ck for
k ∈ N are defined by

log
f(z)

z
=

∞
∑

k=1

ckz
k.

2. A construct due to Charles Löwner (1923) was one of the crucial ingredients
used by De Branges in his proof. Löwner used this result to prove |a3| ≤ 3. A
useful version of Löwner’s result is the following:

Theorem 2 Let f ∈ S be a slit map; f(z) = z +
∑∞

n=1 anz
n. There exists a

continuous g : D × [0,∞) → C such that z 7→ g(z, t) : D → C is univalent for
all t ≥ 0 and t 7→ g(z, t) : (0,∞) → C is differentiable for all z ∈ D. Moreover:

1. g(z, t) = et

(

z +

∞
∑

n=2

an(t)z
n

)

for z ∈ D, t ≥ 0, where an : [0,∞) → C

are continuous, and differentiable for t > 0, and an(0) = an for each
n ∈ N. In particular, g(·, 0) = f .

2. g satisfies the following differential equation:

∂g

∂t
(z, t) = z

1 + κ(t)z

1− κ(t)z

∂g

∂z
(z, t)

where κ : [0,∞) → C is continuous and |κ(t)| = 1 for all t ∈ [0,∞).
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For a proof, see Theorem 20 below. De Branges then defines functions ck :
[0,∞) → C for k ∈ N by

log
g(z, t)

z
=

∞
∑

k=1

ck(t)z
k;

since g(z, 0) = f(z), it follows that ck(0) = ck. Löwner’s differential equation
(16) translates into ordinary differential equations for these functions, namely

c′k(t) = 2

k−1
∑

j=1

jcj(t)κ(t)
k−j + kck(t) + 2κ(t)k. (3)

They are not exactly pretty, but they are.

3. Here is where De Branges advances past Löwner. He introduces a system of
special functions. Let n ∈ N, fixed the duration (the same n as in (1). Define
τk : [0,∞) → R for k = 1, . . . , n+ 1 by a backward induction. Set τn+1(t) = 0
for all t ≥ 0 ad assuming τk+1 defined for some k ≤ n, define τk as the solution
of the initial value problem

{

1
k τ

′
k + τk = τk+1 − 1

k+1 τ
′
k+1, 0 < t <∞,

τk(0) = n+ 1− k,
(4)

for k = n, n−1, . . . , 1. I’ll calculate a few directly,just for the fun of it. τn solves
1
nτ

′
n + τn = 0, thus τn(t) = Ce−nt; since τn(0) = 1, we see τn(t) = e−nt. Then

τn−1 solves
1

n− 1
τ ′n−1 + τn−1 = 2e−nt, τn−1(0) = 2;

the solution is given by τn−1(t) = 2ne−(n−1)t−2(n−1)e−nt. Keep in mind that
n is kept fixed; τ1 (for example) is not the same for different values of n. It is
not hard to get an explicit formula for them; that is, it is not hard to prove such
a formula by induction once one knows how it looks. We have

τk(t) = k

n−k
∑

ν=0

(−1)ν
(2k + ν + 1)ν(2k + 2ν + 2)n−k−ν

(k + ν)ν!(n − k − ν)!
e−(ν+k)t,

for k = 1, . . . , n, where one defines (a)ν for a ∈ R and ν ∈ N ∪ {0} by (a)0 = 1
and (a)ν = (a)ν−1(a+ν−1) if ν ≥ 1. This explicit expression for the τk’s is not
important; what matters is the differential equation satisfied by these functions
and the following two facts: Let 1 ≤ k ≤ n. Then

T1. limt→∞ τk(t) = 0.

T2. τ ′k(t) < 0 for t > 0.
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Of these two facts, the first one is fairly obvious, the second one not at all
obvious. It depends on a complicated inequality for Jacobi polynomials due to
Askey and Gasper.

4. Here is where all is put together. A new function is defined, namely

ϕ(t) =
n
∑

k=1

(

k|ck(t)|2 −
4

k

)

τk(t), (5)

for 0 ≤ t <∞. Using the differential equations (4) satisfied by the τk’s and the
differential equations satisfied by the coefficients ck (which come from Löwner’s
differential equation), one gets

ϕ′(t) = −
n
∑

k=1

|bk−1(t) + bk(t) + 2|2 τ
′
k(t)

k
, (6)

where to keep the notation from getting exceedingly horrible, one abbreviated
certain expressions involving the coefficients ck by defining

bk(t) =
k
∑

j=1

jcj(t)κ(t)
−1, k = 1, 2, 3, . . . ,

and b0(t) = 0. If we consider fact T2. above; namely that τ ′k is always negative
for t > 0, 1 ≤ k ≤ n, one concludes from (6) that ϕ′(t) ≥ 0 for all t > 0. Thus
ϕ is increasing.

We notice next that |ck(t)| ≤ Ck for k = 1, 2, 3, . . ., t ≥ 0, where Ck are the
constants given by Corollary 16. In fact, for each t ∈ [0,∞), g(·, t) is univalent
and 0 at 0; the only thing stopping it from being in S is that g(0, ) = et. But
this is easily remedied, e−tg(·, t) ∈ S. Now

log
g(z, t)

z
= log

(

et
e−tg(z, t)

z

)

= t+ log
e−tg(z, t)

z
,

and it follows that if k ≥ 1, ck(t) is also the coefficient of zk of log(e−tg(z, t)/z).
The assertion follows. If we now bring in the fact called T1., namely that each
τk(t) → 0 as t → ∞, and the definition of ϕ, we see that limt→∞ ϕ(t) = 0.
A function that increases to 0 must be non-negative for finite values of t; in
particular ϕ(0) ≤ 0. In other words,

n
∑

k=1

(

k|ck|2 −
4

k

)

(n+ 1− k) ≤ 0.

This inequality is the same as (1), proving the theorem.
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3 Some Basics from Complex Analysis.

(Some with, others without, proof. Proofs can be found in most, probably all,
complex analysis textbooks)

Proposition 3 Let U be open in C and let f : U → C be analytic. Then f is
an open map. If in addition f is univalent, then f−1 : f(D) → U is analytic
and

(f−1)′(w) =
1

f ′(f−1(w))

for all w ∈ f(D). In particular, if f is univalent then f ′(z) 6= 0 for all z ∈ U .

Proposition 4 Let fn : D → C be analytic for each n ∈ N and assume the
sequence {fn} converges uniformly over compact subsets of D to f . If

fn(z) =

∞
∑

k=0

cnkz
k

for n = 1, 2, 3, . . ., then limn→∞ cnk = ck for each k ∈ N ∪ {0}, where f(z) =
∑∞

k=0 ckz
k.

Proof. Let r ∈ (0, 1), then

cnk =
1

2πi

∫

|z|=r

fn(z)

zk+1
dz

for n ∈ N, and we also have

ck =
1

2πi

∫

|z|=r

f(z)

zk+1
dz.

Since {z ∈ C : |z| = r} is a compact subset of D, the result follows.

The usual topology for analytic functions is uniform convergence on compact
subsets of the domain. There is a point, in the proof of Caratheodory’s Theorem
17, where one has to have a slightly expanded notion of convergence on compact
subsets. Assume Un is open in C and fn : Un → C is analytic for n = 1, 2, 3, . . ..

Assume also Un ⊂ Un+1 for n = 1, 2, , . . ., Let U =

∞
⋃

n=1

Un. If K is a compact

subset of U then there exists N ∈ N such that K ⊂ UN , hence K ⊂ Un for
n ≥ N . It thus makes sense to say that the sequence {fn} converges uniformly
over compact subsets to f : U → C iff for each compact subset K of U , each
ǫ > 0, there exists Nǫ,K ∈ N such that |fn(z) − f(z)| < ǫ for all n ≥ Nǫ,K , all
z ∈ K. Implicitly one assumes Nǫ,K is large enough so K ⊂ Un if n ≥ Nǫ,K .
Except at one point in the proof of Theorem 17, we will assume that Un = U
for all n ∈ N when talking of uniform convergence over compact subsets. The
following two results are quite standard; I add sketch of proofs only because of
this slightly expanded notion of convergence.
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Proposition 5 Let Un be open in C and let fn : Un → C be analytic for
n = 1, 2, 3, . . .. Assume also Un ⊂ Un+1 for n = 1, 2, , . . . and assume that {fn}
converges uniformly over compact subsets of U to f . Then f is analytic on U .

Sketch of a proof. The usual proof, found in any complex variables textbook,
applies, One can use Morera’s Theorem, for example. If a continuous function

f from an open set U to C satisfies that

∫

γ

f dz = 0 for each closed curve γ such

that γ∗ is contained in a disc contained† in U , then f is analytic in U . The limit
function f will be continuous, since it is continuous on every compact subset
of U , hence in a neighborhood of every point of U . If γ is a closed curve in U ,
contained in some open disc W ⊂ U then, γ∗ being compact, we will have that

γ∗ ⊂ Un for all n ≥ N for some N ∈ N. By Cauchy’s Theorem,

∫

γ

fn dz = 0

for all n ≥ N ; since fn → f uniformly on γ∗, we’ll also have

∫

γ

f dz = 0. The

result follows.

Theorem 6 (Montel’s Theorem) Let Un be open in C, Un ⊂ Un+1, and let
fn : Un → C be analytic for n = 1, 2, 3, . . .. For K a compact subset of U let
NK ∈ N be such that‡ K ⊂ Un for n ≥ NK . Assume that for every compact
subset K of U there exists a constant CK such that |fn(z)| ≤ CK for all z ∈ K,
all n ≥ NK. Then there exists a subsequence of {fn} converging uniformly on
compact subsets of U to some function f : U → C. This limit is necessarily
analytic.

Sketch of a proof. This theorem is a fairly straightforward consequence of the
Arzela-Ascoli Theorem. One shows that the restriction of the sequence elements
to a compact subset of U is equicontinuous. This can be reduced to proving
equicontinuity on closed discs contained in U . Let W = D(w, r) be such that
W̄ ⊂ U , let R > r be such that D(w,R) is still contained in U . Then

f ′
n(z) =

1

2πi

∫

|z|=R

fn(ζ)

(ζ − z)2
dζ

for all z ∈ W̄ ; if C is a bound for |fn(ζ)| for all ζ in the compact set {ζ ∈ C :
|ζ − w| = R} then one gets form the formula for f ′

n that

|f ′
n(z)| ≤

CR

(R − r)2

for all z ∈ W̄ . I am implicitly assuming here that Un = U for all n; how-
ever, the same argument holds in the slightly more general case, one has to

†There exist z0 ∈ U , r > 0 such that γ∗ ⊂ D(z0, r) ⊂ U . It actually suffices to have this
condition for γ the boundary of a triangle.

‡NK = 1 for all compact K if Un = U for all n.
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add simply: “for n large enough.” Equicontinuity is a consequence of having
uniformly bounded derivatives. For every compact subset one then can extract
a subsequence converging uniformly on that subset. To get a single sequence
one needs an additional diagonal argument. One can express U (as one can

every open subset of C as a union U =

∞
⋃

m=1

Km of a sequence {Km} of compact

subsets that have the property that Km ⊂ K◦
m+1 for each m ∈ N. For each

m ∈ N we have Nm ∈ N such that Km ⊂ Un for n ≥ Nm. We may and will
assume that N1 ≤ N2 ≤ · · · . There is a subsequence {fnk

} of {fn}n≥N1
con-

verging uniformly on K1 to some continuous function f1. Ignoring the terms (if
any) of {fnk

} with nk < N2, there is a subsequence {fnkj
} of {fnk

} converging

uniformly to a continuous function f2 on K2. Necessarily f2|K1
= f1. The nota-

tion can get quite messy here, we cannot keep on using subindices of subindices
for subsequences, so in a detailed proof, one switches to double indices. The
point is that for each m ∈ N one has a subsequence converging uniformly on
Km and this subsequence has in turn a subsequence converging uniformly on
Km+1. The diagonal sequence then converges uniformly on each Km. Because
of Km ⊂ K◦

m+1, every compact subset of U is included in Km fr some m ∈ N.

Proposition 7 For n ∈ N let Un be open in C, Un ⊂ Un+1, and let fn : Un → C

be analytic and univalent. Assume {fn} converges uniformly to f on compact

subsets of U =
∞
⋃

n=1

Un and assume U is connected. Then either f is univalent

or f is constant.

Proof. By Cauchy’s formula was used above to see that f is analytic on D;
one also uses it to prove that {f ′

n} will converge uniformly to f ′ on compact
subsets of U . Assume for a contradiction that f is not univalent nor constant,
and let z1, z2 ∈ U be such that f(z1) = f(z2). One can now find an open
connected subset V of U such that the closure V̄ is compact and such that
z1, z2 ∈ V ⊂ V̄ ⊂ U . At this point we can replace U by V and assume that
{fn} converges uniformly to f on V . The rest of the proof becomes standard, see
for example Proposition 3.5 in Chapter 8 of Stein=Shakarchi Complex Analysis.
They introduce the sequence {gn}, where gn(z) = fn(z)−fn(z1) for n ∈ N. This
sequence converges uniformly to g = f − f(z1) on V . Now g(z2) = 0 and, since
g is not identically 0 (otherwise f is constant), z2 is an isolated zero of g. There
is thus a radius r > 0 such that g(z) 6= 0 if 0 < |z − z2| ≤ r. In particular,
r < |z2 − z1|. By the argument principle,

1

2πi

∫

|z−z2|=r

g′(z)

g(z)
dz = # of zeros of g in D(z2, r) ≥ 1.

(Stein-Shakarchi say equal to 1 where I have ≥ 1, but zeros are counted by their
multiplicity, and hypothetically z2 could be a zero of order > 1 of g). Since
|g(z)| > 0 on the compact circle C = {z ∈ C : |z− z2| = r}, it is bounded away
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from 0, the same applies to elements gn with n large enough, so that 1/gn → 1/g
uniformly on C and

1

2πi

∫

|z−z2|=r

g′n(z)

gn(z)
dz → 1

2πi

∫

|z−z2|=r

g′(z)

g(z)
dz

as n→ ∞. But
1

2πi

∫

|z−z2|=r

g′n(z)

gn(z)
dz = 0

for all n, since each gn is univalent and already 0 at z1, thus never 0 in D(z2, r).
A contradiction has been reached, and we are done.

4 More Specific Preliminary Results

Lemma 8 Let f ∈ S. There exists a unique F ∈ S such that f(z2) = F (z)2

for all z ∈ D. The function F is odd. Moreover, if f(z) = z+
∑∞

n=2 anz
n, then

F (z) = z +
1

2
a2z

3 +
1

2
(a3 −

1

4
a22)z

5 + · · · .

Proof. Since f(0) = 0, the function h : z 7→ f(z)/z is analytic in D. Then
h(0) = f ′(0) = 1 and h it is never 0 since f is univalent and thus zero only
at zero. It follows that h(D) is a simply connected subset of C, 0 /∈ h(D),
1 ∈ h(D). Let log denote the analytic determination of the logarithm satisfying
log 1 = 0. Set

F (z) = ze
1

2
log h(z2) = z

√

h(z2).

This is clearly an odd function and F (z)2 = z2h(z2) = f(z2). It is univalent;
if F (z) = F (w) then f(z2) = f(w2), hence z2 = w2. this implies

√

h(z2) =
√

h(w2) and since h is never 0, we now get z = w from

z
√

h(z2) = F (z) = F (w) = w
√

h(w2).

That F (0)+0 is obvious. Moreover, F ′(z) =
(

1 + z h′(z2)
h(z2)

)

e
1

2
log h(z2); it follows

that F ′(0) = 1 since log 1 = 0. Thus F ∈ S, Uniqueness is clear since F (z)2 =
f(z2) determines F up to sign. But F ′(0) = 1 determines the sign.

Concerning the Taylor coefficients of F (z), assume F (z) =
∑∞

k=0 ckz
2k+1,

where c0 = 1. Then

F (z)2 =

∞
∑

n=1

(

n−1
∑

k=0

ckcn−k−1

)

z2n,

and comparing with f(z)2 = z2 +
∑∞

n=2 anz
2n we get

n−1
∑

k=0

ckcn−k−1 = an (7)
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for n = 2, 3, . . .. For n = 2 we get c0c1+ c1c0 = a2, so 2c1 = a2, hence c1 = 1
2a2.

For n = 3, using c0 = 1, c1 = 1
2a2, the equation works out to 2c2 +

1
4a

2
2 = a3,

hence a3 = 1
2 (a3 − 1

4a
2
2).

Notation If f ∈ S and F ∈ S is given by Lemma 8, we write F (z) =
√

f(z2).

Definition 1 Let f ∈ S. We define f̃ : C\D̄ by

f̃(z) =
1

f(1/z)
.

Lemma 9 Let f ∈ S. Then f̃ : C\D̄ is univalent. Moreover, if f(z) = z +
∑∞

n=1 anz
n, then

f̃(z) = z +

∞
∑

n=0

bnz
−n

where b0 = −a2, b1 = −a3+a22, and the rest of the coefficients are not important.

Proof. As already mentioned in the proof of Lemma 8, the function h(z) =
f(z)/z is analytic and never 0 in D. Thus 1/h(z) is analytic in D and we can
write

z

f(z)
=

1

h(z)
=

∞
∑

n=0

cnz
n.

Replacing z by 1/z and multiplying by z, we get

f̃(z) =
1

f(1/z)
=

∞
∑

n−0

cnz
1−n = c0z +

∞
∑

n=1

cnz
1−n = c+ 0z +

∞
∑

n=0

bnz
−n,

where bn = cn+1. The coefficients cn are not hard to determine. In the first
place c0 = 1/h(0) = 1. From

(

∞
∑

n=0

cnz
n

)(

z +
∞
∑

n=1

anz
n

)

= z,

we get for n ≥ 1

cn−1 +

n
∑

j=2

ajcn−j =

{

1 if n=1,
0 otherwise.

For = 1, 2 this works out to c1 + a2 = 0, c2+ a2c1+ a3c0 = 0, respectively, from
which c1 = −a2, c2 = a22 − a3; i.e., b0 = −a2, b1 = a22 − a3.

In proving Löwner’s Theorem 20, we will need the following subordination
principle.
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Theorem 10 Let f, g be analytic in D with f univalent, g(0) = f(0), and
g(D) ⊂ f(D). Then |g′(0)| ≤ |f ′(0)| and

g(D(0, r)) ⊂ f(D(0, r))

for all r ∈ (0, 1). Moreover, if g′(0) = f ′(0), then g = f .

Proof. Since f−1 is analytic, univalent, and defined on the range of g (by
g(D) ⊂ f(D)), we can consider the function h = f−1 ◦ g. We have h(0) = 0
because f(0) = g(0). Thus z 7→ h(z)/z is analytic in D. Moreover,

h(D) = f−1(g(D)) ⊂ f−1(f(D)) = D,

so |h(z)| ≤ 1 for all z ∈ D. Let 0 < r < 1. If |z| = r we have |h(z)/z| ≤ 1/r
thus, by the maximum principle |h(z)/z| ≤ 1/r for all |z| < r. Keeping z fixed
and letting r → 1 we get that |h(z)/z| ≤ 1 for all z ∈ D. Thus

|h′(0)| = lim
z→0

∣

∣

∣

∣

h(z)

z

∣

∣

∣

∣

≤ 1.

Now

h′(z) =
(

f−1
)′
(g(z)) · g′(z) = 1

f ′(f−1(z))
g′(z);

letting z → 0 we get h′(0) = g′(0)/f ′(0); coupled with |h′(0)| ≤ 1 we proved
|g′(0)| ≤ |f ′(0)|. Assume now f ′(0) = g′(0). In this case the value, and the
absolute value of the analytic function h(z)/z at 0 is 1, which is also an up-
per bound of its values; by the maximum principle, h(z)/z = c a constant;
necessarily c = 1 so that

f−1(g(z)) = h(z) = z

for all z ∈ D. Applying f we get g(z) = f(z) for all z ∈ D.
Finally, let r ∈ (0, 1). In all of D we have |h(z)| ≤ 1, so |h(z)| ≤ |z| in D.

Restricting to D(0, r) we get |h(z)| ≤ |z| ≤ r in D(0, r), so h(z) ∈ D(0, r) and
then g(z) = f(h(z)) ∈ f(D(0, r)).

The following theorem due to Bieberbach (1916) could be what suggested
the conjecture.

Theorem 11 Let f(z) = z +
∑∞

n=2 anz
n ∈ S. Then |a2| ≤ 2 with equality

if and only if f is the Koebe function, or the Koebe function composed with
rotations; i.e.,

f(z) = e−iαk(eiαz)

for all z ∈ D, some α ∈ R.

The proof of this theorem is an easy consequence of the following theorem due
to Gronwall (1914).
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Theorem 12 Let f ∈ S and assume f̃(z) = z+
∑∞

n=0 bnz
−n. Then

∑∞
n=1 n|bn|2 ≤

1, with equality if and only if C\f̃(Ω) is a null set, where Ω = C\D̄ = {z ∈ C :
|z| > 1}.

Proof. Let g = f̃ (to avoid always to put on a tilde; one could easily forget).
Notice first that lim|z|→∞ |g(z)| = ∞. This is easiest seen by the definition,

lim
|z|→∞

|g(z)| = lim
|z|→∞

1

|f(1/z)| = lim
|z|→0

1

|f(z)| = ∞

since f(0) = 0.
For r > 1 let Ωr = {z ∈ C : |z| > r}. Then g(Ωr) is an open subset of C (an-

alytic maps are open) that is easily seen to be bounded by γ∗r = {g(z) : |z| = r}.
It is unbounded (since lim|z|→∞ |g(z)| = ∞). Because g is univalent, γ∗r is a
Jordan curve parameterized, for example, by γr(t) = g(reit), 0 ≤ t ≤ 2π. A
Jordan curve divides the plane into two connected components, an unbounded
one, g(Ωr) in this case, and a bounded one. Let Er denote the bounded com-
ponent, so Er = C\g(Ωr). There are several ways of seeing that the given
parametrization of the boundary is positive. To not interrupt the flow here, I
leave one such computation to the end. By Green’s Theorem it follows that,
writing γr(t) = xr(t) + iyr(t),

Area(Er) =
1

2

∫

γr

(−y dx+ x dy) =
1

2

∫ 2π

0

(−yr(t)x′r(t) + xr(t)y
′
r(t)) dt.

Now

−yrx′r + xry
′
r = Im {(xr − iyr)(x

′
r + iy′r)} = Im {g(reit) d

dt

(

g(reit)
)

}

= Im

{(

re−it +

∞
∑

n=0

b̄nr
−neint

)

d

dt

(

reit +

∞
∑

n=0

bnr
−ne−int

)}

= Im

{(

re−it +

∞
∑

n=0

b̄nr
−neint

)(

ireit − i

∞
∑

n=0

nbnr
−ne−int

)}

= Im

{

ir2 + i

∞
∑

n=0

b̄nr
1−nei(n+1)t − i

∞
∑

n=0

nbnr
1−ne−i(n+1)t

− i
∞
∑

n,m=0

mb̄nbmr
−(n+m)ei(n−m)t

}
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Thus

Area(Er) =
1

2

∫ 2π

0

Im

{

ir2 + i

∞
∑

n=0

b̄nr
1−nei(n+1)t − i

∞
∑

n=0

nbnr
1−ne−i(n+1)t

− i

∞
∑

n,m=0

mb̄nbmr
−(n+m)ei(n−m)t

}

dt

=
1

2
Im

{

ir2
∫ 2π

0

dt+ i

∞
∑

n=0

b̄nr
1−n

∫ 2π

0

ei(n+1)t dt

−i
∞
∑

n=0

nbnr
1−n

∫ 2π

0

e−i(n+1)t dt− i

∞
∑

n,m=0

mb̄nbmr
−(n+m)

∫ 2π

0

ei(n−m)t dt

}

.

Since
∫ 2

0 πe
ikt dt = 0 if k ∈ Z, k 6= 0, and it equals 2π if k = 0. It now follows

that

Area(Er) = π

(

r2 −
∞
∑

n=0

n|bn|2r−2n

)

.

The first term in the summation above is 0, so it doesn’t need to be mentioned.
Since Area(Er) ≥ 0 see that

∑∞
n=1 n|bn|2r−2n ≤ r2. As r ↓ 1, Er increases to

C\g(Ω) while

r2 −
∞
∑

n=0

n|bn|2r−2n → 1−
∞
∑

n=1

n|bn|2.

It follows that

Area(C\g(Ω)) = 1−
∞
∑

n=1

n|bn|2

proving the Theorem. That is
∑∞

n=1 n|bn|2 ≤ 1 because areas are non-negative,
while equality is achieved if and only Area(C\g(Ω)) = 0.

Here is one way of seeing that γr is positively oriented. There might be
simpler ways. By the argument principle, if λr is the positively oriented circle
of radius 1/r (r > 1), then

1

2πi

∫

λr

f ′(z)

f(z)
dz = #(zeros of f in |z| < 1/r) = 1.

Parameterizing the circle by λr(t) =
1
r e

it, 0 ≤ t ≤ 2π, this works out to

1

2πr

∫ 2π

0

f ′(1r e
it)

f(1r e
it)
eit dt = 1. (8)

The curve γr has 0 in its interior; it will be positively oriented if the index of 0
with respect to this curve (winding number) is 1. We have

Indγr
(0) =

1

2πi

∫

γr

1

z
dz =

1

2πi

∫ 2π

0

1

g(reit)

d

dt
g(reit) dt =

r

2π

∫ 2π

0

g′(reit)

g(reit)
eit dt.
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Since g(z) = f(1/z)−1, one gets that g′(z)/g(z) = f ′(1/z)/[z2f(1/z)]. Thus

Indγr
(0) =

1

2πr

∫ 2π

0

∫ 2π

0

f ′(1r e
−it)

f(1r e
−it)

e−it dt.

Changing variables by s = 2π − t, dt = −ds, e−it = eis, we get

Indγr
(0) = − 1

2πr

∫ 0

2π

f ′(1r e
is)

f(1r e
is)

eis ds =
1

2πr

∫ 2π

0

f ′(1r e
is)

f(1r e
is)

eis ds = 1,

by (8).

We can now prove Bieberbach’s Theorem 11. Assume f(z) = z+
∑∞

n=2 anz
n ∈

S. We will apply Theorem 12 to F ∈ S, where F (z) =
√

f(z2) =
∑∞

k=0 ckz
2k+1

is given by Lemma 8. Let F̃ (z) = z +
∑∞

n=0 bnz
−n; by Theorem 12 we have

∑∞
n=1 n|bn|2 ≤ 1. In particular, |b1|2 ≤ 1. By Lemma 9, the coefficient b1 of

F̃ is the square of the coefficient of z2 of F (which is 0) minus one half of the
coefficient of z3, which is 1

2a2. Thus b1 = − 1
2a2, hence 1 ≥ 1

4 |a − 2|2, proving
|a2| ≤ 2. Assuming now that|a2| = 2, then |b1| = 1 and Theorem 12 implies
bn = 0 for n ≥ 2, hence F̃ (z) = z − 1

2a2z
−1. Moreover, 1

2a2 = eiα for some
α ∈ R. Then

F (z) =
1

F̃ (1/z)
=

z

1− eiαz2

and f(z2) = F (z)2 =
z2

(1− eiαz2)2
. Since z 7→ z2 is onto D from D, we have

f(z) =
z

(1 − eiαz)2
= e−iα eiαz

(1− eiαz)2
= e−iαk(eiαz).

The next big preliminary theorem is a particular case of a theorem of Caratheodory,
which will be essential in proving that a certain family of elements in S are dense
in S in the topology of convergence over compact subsets of D. It will then suf-
fice to settle the Bieberbach conjecture for functions in this family. It is also an
essential tool in Löwner’s construction. To prove it we need a result of Koebe
and a growth theorem. The growth theorem is also essential in getting a first
bound on the Taylor coefficients of elements in S.

Theorem 13 (Koebe 1/4 Theorem; Koebe 1907, Bieberbach 1916) Let f ∈ S.
Then f(D) ⊃ {w ∈ C : |w| < 1/4}.

Proof. Let f(z) = z +
∑∞

n=1 anz
n. Assume w /∈ f(D). Then g : D → C defined

by g(z) = wf(z)/(w− f(z)) is easily seen to be in S and have Taylor expansion
g(z) = z+

(

a2 +
1
w

)

z2+ · · · . By Theorem 11, both a2 and a2+
1
w are less than

or equal 2 in absolute value, thus

2 ≥
∣

∣

∣

∣

a2 +
1

w

∣

∣

∣

∣

≥ 1

|w| − |a2|ge
1

|w| − 2.
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It follows that 1/|w| ≤ 4; i.e., |w| ≥ 1/4.

The growth theorem is more complicated than one would expect. It may
help to get some silly computations out of the way. Assume in all this that
g : D → C is analytic and g(z) 6= 0 for z ∈ D. Let ω ∈ C, |ω| = 1 be fixed and
consider r 7→ g(rω). We have

∂g(rω)

∂r
= g′(rω)ω.

This is fairly obvious. Putting a bar on it;i.e., taking complex conjugates, one
gets

∂g(rω)

∂r
= g′(rω)ω̄.

Next

∂|g(rω)|2
∂r

=
∂

∂r

(

g(rω)g(rω)
)

= g′(rω)ωg(rω)+g(rω)g′(rω)ω̄ = 2Re
(

ωg′(rω)g(rω)
)

.

Up to here we had no need to assume g(z) 6= 0 in D. But because of it r 7→
log |g(rω)| is differentiable for r ∈ (0, 1) and

∂

∂r
log |g(rω)| =

1

2

∂

∂r
log
(

|g(rω)|2
)

=
1

2

1

|g(rω)|2 2Re
(

ωg′(rω)g(rω)
)

=
1

|g(rω)|2Re
(

ωg′(rω)g(rω)
)

= Re

(

ωg′(rω)

g(rω)

)

.

We will use this with g = f ′, where f ′ ∈ S. Since f is univalent, f ′(z) 6= 0
for all z ∈ D and our formula becomes

∂

∂r
log |f ′(rω)| = Re

(

ωf ′′(rω)

f ′(rω)

)

. (9)

for all r ∈ (0, 1), ω ∈ C, |ω| = 1.
Another thing to know for this theorem is that if z ∈ D, then the map

ψ : D → C defined by

ψ(ζ) =
ζ + z

1 + z̄ζ
(10)

is the one an only univalent map mapping D onto itself, 0 to z and such that
ψ′(0) > 0. In fact ψ′(0) = 1− |z|2. Let us tackle now the growth theorem.

Theorem 14 Let f ∈ S. Then

|z|
(1 + |z|)2 ≤ |f(z)| ≤ |z|

(1− |z|)2 (11)

for all z ∈ D, with equality occurring only if z = 0 or if f is a rotation of the
Koebe function; i.e., f(z)e−iαk(zeiα) for all z ∈ D, some α ∈ R.
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Proof. Fix for a while z ∈ D and define g : D → C by

g(ζ) =
f ◦ ψ(ζ) − f(z)

(1− |z|2)f ′(z)
,

where ψ is given by (10). This function of ζ is univalent (since f, ψ are univa-
lent), g(0) = 0 and

g′(ζ) =
1

(1− |z|2)f ′(z)
f ′ ◦ ψ(ζ)ψ′(ζ)

so that g′(0) = 1. In other words, g ∈ S. Finding the coefficient of ζ2 in the
Taylor expansion of g is not too hard, we have

g′′(ζ) =
1

(1− |z|2)f ′(z)

(

f ′′ ◦ ψ(ζ)(ψ′(ζ))2 + f ′ ◦ ψ(ζ)ψ′′(ζ)
)

.

One sees that

ψ′(ζ) =
1− |z|2
(1 + z̄ζ)2

, (12)

ψ′′(ζ) = −2z̄(1 − |z|2)
(1 + z̄ζ)3

, (13)

so that ψ′(0) = 1− |z|2, ψ′′(0) = −2z̄(1− |z|2). Thus, if g(ζ) = ζ +A2ζ
2 + · · · ,

then

A2 =
1

2
g′′(0) =

1

(1− |z|2)f ′(z)

(

f ′′(z)(1− |z|2)2 − 2f ′(z)z̄(1 − |z|2)
)

=
1

2

(

(1− |z|2)f
′′(z)

f ′(z)
− 2z̄

)

.

By Theorem 11, |A2| ≤ 2. Multiplying this inequality by 2|z|/(1 − |z|2) (and
using that |z||w| = |zw| for complex numbers z, w, we get

∣

∣

∣

∣

zf ′′(z)

f ′(z)
− 2|z|2

1− |z|2
∣

∣

∣

∣

≤ 4|z|
1− |z|2 , (14)

valid for all z ∈ D.
We let again z ∈ D, write z = rω, where r ∈ (0, 1) and |ω| = 1 and now keep

ω fixed for a while. Using that the real part of a complex number is bounded
by its absolute value, we get from (14) that

∣

∣

∣

∣

Re

(

rωf ′′(rω)

f ′(rω)
− 2rω

1− r2

)∣

∣

∣

∣

≤ 4r

1− r2
.

We can cancel a factor of r from all numerators and then write this inequality
in the form

−4 + 2r

1− r2
≤ Re

ωf ′′(rω)

f ′(rω)
≤ 4 + 2r

1− r2
.
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In view of (9), we proved

−4 + 2r

1− r2
≤ ∂

∂r
log |f ′(rω)| ≤ 4 + 2r

1− r2
.

If we now integrate with respect to r, from 0 to r we get (log |f ′(0)| = log 1 = 0)

log
1− r

(1 + r)3
=

∫ r

0

−4 + 2ρ

1− ρ2
dρ ≤ log |f ′(rω)| ≤

∫ r

0

4 + 2ρ

1 − ρ2
dρ = log

1 + r

(1− r)3
.

Setting z = rω, removing the logarithms, we proved

1− |z|
(1 + |z|)3 ≤ |f ′(z)| ≤ 1 + |z|

(1− |z|)3 . (15)

At this stage we can finally get to the main estimate. The upper estimate in
(11) is almost immediate. We have if z = rω. |ω| = 1, 0 < r < 1,

f(z) = f(rω) = ω

∫ r

0

f ′(ρω) dρ;

Taking absolute values and applying the second inequality in (15),

|f(z)| ≤
∫ r

0

1 + ρ

(1 − ρ)3
dρ =

r

(1− r)2
=

|z|
(1− |z|)2 ,

proving the second inequality in (11). The lower estimate seems to need more
work. We can divide D into two disjoint sets A,B, where

A = {z ∈ D : |f(z)| ≥ 1/4}, B = {z ∈ D : |f(z)| < 1/4}.
Since the function r 7→ r/(1 + r)2 is increasing in the interval 0 ≤ r ≤ 1; its
maximum value is assumed for r = 1 and this maximum equals 1/4; that is,
|z|/(1 + |z|)2 ≤ 1/4 for all z ∈ D. Thus the lower estimate of(11), namely
|f(z)| ≥ |z|/(1 + |z|)2, holds for all z ∈ A. The lower estimate is also clear if
z = 0, so it suffices to see it also holds for all z ∈ B\{0}, so let z ∈ B\{0}.
Then |f(z)| < 1

4 , hence also |tf(z)| < 1/4 for 0 ≤ t ≤ 1 so that by the Koebe
1/4 Theorem 13, tf(z) ∈ f(D) for all t ∈ [0, 1] and we can define a differentiable
arc γ by γ(t) = f−1(tf(z)). This is an arc in the disc from 0 = γ(0) = f−1(0)
to z = γ(1) = f−1(f(z)). Suppose we write γ(t) = x(t) + iy(t), where x, y are
real valued functions of t [0, 1]. Notice that γ(t) 6= 0 except if t = 0; in fact,
since f, f−1 are univalent, γ(z) = 0 implies tf(z) = 0, hence either t = 0 or
z = 0. Due to that, the function t 7→ |γ(t)| =

√

x(t)2 + y(t)2 is differentiable
for 0 < t < 1, and continuous for 0 ≤ t ≤ 1. We have

d

dt
|γ(t)| = x(t)x′(t) + y(t)y′(t)

√

x(t)2 + y(t)2
=

Re (γ(t)γ′(t))

|γ(t)| ≤ |γ(t)γ′(t)|
|γ(t)| = |γ′(t)|.

This last thing is true for any complex valued differentiable function; the deriva-
tive of its absolute value is dominated by the absolute value of the derivative.
But taking into account the definition of γ we also have

γ′(t) =
∂

∂t

(

f−1(tf(z))
)

=
1

f ′(f−1(tf(z)))
f(z) =

f(z)

f ′(γ(t))
,
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so that f ′(γ(t))γ′(t) = f(z) for all t ∈ [0, 1]. We have to proceed now with a
little bit of care to make sure the inequalities are correctly treated. By what
we just saw, |f(z)| = |f ′(γ(t))| |γ′(t)| for all t ∈ [0, 1]. Thus, using the first
inequality in (15),

|f(z)| =
∫ 1

0

|f(z)| dt =
∫ 1

0

|f ′(γ(t))| |γ′(t)| dt ≥
∫ 1

0

1− |γ(t)|
(1− |γ(t)|)3 |γ

′(t)| dt.

Since (1 − |γ(t)|)/[(1 − |gm(t)|)3] is always positive we can use the estimate
above of the derivative of the absolute value dominated by the absolute value
of the derivative to get

|f(z)| ≥
∫ 1

0

1− |γ(t)|
(1 − |γ(t)|)3

d

dt
|γ(t)| dt.

We can now change variables by r = |γ(t)| to get

|f(z)| ≥
∫ |z|

0

1− r

(1 + r)3
dt =

∫ |z|

0

(

− 1

(1 + r)2
+

2

(1 + r)3

)

dr =
|z|

(1 + |z|)2 .

This proves the lower estimate in (11).

It remains to be proved that if equality occurs for either estimate and z 6= 0,
then f is a rotation of the Koebe function. The key is inequality (14); if this
inequality is sharp, then all further inequalities will be sharp. So equality in
(11) happens for some z 6= 0 only if (14) is an equality for that value of z.
One sees at once this implies that the coefficient A2 of the function g defined
so much earlier in this proof will satisfy |A2| = 2, hence g is a rotation of the
Koebe function by Theorem 11. One now has to see that this implies that f is
also such a rotation. This is another set of calculations; since I don’t think we’ll
need this part I’ll omit them.

An easy but necessary corollary to the growth theorem is the fact that for
each n ∈ N, the Taylor coefficients of functions on S can be uniformly bounded
by a constant depending only on n.

Corollary 15 There exist constants An ∈ R for n ∈ N such that if f(z) =
z +

∑∞
n=1 anz

n ∈ S, then |an| ≤ An for n ∈ N.

Proof. Let f(z) = z +
∑∞

n=1 anz
n ∈ S. Then

an =
1

2πi

∫

|z|=1/2

f(z)

zn+1
dz.

(The circle of radius 1/2 can be replaced by any circle of radius r ∈ (0, 1)). If
|z| = 1/2 we have by the upper estimate in (11) that

|f(z)| ≤ 1/2

(1/2)2
= 2,
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so that

|an| ≤
2n+2

2π

∫

|z|=1/2

dz = 2n+2.

The Bieberbach conjecture could be phrased as stating that one can take An =
n. Actually, for the De Branges’ proof the following corollary seems to be more
relevant. The idea of the proof is the same as for the previous corollary.

Corollary 16 There exist constants Ck ∈ R for k ∈ N such that if f ∈ S and
log(f(z)/z) =

∑∞
n=1 ckz

k, then |ck| ≤ Ck for k ∈ N.

Proof. h : z 7→ f(z)/z takes the unit disc D onto a simply connected region
containing 1 (the value that makes f(z)/z analytic at 0), but not 0. In that
region there is a unique analytic determination of the logarithm such that log 1 =
0. One has of course for w ∈ h(D) that logw = log |w|+ i argw and, while there
is a bit of indeterminacy in what argw could be§, one will have | argw| ≤ 2π.
Thus | logw| ≤ | log |w||+2π. Using the growth theorem, the function log f(z)/z
will thus satisfy

∣

∣

∣

∣

log
f(z)

z

∣

∣

∣

∣

≤ 2 log
1

1− |z|2 + 2π;

for |z| = 1/2 we get the estimate

∣

∣

∣

∣

log
f(z)

z

∣

∣

∣

∣

≤ 2 log 4 + 2π.

Using

ck =
1

2πi

∫

|z|=1/2

log(f(z)/z)

zk+1
dz,

the result follows.

The following is the particular case of the theorem by Caratheodory.

Theorem 17 Assume {Un} is a decreasing or increasing sequence of simply
connected open subsets of C and for each n ∈ N assume 0 ∈ Un and let fn map
D conformally onto Un and satisfy fn(0) = 0, f ′

n(0) > 0. If the sequence is
decreasing, assume 0 ∈ (

⋂∞
n=1 Un)

◦
and let U be the connected component of 0

in (
⋂∞

n=1 Un)
◦
. If the sequence is increasing, assume U =

⋃∞
n=1 Un 6= C. Then

{fn} converges uniformly to a function f on compact subsets of D; moreover,
f is a conformal mapping of D onto U , and the sequence {f−1

n } converges
uniformly to f−1 on compact subsets of U .

Proof. This is really a strong theorem, with a long proof. There is the
awkwardness of the two cases, the increasing and decreasing domains cases. I’ll
try to break up the proof into segments, making it perhaps easier to assimilate.

§One may be able to take −π ≤ argw ≤ π, or one may be forced to select, −π/2 ≤ argw ≤
3π/2; etc.



4 MORE SPECIFIC PRELIMINARY RESULTS 21

1. Assume already proved that the sequence {fn} converges uniformly on com-
pact subsets of D to a function f . In this step we prove:f is a univalent mapping
of D to C. In fact, Proposition 7 allows only two possibilities because each fn is
univalent, f is either univalent or constant. In our case that it is constant means
it is 0 (since fn(0) = 0 for all n). If the sequence of domains {Un} is increasing,
let r > 0 be such that D(0, r) ⊂ U1 ⊂ U . If it is decreasing, we are assuming
that 0 ∈ (

⋂∞
n=1 Un)

◦
, thus there is r > 0 such that D(0, 2r) ⊂ ⋂∞

n=1 Un, hence
also D(0, r) ⊂ U , the connected component of 0 of the interior of the intersec-
tion of all the domains. Consider f−1

n : D(0, r) → D. Since f−1
n (0) = 0, we have

that z 7→ f−1
n (z)/z is analytic in D(0, r); on the boundary {z ∈ C : |z| = r}

it satisfies¶ |f−1
n (z)/z| ≤ 1/r, thus this estimate holds in all of D(0, r) by the

maximum principle. Letting z → 0 in |f−1
n (z)/z| ≤ 1/r we get

1/r ≥
∣

∣

∣

(

f−1
n

)′
(0)
∣

∣

∣
=

1

|f ′
n(0)|

so that |f ′
n(0)| ≥ r for all n. Since f ′

n converges uniformly to f ′ on compact
subsets of D, this implies |f ′(0)| ≥ r > 0, thus f ′ is not identically 0 and hence
neither is f . It follows that f is univalent.

2. Still assuming proved that the sequence {fn} converges uniformly on compact
subsets ofD to a function f , we prove next that f(D) ⊂ U . Let w0 ∈ f(D); w0 =
f(z0) for some z0 ∈ D. Non constant analytic functions are open mappings, so
f(D) is an open set and f is a conformal mapping ofD onto f(D). It follows that
there exists r > 0 such that D(w0, r) ⊂ f(D); consequently W = f−1(D(w0, r)
is an open subset of D containing z0. We now select ρ > 0 so that the closed
disc of radius ρ centered at z0 is included in W . Let C = {z ∈ C : |z− z0| = r}
be the boundary of this disc. We will prove that the image of half of this disc,
namely f(D(z0, ρ/2)), is included in Un for n large enough. After that we have
to use different arguments for the case of an increasing or a decreasing sequence
of domains.

So let w1 ∈ f(D(z0, ρ/2)). Then w1 = f(z1) for some z1 in the open disc of
radius ρ/2 centered at z0, hence, f being univalent, f(z) 6= w1 for all z ∈ C.
Since C is compact, there is δ > 0 such that |f(z) − w1| ≥ δ for all z ∈ C.
Because {fn} converges uniformly to f on the compact subset C of D there is
N ∈ N such that |fn(z) − f(z)| < δ for all n ≥ N, z ∈ C. We can apply now
Rouché’s Theorem to the functions f(z)− w1 and fn(z)− f(z). Since

|fn(z)− f(z)| < δ ≤ |f(z)− w1|

for z ∈ C, Rouché’s Theorem states that f(z)−w1 and (f(z)−w1) + (fn(z)−
f(z)) = fn(z) − w1 have the same number of zeros in the disc bounded by
C; that is, in D(z0, ρ). Now f(z) − w1 has a unique such 0 in that disc (and
anywhere else); it is 0 only for z = z1. It follows that for n ≥ N , there exists a
unique ζn in the disc bounded by C such that fn(ζn) = w1. Thus w1 ∈ Un for
n ≥ N . Here is where we need to split the argument.

¶|f−1
n (z)| ≤ 1 for all z ∈ D(0, r) since we map into D.
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Suppose first the sequence {Un} decreases. Then w1 ∈ Un for large values
of n implies w1 ∈ Un for all n and, since w11 was an arbitrary point in f(D(z−
0, ρ/2)) we conclude that f(D(z0, ρ/2)) ⊂

⋂∞
n=1 Un. Now f(D(z0, ρ/2)) is open

and contains w0 = f(z0), thus w0 ∈
(

∞
⋂

n=1

Un

)◦

. Since w0 was arbitrary in

f(D) this proves that f(D) ⊂
(

∞
⋂

n=1

Un

)◦

. But 0 = f(0) ∈ f(D) and f(D)

is connected, thus f(D) ⊂ U , the connected component of 0 of the interior of
∞
⋂

n=1

U◦
n.

Next assume the sequence {Un} is increasing. Then the situation is some-
what simpler, we take w1 = w0 to get that w0 ∈ Un ⊂ U for n large enough;
since w0 was arbitrary in f(D) we proved f(D) ⊂ U .

3. Once again with the same assumptions (and hence conclusions) of 1.; that
is, that {fn} converges uniformly to f on compact subsets of D, we prove that
U ⊂ f(D). Together with 2., this will prove f(D) = U .

Consider the sequence of univalent analytic functions {f−1
n }; for n ∈ N, f−1

n

is analytic on Un ⊃ U . In the case of a decreasing sequence {Un} of domains
we restrict this sequence of inverses to U , the connected component of 0 in
the interior of the intersection of all Un’s, so that f−1

n : U → D is analytic
for all n. The sequence is obviously uniformly bounded (by 1, since it takes
values in the unit disc), hence by Montel’s Theorem 6 there is a subsequence
{f−1

nk
} converging uniformly on compact subsets of U . The same result is true in

the case of an increasing sequence of domains; the sequence {f−1
n } is bounded

uniformly since all its elements take values in D so Montel’s Theorem 6 also
applies to give a subsequence {f−1

nk
} converging uniformly on compact subsets

of U =

∞
⋃

n=1

Un. Set gk = f−1
nk

and let g = limk→∞ gk. By Proposition 7 either

g is univalent or identically 0. We do have g′k(0) = 1/f ′
nk
(0) → 1/f ′(0) 6= 0, so

that g′(0) = limk→∞ g′k(0) 6= 0, hence g is not constant, thus univalent.
Let w0 ∈ U and let z0 = g(w0) ∈ D. We want to see that f(z0) = w0,

proving w0 ∈ f(D). Set wk = fnk
(z0), then wnk

→ f(z0) as k → ∞. Because
gk converges uniformly to g, one will have that gk(wk) converges to g(f(z0)).
But gk(wk) = gk(fnk

(z0)) = z0 for all k ∈ N, thus g(f(z0)) = z0 = g(w0). Since
g is univalent, w0 = f(z0). This completes the proof that U ⊂ f(D), hence of
U = f(D).

4. We are still under the assumptions of 1., thus can assume everything proved
so far under these assumptions. In 3. we proved that {f−1

n } has a subsequence
converging to a univalent function g uniformly over compact subsets of U , and
also proved that if w0 ∈ U = f(D), then f(g(w0)) = w0. This implies that
g = f−1. If we replace {fn} with any subsequence, the same argument would
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prove that this subsequence has a subsequence converging uniformly on compact
subsets of U to f−1. If every subsequence of a sequence in a metric space has
a subsequence converging to the same limit, then the whole sequence has to
converge to that limit. It follows that {f−1

n } converges uniformly over compact
subsets of U to f−1.

5. Everything has been proved so far, except that the sequence actually con-
verges uniformly on compact subsets of D. We now stop assuming this and
prove it. It will suffice to prove that {fn} is uniformly bounded on compact
subsets of D. In fact, then by Montel’s Theorem 6 there will be a subsequence
converging uniformly on compact subsets of D. To this subsequence we can
apply all that we proved so far; in particular its limit f will be a conformal map
of D onto U satisfying f(0) = 0 and f ′(0) > 0. There being only one such map,
all converging subsequences must have the same limit, thus the whole sequence
converges to that limit.

To prove that the sequence is uniformly bounded on compact subsets of D
we notice first that all that fn lacks for being in S is that f ′

n(0) might not be
1; that means that fn/f

′
n(0) ∈ S for all n ∈ N, hence by the growth Theorem

14, specifically the upper estimate in (11),

|fn(z)| ≤
|z||f ′

n(0)|
(1− |z|)2

for all n ∈ N, z ∈ D. We need to see that the sequence {|f ′
n(0)|} is bounded.

Using again the fact that fn/f
′
n(0) ∈ S, the Koebe 1/4 Theorem 13 implies that

{z ∈ C : |z| < 1/4} ⊂ 1

|f ′
n(0)|

fn(D); i.e.D(0,
1

4
|f ′

n(0)|) ⊂ fn(D) = Un.

If there is a subsequence with |f ′
nk
(0)| → ∞, then there is a subsequence Unk

increasing to C. This is only possible in the case of a decreasing sequence of sets
if Un = C for all n; but Un is conformally equivalent to D, and C is not. On the
other hand, if {Un} increases then we explicitly assume that U 6= C, so again
this possibility is excluded. It follows that {|f ′

n(0)|} is a bounded sequence,
completing the proof that {fn} is uniformly bounded on compact subsets of D
and of the theorem.

The main application of this theorem of Caratheodory to the matter at hand
is to prove that a certain type of functions, the so called slit maps, are dense in S
(in the topology of uniform convergence on compact sets). This reduces proving
the conjectures for slit maps. If f is a slit map, Charles Löwner (1923) associates
with it a sort of homotopy taking it to the identity function;specifically a map
F : D × [0,∞) → C such that (z, t) 7→ F (z, t) is differentiable in t, analytic
in z, F (z, 0) = z for all z ∈ D, and limt→∞ etF (t, z) = f(z) on uniformly on
compact subsets of D. He shows that such an F can be constructed satisfying
a certain differential equation. With this Löwner was able to prove |a3| ≤ 3 for
slit maps and, because slit maps are dense in S, also for all f ∈ S. I believe he
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also proved |a4| ≤ 4. De Branges’ proof relies heavily on Löwner’s construction.
The details are developed in the next sections. We conclude this section with
the definition of slit maps and the density theorem.

Definition 2 A slit map is a function f ∈ S such that f(D) = C\Γ∗ where
Γ is a Jordan arc going to infinity; i.e. Γ : [0,∞) → C, Γ is continuous and
injective, limt→∞ |Γ(t)| = ∞.

Lemma 18 The Koebe function is a slit map. In fact,

k(D) = C\{z ∈ C : z ∈ R, z ≤ 1/4}.

Proof. A proof using nothing from complex analysis could be quite messy. The
way to proceed is to ask oneself what k does to the boundary of the circle. So
we consider

k(eit) =
eit

(1− eit)2
for 0 ≤ t ≤ 2π.

If we multiply numerator and denominator by the conjugate of the denominator;
i.e., by (1− e−it)2, the numerator becomes

eit(1− e−it)2 = eit − 2 + e−it = 2(cost− 1) = −4 sin(t/2),

the denominator becomes

((1− eit)(1− e−it))2 = (1− eit − e−it + 1)2 = 4(1− cos t)2 = 16 sin2(t/2)

so that

k(eit) = − 1

4 sin(t/2)
.

As t ranges from 0 to π, the values of k(eit) ar negative and go from ∞ along
the negative real axis to −1/4. As t ranges from π to 2π, the values of k(eit)
go back along the negative real axis to ∞. One concludes that k(D) is the
complement in C of the closed interval (−∞, 1/4] of the real axis.

Note. Even though I defined the Jordan arc missed by the range of a slit map
as the image of an injective map from [0,∞) to C, it will also be the image of
the boundary of the disc by the slit map (extended to the boundary of the disc).
As such it will be a Jordan arc traversed twice, from infinity to its beginning
and back to infinity.

Theorem 19 Let f ∈ S. There exists a sequence {fn} of slit maps converging
uniformly to f on compact subsets of D.

Proof. We may assume that f is defined and univalent in a disc D(0, R) with
R > 1. In fact, for r ∈ (0, 1) define fr by fr(z) = f(rz); this is clearly a
univalent map defined in D(0, 1/r) and it is easy to see that limr→1− fr = f
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uniformly over compact subsets of D. Assuming now f univalent in D(0, R)
consider the curve γ : [0, 2π] → C given by γ(t) = f(eit). This is a closed
Jordan curve and there are a number of ways of seeing that the single bounded
component of C\γ∗ is f(D). Let Γ0 : [0,∞) → C be a differentiable Jordan arc
(i.e., injective path) connecting γ(0) = γ(1) = f(1) with ∞ intersecting γ only
at γ(0) and define the path Γn for n ∈ N as being the portion of the curve γ
from t = 1/n to t = 2π followed by Γ0; for example by

Γn(t) =

{

γ(t), 1
n ≤ t ≤ 2π,

Γ0(t− 2π), t > 2π.

Let Un = C\Γ∗
n for n ∈ N. Then Un is simply connected, Un 6= C, 0 ∈ Un. By

the Riemann mapping theorem, there exists a unique univalent fn mapping D
onto Un in such a way that fn(0) = 0 and f ′

n(0) > 0. Moreover the sequence
{Un} is decreasing and

⋂∞
n=1 Un = C\(γ∗ ∪ Γ∗). It is clear that the connected

component of 0 in this intersection is precisely the region bounded by γ∗, namely
f(D). By Theorem 17, the particular case of a Theorem of Caratheodory, the
sequence {fn} converges uniformly on compact sets to a conformal mapping of
D onto f(D) which sends 0 to 0 and has positive derivative at 0. But there
is only one such map, and f is such a map, thus the sequence converges to f
uniformly on compact subsets of D.

5 Löwner’s Differential Equations

In this section we prove Löwner’s Theorem, which was

Theorem 20 Let f ∈ S be a slit map; f(z) = z +
∑∞

n=1 anz
n. There exists a

continuous g : D × [0,∞) → C such that z 7→ g(z, t) : D → C is univalent for
all t ∈ R and t 7→ g(z, t) : (0,∞) → C is differentiable for all z ∈ D. Moreover:

1. g(z, t) = et

(

z +

∞
∑

n=2

an(t)z
n

)

for z ∈ D, t ≥ 0, where an : [0,∞) → C

are continuous, and differentiable for t > 0, and an(0) = an for each
n ∈ N. In particular, g(·, 0) = f .

2. g satisfies the following differential equation:

∂g

∂t
(z, t) = z

1 + κ(t)z

1− κ(t)z

∂g

∂z
(z, t) (16)

where κ : [0,∞) → C is continuous and |κ(t)| = 1 for all t ∈ [0,∞).

This is again a theorem with a pretty long proof. Not so much the construc-
tion of g; that is easily done as we shall see, but proving that it has the desired
properties. I will prove it in a more or less narrative form, taking up the rest of
this section.
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Let Γ : [0,∞) → C be a continuous injective map, limt→∞ |Γ(t)| = ∞, such
that Γ∗ is the complement of f(D). That is, f(D) = {z ∈ C : z 6= Γ(t) for 0 ≤
t <∞}. For t ≥ 0 let Γt : [t,∞) → C be the restriction of Γ to [t,∞) and set

Ut = C\Γ∗
t = {z ∈ C : z 6= Γ(s) for s ≥ t}.

The sets Ut are simply connected for all t ≥ 0, U0 = f(D). Being simply
connected, and not C, there exists a unique univalent function Gt : D → C

such that Gt(D) = Ut, gt(0) = 0 and G′
t(0) > 0. Notice that f(0) = 0 so

0 ∈ f(D) = U0 ⊂ Ut for all t ≥ 0. The Taylor expansion of Gt can be written
in the form

Gt(z) = β(t)

(

z +

∞
∑

n=2

Bn(t)z
n

)

.

(We just factor out the coefficient of z, which is positive). We will prove

Lemma 21 The function β is continuous and strictly increasing from [0,∞) to
[1,∞).

We now define g : D × [0,∞) → C by

g(z, t) = et

(

z +

∞
∑

n=2

Bn(β
−1(et)z)zn

)

for z ∈ D, t ≥ 0. Notice that if t ≥ 0 then et ≥ 1, so et is in the domain of β−1,
and gets mapped back to [0,∞) by β−1.

Before continuing it might be instructive to see how all of this looks for the
case of the Koebe function. As seen above, for the Koebe function f(D) =
C\{z ∈ C : z ∈ R, z ≤ −1/4}. The easiest parametrization of the missing
Jordan arc is Γ(t) = − 1

4 − t for t ≥ 0. One verifies that then

Ut = C\Γ∗
t = C\{z ∈ C : z ∈ R, z ≤ −1/4− t}

and one also sees easily that the univalent map mapping D onto Gt is simply
Gt = (4t+ 1)k. Now

Gt(z) = (4t+ 1)k(z) = (4t+ 1)

∞
∑

n=1

nzn.

We have β(t) = 4t+ 1, Bn(t) = n for all n, t. Since Bn is constant for all n, we
now get

g(z, t) = et
∞
∑

n=1

nzn = etk(z) =
etz

(1− z)2
.

Now
∂g

∂t
(z, t) = g(z, t),
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while
∂g

∂z
(x, t) = et

1 + z

(1− z)3
=

1 + z

z(1− z)
g(z, t).

Thus
∂g

∂t
(z, t) = z

1− z

1 + z

∂g

∂z
(x, t),

which is Löwner’s differential equation with κ(t) ≡ −1.

Maybe it is time to prove something. The domains Ut are (as mentioned)
simply connected for all t ≥ 0 and U0 = f(D). We also have Us ⊂ Ut if s < t
(the amount of Jordan arc we take away gets smaller as t increases) and, in fact,
the inclusion is proper: Us 6= Ut if s < t. We prove here:

Lemma 22 The map (z, t) 7→ Gt(z) : D × [0,∞) → C is continuous.

Proof. Let (z0, t0) ∈ D×[0,∞) and assume the map is not continuous at (z0, t0),
There exists then ǫ > 0, and there exists a sequence (zk, tk) ∈ D × [0,∞) con-
verging to (t0, z0) such that |Gtk(zk)−Gt0(z0)| ≥ ǫ for all k. We can divide the
situation into the case in which {tk} approaches t0 from the right, and the case
it approaches it from the left; i.e., we can divide into the case in which {tk}
decreases, and the case it increases. Assume first {tk} decreases to t0. It is clear
that then the domains {Utk} is a decreasing sequence of arrays with intersection
equal to Ut0 . The set Ut0 is a connected (in fact, simply connected) set con-
taining 0, thus by Caratheodory’s Theorem 17, {Gtk} converges uniformly over
compact subsets to a conformal mapping of D onto Ut0 ; by the uniqueness part
of the Riemann mapping theorem, this mapping has to be Gt0 . Let N be a com-
pact neighborhood of z0 in D; for example N = {z ∈ C : |z−z0| ≤ (1−|z0|)/2}.
There is then K ∈ N such that |Gtk(z) = Gt0(z)| < ǫ/2 for all k ≥ K, z ∈ N .
But Gt0 is analytic on D, there is thus a neighborhood W of z0 in D such that
|Gt0(z)− Gt0(z0)| < ǫ/2 if z ∈ W . Now N ∩W is a neighborhood of z0; since
zk → z0 as k → ∞, there is K ′ ∈ N such that k ≥ K ′| implies zk ∈ N ∩W .
This means that

|Gtk(zk)−Gt0(z0)| ≤ |Gtk(zk)−Gt0(zk)|+ |Gt0(zk)−Gt0(z0)| < ǫ

for k ≥ max(K,K ′); contradicting the choice of ǫ.
The proof if the sequence {tnk

} increases to t0 is almost identical, using the
increasing domains part of Caratheodory’s Theorem 17

Let β(t) = G′
t(0) so that the Taylor expansion of Gt begins as Gt(z) =

β(t)z + · · · . By construction β(t) > 0, so that we can divide all coefficients of
the Taylor expansion of Gt by β(t) and write the expansion in the form it was
written above, namely

Gt(z) = β(t)

(

z +
∞
∑

n=2

Bn(t)z
n

)

. (17)
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The coefficient of zn is thus β(t)Bn(t). Fix for a moment, r, 0 < r < 1. By the
Cauchy formula for the coefficients we have that

β(t) =
1

2πi

∫

|z|=r

Gt(z)

z2
dz, (18)

Bn(t) =
1

2πiβ(t)

∫

|z|=r

Gt(z)

zn+1
dz, n = 2, 3, . . . . (19)

By the continuity of (t, z) 7→ Gt(z) (which translates to uniform continuity on
compact sets), it follows from (18) that β is continuous; since it is never 0, one
gets from (19) that Bn : [0,∞) → C is continuous for n = 1, 2, 3, . . ..

For the next step we appeal to the subordination principle Theorem 10. If
s < t then Gs(D) = Us ⊂ Ut = Gt(D), also Gs(0) = 0 = Gt(0), and both Gs, Gt

are univalent. By the subordination principle

β(s) = G′
s(0) = |G′

s(0)| ≤ |G′
t(0)| = G′

t(0) = β(t);

in addition, β(s) = β(t) would imply Gs = Gt, hence Ut = Us. But Ut 6= Us.
Thus β(s) < β(t); the function β is strictly increasing. Since G0 = f , since f is
the only univalent function mapping D onto U0 = f(D), 0 to 0, and such that
f ′(0) > 0, we also have that β(0) = 1. We proved:

Lemma 23 The functions β : [0,∞) → R, Bn : [0.∞) → C defined by (17),
satisfying (18), (19), are continuous.

We also proved most of Lemma 21. The only thing that remains to be proved
is limt→∞ β(t) = ∞. Let M ∈ R, M > 0. Considering the parametrization
t 7→ Γ(t) of our Jordan arc, we have that limt→∞ |Γ(t)| = ∞, so there exists
t0 > 0 such that |Γ(t)| > M if t ≥ t0. Another way of expressing this is to say
that the closed disc A = {w ∈ C : |w| ≤ M} is a compact set disjoint from
Γ∗
t0 , which is the complement of Gt0(D). Thus G−1

t0 (A) is a compact subset

of D, hence there is ρ, 0 < ρ < 1 such that G−1
t0 (A)subsetD(0, ρ). It follows

that if ρ ≥ |z| < 1, then |Gt0(z)| > M . As usual, because Gt0(0) = 0 and
(being univalent) has no other zeroes in the disc, the function z 7→ z/G(t0)(z)
is analytic in D. For |z| = ρ we have

∣

∣

∣

∣

z

Gt0(z)

∣

∣

∣

∣

≤ ρ

M
<

1

M
;

by the maximum principle this inequality must hold now for all z ∈ D(0, ρ).
Letting z → 0,

1

M
≥ lim

z→0

∣

∣

∣

∣

z

Gt0(z)

∣

∣

∣

∣

=

∣

∣

∣

∣

lim
z→0

z

Gt0(z)

∣

∣

∣

∣

=
1

|G′
t0(0)|

=
1

β(t0)
;

that is, β(t0) > 1/M . Since β is increasing, this proves β(t) > M for t ≥ t0.
Since M > 0 was arbitrary, we are done.

Lemma 21 is now proved in its entirety.
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Depending how one parameterizes the Jordan arc Γ, one can get β to be
almost any strictly increasing, continuous function mapping [0,∞) onto [1,∞).
To fix β and get some uniqueness into the process we now define φ by φ(t) =
β−1(et) if t ≥ 0, and then, for z ∈ D, t ≥ 0, define g(z, t) by

g(z, t) = Gφ(t)(z) = Gβ−1(et)(z).

When convenient, we shall also write gt(z) for g(z, t); that is, gt = Gφ(t) is the
unique conformal mapping from D onto Uφ(t) such that gt(0) = 0 and g′t(0) > 0¿

The map φ is strictly increasing and continuous, a homeomorphism of [0,∞)
onto itself. It is thus an easy consequence of Lemma 22 and of (17) that:

Lemma 24 The map g : D × [0,∞) → C is continuous.

It is also evident that the Taylor expansion at 0 of (·, t) has the form given in
Theorem 20, namely

g(z, t) = et

(

z +

∞
∑

n=2

an(t)z
n

)

, (20)

where an(t) = Bn(β
−1(et)) is continuous from [0,∞) to C; an(0) = an for

n ≥ 2. From now on we will use the notation ∂g
∂z for the complex derivative of

the function z 7→ g(z, ·); use ∂g
∂t (once differentiability has been established) of

the real variable complex valued function t 7→ g(·, t).

And now to the really tough part, the differentiability of g in the t variable,
and the differential equation. There could be simpler proofs. This proof first
establishes a differential equation for a sort of inverse function of g, then turns
it around. I believe it is how Löwner proceeded. We have to begin with some
facts and notation.

If t ≥ 0, w ∈ Ut, we define g−1(w, t) ∈ D by g(g−1(w, t), t) = w. In other
words, g−1(·, t) = g−1

t , where gt(z) = g(z, t). The map w 7→ g−1(w, t) is a
conformal mapping of Ut onto D, sending 0 to 0.

Suppose ϕ : D → C is univalent and let U = ϕ(D) so that ϕ is a conformal
mapping of D onto U . If the boundary of U is a Jordan curve, then ϕ extends
to a homeomorphism of D̄ onto Ū . This is proved in Stein-Shakarchi for the
case of the boundary of U being a polygon (Chapter 8, Theorem 4.2), left as an
exercise if the boundary of U is a piecewise smooth curve (Chapter 8, Exercise
18) and as a problem in the general case (Chapter 8, Problem 6). But a more
genera; (the most general?) result can be found in Rudin’s Real and Complex
Analysis. To state it we need a definition. Let Ω be an open subset of C and let
z − 0 ∈ ∂Ω. We say z0 is a simple point of the boundary of Ω iff the following
property is satisfied: Whenever {z − n} is a sequence of points in Ω converging
to z0, there exists an arc γ : [0, 1] → C such that γ(t) ∈ Ω for 0 ≤ t < 1,
γ(1) = z0 and there exist points {tn} in [0, 1) such that γ(tn) = zn for n ∈ N.
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To give an example, consider the slit disc Ω = {z ∈ C : |z| < 1, }\{z ∈ R :
z ≥ 0}. Then

∂Ω = {z ∈ C : |z| = 1} ∪ {z ∈ R : 0 ≤ z ≤ 1}.

Then all points of {z ∈ C : |z| = 1, z 6= 1} are simple boundary points; all
points of {z ∈ R : 0 ≤ z ≤ 1} are not simple.

There is then a further generalization in which a Jordan curve is a curve in
the plane extended by ∞; i.e., on the Riemann sphere. For example the half
plane {Im z > 0} is bounded by such a Jordan curve, namely the real line. One
can then get the following result, where by Jordan curve one understands either
a closed Jordan curve in the plane or a Jordan arc; i.e., an injective, continuous
map γ : R → C such that limt→±∞ |γ(t)| = ∞.

Theorem 25 Assume U, V are open simply connected subsets of C both bounded
by Jordan curves. If f : U → V is a conformal mapping of U onto V , then f
extends to a homeomorphism from Ū to V̄ . The extension is necessarily unique.

I won’t prove this theorem. It is an easy consequence of the results mentioned
above; one simply needs to factor f = f1 ◦ f−1

2 where f1 : D → V , f2 : D → U
are conformal equivalences. One thing to notice is that if the Jordan curve
bounding U is a regular Jordan curve, compactly embedded in C, and V is
bounded by a generalized Jordan curve, one going from ∞ to ∞, then there will
be a point on the boundary of U mapped to ∞ by the extended f .

In our case the boundaries of the domains Ut onto whichD maps conformally
are obviously not Jordan curves but Jordan arcs. They go to ∞, but come from
a finite point in the plane. However, the result can be modified as follows.

Proposition 26 Assume ϕ : D → U is a conformal isomorphism, where U =
C\Γ∗, Γ : [a,∞) → C a Jordan arc. Then

1. ζ0 = limw→Γ(a) ϕ
−1(w) and ζ∞ = lim|w|→∞ ϕ−1(w) exist; ζ0 6= ζ∞, |ζ0| =

|ζ∞| = 1.

2. Let α, β ∈ R be such that ζ0 = eiα, ζ∞ = eiβ. We can assume α <
β < α + 2π. Then ϕ extends to a continuous map ϕ : D\{ζ∞ to C such
that t 7→ ϕ(eit) : [α, β) → C is injective ans a parametrization of the
Jordan arc Γ∗. Similarly, t 7→ ϕ(t) : (β, α] → C is injective and another
parametrization of the Jordan arc Γ∗ gone through in reverse direction
(from ∞ to Γ(a)). This partitions the unit circle minus the point ζ∞ into
two arcs γ∗1 , γ

∗
2 ,

γ1(t) = ϕ(eit), α ≤ t < β, γ2(t) = ϕ(eit), β < t ≤ α

that have only the point ζ0 in common.
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Before proving this proposition, let us see how it works in the case of the
Koebe function k(z) = z/(1 − z)2. I will avoid getting into too many actual
calculations here. We saw already that k(eit) = −1/(4 sin(t/2)). Going into a
bit more detail, if

w = k(z) =
z

(1− z)2
,

one can solve to get, if w 6= 0,

z =
2w + 1±

√
4w + 1

2w
.

One has to decide which determination of the square root works. Before deciding
on it we notice that

(

2w + 1−
√
4w + 1

2w

)(

2w + 1 +
√
4w + 1

2w

)

= 1;

this can be verified either directly or as a consequence of the fact that both are
roots of a quadratic equation with leading and constant coefficient equal to 1.
It is a bit harder, but not horribly hard to verify that (for w 6= 0)

∣

∣

∣

∣

2w + 1−
√
4w + 1

2w

∣

∣

∣

∣

=

∣

∣

∣

∣

2w + 1+
√
4w + 1

2w

∣

∣

∣

∣

if and only if w ∈ R and w ≤ −1/4; in other words, w is in the omitted Jordan arc

Γ∗ = {w ∈ R : w ≤ −1/4}. For all other values of w, one of 2w + 1±
√
4w + 1

2w
will be in the disc, the other one out of the disc. If w ∈ Γ∗, then 4w = 1 ≤ 0;
we will take for our square root the one defined in the plane cut by the negative
real axis such that the square root of positive numbers is positive. Consider
then, just to pick a convenient value, w = 2. Then 4w + 1 = 9, so

2w + 1±
√
4w + 1

2w
=

5± 3

4
,

which works out to 2 if we choose the + sign, 1/2 with the minus sign. So with
this determination of the square root, we need the minus sign. I emphasize that
if it works in one case it has to work in all because k has a well determined
analytic inverse defined in C\Γ∗ and the inverse determines as much the choice
of the square root as the other way around. Thus

k−1(w) =
2w + 1−

√
4w + 1

2w

for w 6= 0.
The limit for w → 0 can be computed by Calculus 1 methods; it works out

to 0 as it should; ϕ−1(0) = 0. This time I will parameterize the Jordan arc by
Γ(t) = −t, 1/4 ≤ t <∞. We have

ζ0 = lim
w→−1/4

k(w) = −1, ζ∞ = lim
|w|→∞

k−1(w) = 1.
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Thus we can take α = π, β = 2π and if we recall that k(eit) = − 1

4 sin(t/2)
, we

see that the arc γ1 in this case is the lower semicircle from -1 to 1, omitting the
end point 1; γ2 is the upper semicircle from 1 to -1, omitting the initial point 1.

Sketch of the proof of Proposition 26. The first thing to see is, perhaps, that

lim
w∈ϕ(U),w→Γ(a)

ϕ−1(w)

exists. We can find a disc W = D(w1, ρ), ρ > 0, such that Γ(a) is on the
boundary of this disc and W\{Γ(a)} ⊂ ϕ(D).

The idea is to have the result about conformal mappings quoted earlier
do all the hard work. So We will extend Γ to an injective continuous map
Γ̃ : (−∞,∞) → C such that limt→−∞ |Γ̃(t)| = ∞. Proving that this can be
done is not entirely trivial; the original Jordan arc could do a lot of strange
stuff, have spirals inside spirals and other weirdnesses, so a bit of care must be
exercised. It can be done because the complement of Γ∗ is an open connected
set, hence path connected. The extended arc Γ̃ partitions the plane into two
simply connected sets; that is, C\Γ̃∗ = U1 ∪ U2 where U1, U2 are two open
disjoint simply connected sets. This is essentially the Jordan curve theorem on
the Riemann sphere; i.e., C ∪ {∞}. The standard form of the theorem has a
bounded and an unbounded component; in principle the unbounded component
is not simply connected, but it is so if we add ∞ to the picture; any curve in
the unbounded component can be homotopically shrunk to ∞. If we restrict
ϕ−1 to U1 we get a conformal map of U1 onto a subset V1 = ϕ−1(U1) of D.
The set V1 is a bounded simply connected open set; a standard result [?] proves
its boundary is a Jordan curve. If we consider what the boundary can be, it
has to be the image of the boundary of U1. Part of this boundary, the part
corresponding to the restriction of Γ̃ to (−∞, a) is in the range of ϕ, thus gets
mapped onto a connected subset (an arc) in D. This arc begins at a point of
∂D and ends at another point of ∂D; namely, (with some abuse of notation)
the point ζ0 = ϕ−1(Γ(a)) and the point ζ∞ = ϕ−1(∞). The image under this
extended homeomorphism ϕ−1 of the original Jordan arc Γ∗ has thus to be a
connected subset of the circle ∂D; in other words, an arc that will go from ζ0
to ζ∞, closing the curve that is the image of Γ̃∗ under ϕ−1. Similarly for U2,
which is mapped conformally onto ϕ−1(U2) ⊂ D. The image of Γ∗ under the
extension of ϕ−1 to a homeomorphism of the the closures of these sets has to be
an arc of the boundary circle of D joining ζ0 to ζ∞. It is easy to see it cannot
be the same arc as before, so it must be its complement.

The restrictions of ϕ to V1 and to V2 extend to continuous maps fromV̄1, V̄2 to
C, respectively; these maps necessarily agree on

(

V̄1 ∩ V̄2
)

\{ζ∞, thus ϕ extends
to a continuous map D̄\{ζ∞} to C. We are basically done.

We return now to our situation, assuming again the hypothesis and notation
of the statement of Theorem 20. If we apply this proposition to our map gt,
t ≥ 0, we will write λ(t) for the point called ζ0 in the proposition, µ(t) for the
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point called ζ∞. Then |λ(t)| = |µ(t)| = 1. λ(t) 6= µ(t),

lim
w→Γ(φ(t))

g−1
t (w) = λ(t), lim

|w|→∞
g−1
t (w) = µ(t).

If we write λ(t) = eiα(t), µ(t) = eiβ(t), α(t) < β(t) < α(t) + 2π, and if γ∗1 , γ
∗
2 are

the two arcs

γ∗1 = {eiτ : α(t) ≤ τ < β(t)}, γ∗1 = {eiτ : α(t) ≤ τ < β(t)}

We fix now for a while, until further notice, s, t ∈ R, 0 ≤ s < t. The function
gs is univalent from D onto Uφ(s) ⊂ Uφ(t), g

−1
t is univalent from Uφ(t) onto D;

it follows that the map h defined by

h(z) = g−1
t (gs(z))

is univalent from D into D. The arc segment {Γ(φ(σ)) : s ≤ σ < t} is in Uφ(t)

but not in Uφ(s). It’s image under g−1
t is an arc in D beginning at a point

g−1
t (Γ(φ(s))) ∈ D, ending at λ(t) ∈ ∂D; λ(t) as defined above. If we denote
this arc by Js,t, then h is a conformal mapping of D onto D\Js,t.

Consider now the extension of gs to D̄\{µ(s)}. Since it maps {eiσ : α(s) ≤
σ < β(s)} bijectively onto {Γ(φ(τ)) : s ≤ τ <∞}, it maps a subarc of this arc
onto {Γ(φ(τ)) : s ≤ τ ≤ t}. Similarly, it maps a subarc of {eiσ : β(s) < σ <
α(s) + 2π} onto the sam arc {Γ(φ(τ)) : s ≤ τ ≤ t}. These two subarcs of the
boundary of the circle intersect at λ(s).


