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Abstract. We consider the Betti numbers of an intersection of k random quadrics in RPn.
Sampling the quadrics independently from the Kostlan ensemble, as n → ∞ we show that for
each i ≥ 0 the expected ith Betti number satisfies:

Ebi(X) = 1 + O(n−M ) for all M > 0.

In other words, each fixed Betti number of X is asymptotically expected to be one; in fact
as long as i = i(n) is sufficiently bounded away from n/2 the above rate of convergence is
uniform (and in this range Betti numbers concentrate to their expected value).

For the special case k = 2 we study the expectation of the sum of all Betti numbers of
X. It was recently shown [27] that this expected sum equals n + o(n); here we sharpen this
asymptotic, showing that:

(1)
n∑

j=0

Ebj(X) = n+
2√
π
n1/2 +O(nc) for any c > 0.

(the term 2√
π
n1/2 comes from contributions of middle Betti numbers).

The proofs are based on a combination of techniques from random matrix theory and
spectral sequences. In particular (1) is based on a reduction that requires an average count
of the number of singular quadrics in a random pencil; this count turns out to be related to
the derivative at zero of the gap probability fβ,n in finite Gaussian β-ensembles (β = 1, 2, 4).
We provide also new computations for this quantity and as n goes to infinity:

f ′
β,n(0) ∼ −2

√
2

π
n1/2.

1. Introduction

Random algebraic geometry. Quadratic equations are “universal” in algebraic geometry;
every algebraic set (real or complex) can be described using quadratic equations, while possibly
increasing the number of equations and of variables.

In contrast with complex algebraic geometry, which draws much of its power from the avail-
ability of generic statements, real algebraic geometry is by necessity more algorithmic. For
instance, a basic problem that is difficult to study even case by case concerns the topology of an
intersection of quadrics. In search of asymptotic results while being motivated by problems with
many degrees of freedom (typical in applications), it is natural to fix the number of equations
and let the number of variables increase.

A. Barvinok [5] considered this asymptotic while investigating the homological complexity1

b(X) of an intersection X of k quadrics in RPn. Barvinok showed that b(X) is bounded by a
polynomial of degree O(k) in n. The same problem was revisited in subsequent studies [3, 6, 10,
29].

In this paper, following [27], we take a probabilistic approach and consider the average Betti
numbers of an intersection of random quadrics. Drawing on random matrix theory, we will see

1Here for a topological space X the number b(X) denotes the sum of its Betti numbers.
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2 ANTONIO LERARIO AND ERIK LUNDBERG

that rather precise information can be extracted from the tables of spectral sequences, developed
in [3, 29], when they are studied on average.

To state our main problem more precisely, let us denote by X ⊂ RPn−1 the common zero
locus of k quadratic forms:

X = {[x] ∈ RPn−1 | q1(x) = · · · = qk(x) = 0}.
Here we choose the defining polynomials q1, . . . , qk to be independent random quadratic poly-
nomials from the Kostlan ensemble (see [9, 12]). Equivalently, the corresponding symmetric
matrices2 Q1, . . . , Qk are sampled independently from the Gaussian orthogonal ensemble (the
GOE(n) ensemble). The probability distribution on Sym(n,R) giving rise to this ensemble is
obtained by defining for every open set U ⊂ Sym(n,R):

probability that Q belongs to U =
1

2n/2πn(n+1)/4

∫

U

e−
1
2 tr(Q

2)dQ

(here dQ stands for the Lebesgue element on the space of symmetric matrices).
Using the results from [9], one can compute the average Euler characteristic of X . Assuming

dim(X) is even:

Eχ(X) = a0 + a2 + · · ·+ adim(X),

where the a2j are the coefficients of the power series
∑

j≥0 a2jt
2j = ( 2

1+t2 )
k/2. This result is

based on metric (as opposed to topological) properties of X and gives limited information on
individual Betti numbers bi(X). The question we are interested in is:

(2) “What is the expected value of bi(X)?”

In addition to computing the expectation of a single Betti number bi(X), we are also interested
in understanding how they distribute in the range i = 0, . . . , dim(X).

The deterministic part of this problem has been studied by the first author and A. A. Agrachev
in [3] and by the first author in [28, 29]. The main ingredient is the use of spectral sequences,
a powerful machinery from algebraic topology. The advantage of this technique is that for the
case of intersection of few quadrics (compared to the number of variables) it gives very accurate
approximations to the topology of X .

Addressing question (2), a probabilistic treatment of this spectral sequence was given by the
first author in [27], where the topology of the intersectionX of two independent random (Kostlan
distributed) quadrics in RPn−1 was studied. The author proved that as n goes to infinity:

(3) Eb(X) = n+ o(n)

where b(X) =
∑

i≥0 bi(X ;Z2) denotes the sum of all Betti numbers of X . Here we sharpen this

result to two orders of precision (see Theorem 1 below).
More generally, we take an intersection of k quadrics and ask for the expectation of the Betti

number bi(X); even allowing the index i to depend on n, as long as it stays sufficiently bounded
away from n/2, the expectation converges very fast to 1.

Theorem (Intersection of k quadrics.). For every k, i ∈ N, every M > 0 and every open set
J ⊂ [0, 1

2 ) ∪ (12 , 1] we have:

Ebi(X) = 1 +O(n−M ) and
∑

j∈nJ

Ebi(X) = |N ∩ nJ |+O(n−M ).

2Fixing a scalar product on Rn we can associate to each quadratic form q a symmetric matrix Q by setting
q(x) = 〈x,Qx〉 for all x ∈ Rn.
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Figure 1. The limit distribution of the Betti numbers for the intersection of
two random quadrics. The area below the depicted function (the sum of all
Betti numbers) equals n+ 2√

π
n1/2 +O(nc).

Thus, if we fix the complexity class (intersection of k quadrics) and the dimension of the
homology, then as n → ∞ the “pointwise” limit of the function i 7→ Ebi(X) is one. In fact we
prove that in the above theorem the convergence is uniform for Betti numbers bi with i = i(n)
bounded away from n

2 by at least nα, 0 < α < 1.
The proof of this result is based on a concentration of measure phenomenon from random

matrix theory that forces the spectral sequence associated to X to have a limiting shape (with
high probability) already at its second page. This leaves no room for higher differentials3 and
with high probability guarantees the existence of exactly one homology class of dimension i in
X .

In the special case of k = 2 quadrics, the spectral sequence argument can be pushed further
to study the distribution of all Betti numbers in the range i = 0, . . . , n (see Figure 1), and
middle Betti numbers are responsible for the interesting contribution of 2n1/2/

√
π appearing in

the following result.
In general, we conjecture that for an intersection of k quadrics the middle Betti numbers give

a contribution that is asymptotic to ckn
(k−1)/2, for some constant ck.

Theorem (Intersection of two quadrics). If X is the intersection of two random, independent
Kostlan quadrics in RPn:

(4) Eb(X) = n+
2√
π
n1/2 +O(nc) for any c > 0.

Let us give a brief explanation of the new term appearing in the above sum. A random
application of the spectral sequence argument requires an average count of the number of singular
lines in the span of the two quadrics defining X ; using the kinematic formula from integral
geometry, this average count can be reduced to the computation of the intrinsic volume of the
set Σ of singular symmetric matrices of Frobenius norm one. This volume can be studied using
tubes: it equals (one half) the derivative at zero of the volume of an ǫ-tube around Σ. Using an
extension of Eckart-Young Theorem (Theorem 9 below) we can describe the ǫ-tube in terms of
the eigenvalues: it consists of all symmetric matrices with Frobenius norm one and at least one
eigenvalue smaller than ǫ in modulus. Ultimately, this leads to the appearance of the derivative
at zero of the gap probability fβ,n for the β-ensemble of Gaussian matrices (see below, the GOE

3This terminology will be explained in detail below.
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case corresponds to β = 1):

f1,n(ǫ) = probability that a GOE(n) matrix has no eigenvalues in the interval (−ǫ, ǫ).

Proposition (An asymptotic). The following asymptotic holds for the derivative at zero of the
gap probability:

f ′
β,n(0) ∼ −2

√
2

π
n1/2.

Although we only perform the asymptotic analysis for β = 1, 2, 4, the exact formula (6)
discussed below holds for arbitrary β > 0. Using this language, one can rewrite (4) as:

Eb(X) = n−
√

π

2
f ′
1,n(0) +O(nc) for any c > 0.

Gap probability at zero. We now turn to the basic problem of evaluating exactly the deriva-
tive at zero of the gap probability. We consider the classical finite β-ensembles Gβ,n of random
matrices (n is the size of the matrix) and the function:

fβ,n(ε) = probability that a matrix from Gβ,n has no eigenvalues in (−ε, ε).

Here G1,n = GOE(n) (the orthogonal ensemble), G2,n = GUE(n) (the unitary ensemble) and
G4,n = GSE(n) (the symplectic ensemble); these are ensembles of random Hermitian matrices
with Gaussian entries (see [16, 31, 37] for more details and properties of statistics of these
ensembles). With slight abuse of notation, we will still denote by Gβ,n the Euclidean space of
such Hermitian matrices endowed with the Frobenius norm; in particular G1,n is the set of real
symmetric, G2,n the set of Hermitian and G4,n the set of quaternionic Hermitian matrices. We
denote by Nβ = n+ 1

2n(n− 1)β the dimension of Gβ,n as a real vector space. The asymptotics
of a rescaled version of fβ,n, tracing its behavior close to zero, but letting n go to infinity first
is well studied (see [4, Ch. 3] and the references therein).

In our setting, we are actually interested in the gap probability for fixed n (in particular its
derivative at zero). For finite ensembles the study goes back to the pioneering work of M. Gaudin
[18] and later M. Jimbo, T. Miwa, Y. Môri and M. Sato [26]. Forrester and Witte [15], drawing
on [26], have evaluated fβ,n (β = 1, 2) using methods from integrable systems. For example, if
β = 1 and n is even:4

f1,n(ε) = τσV
(ε2),

where τσV
is a function satisfying:

σV (t) = t
d

dt
log τσV

(t) and lim
t→0+

σV (t)t
−1/2 = − Γ(n+1

2 )

Γ(n2 )Γ(
1
2 )Γ(

3
2 )

= −cn.

Using the two above relations, one can evaluate the derivative at zero of f1,n under the
assumption that n is even (see [27]):

f ′
1,n(0) = −2cn.

In order to study the more general case β > 0 and arbitrary parity of n, we use the joint
density of the eigenvalues λ1, . . . , λn for Q ∈ Gβ,n. We will denote such joint density by Fβ,n;
its explicit expression is given in [31]:

(5) Fβ,n(λ) = Cβ(n) exp



−β

2

n∑

j=1

λ2
j




∏

1≤j<k≤n

|λk − λj |β ,

4Here we use the same notation as in [15] to help the reader comparing with this reference. The subscript of
σV is due to the connection with the Painlevé fifth equation.
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where Cβ(n) is a normalization constant (its explicit value is written in equation (15) below).
In particular one can write fβ,n(ε) as an integral of the joint density for the eigenvalues over
the region ((−∞,−ε) ∪ (ε,∞))n; from this we derive the following exact formula. Note that
the following theorem holds for arbitrary β > 0, but in our applications we are interested in
β = 1, 2, 4; for these three cases we develop more explicit formulas (Lemmas 14, 15 and 16) and
the asymptotic stated in Corollary 18.

Theorem (The derivative of the gap probability at zero).

(6) f ′
β,n(0) = −2n

Cβ(n)

Cβ(n− 1)
EQ∈Gβ,n−1

{
| det(Q)|β

}

In fact all the quantities in the above equation are classically known (the expectation of the
modulus of the determinant is computed in [31] using the Mellin transform; notice that it is
for an ensemble of dimension one less than the original one). The asymptotic analysis of these
quantities, as needed for Proposition 1, is still delicate and is part of the results of this paper.

Structure of the paper. We prove the result on an intersection of k quadrics in Sections 2
where we first recall what we need from Algebraic Topology, giving a short account of spectral
sequences. The case of two quadrics is proved in Section 3. Supporting results in linear algebra
and random matrix theory are proved aftwerward in Section 4 and the Appendix. In Section 4.1
we prove the generalization of the Eckart-Young Theorem for our set of β-Hermitian matrices.
Section 4.2 is devoted to the explicit computation of the derivative of the gap probability at
zero (Theorem 10); we apply this in Section 4.3 to study the volume of Σβ,n (Theorem 11). We
provide asymptotic versions of Theorems 11 and 10 (respectively Corollaries 17 and 18) in the
Appendix.

Acknowledgements. The authors wish to thank Saugata Basu for his constant support and
Peter Sarnak for helpful suggestions.

1.1. Notes. P. Bürgisser [9] and S. S. Podkorytov [35] computed the expectation of the Euler
characteristic of random algebraic sets defined by independent, centered random polynomials
whose distribution is invariant by an orthogonal change of variables. Here we briefly review
recent results on individual Betti numbers of random algebraic sets.

The first result in this direction was made by F. L. Nazarov and M. L. Sodin: in [33] the
authors prove that a random spherical harmonic of degree d on S2 has on average c · d2 nodal
domains. Extending their technique, the current authors (motivated by P. Sarnak’s letter [36])
studied the expectation of the number of connected components b0 of a random hypersurface Y
of degree d in RPn (here a homogeneous polynomial of degree d in n+ 1 is sampled at random
uniformly from the unit sphere in the L2

Sn-norm). In [30] they proved that there exist constants
Cn, cn > 0 such that for large d:

cnd
n ≤ Eb0(Y ) ≤ Cnd

n.

The novel techniques introduced in [33] can be extended to show that in fact Eb0(Y )/dn has
a limit as d goes to infinity. However the method is not explicit and yields little more than the
non-vanishing of this limit. In the case n = 2, where Eb0(Y ) is asymptotic to c · d2 for c > 0,
M. Nastasescu [36, 32] computed this Nazarov-Sodin constant c numerically and found that it
is approximately 0.0195.

In a sequence of papers [19, 20, 21] D. Gayet and J-Y. Welschinger proved that for a Kostlan
hypersurface Y of degree d in RPn (i.e. whose defining polynomial has a distribution which is
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invariant by unitary change of coordinates), for every Betti number bi there are two constants
ai,n, Ai,n > 0 such that:

ai,nd
n/2 ≤ Ebi(Y ) ≤ Ai,nd

n/2

Again, the problem of determining the sharp constants is far from trivial: the reason is that
for the large degree limit no technique is available for exact computations (the upper bound is
obtained using Morse inequalities and the lower bound using the barrier method from [30, 33]:
neither of these methods produces equalities).

With Y. Fyodorov, the current authors in [17] studied the connected components of a more
general family of orthogonally invariant ensembles and provided estimates on the constants.

1.2. Related problems. We discuss in this section some interesting related problems.
To start with, the theorem on the intersection of k quadrics answers question (2) above only

for Betti numbers away from the middle ones. What is the behavior of these middle Betti
numbers remains an open problem (for k > 2). Here we motivate the above conjecture that
their contribution is of the order n(k−1)/2 as n → ∞.

Let us denote by Σβ,n the set of norm-one, singular matrices in the β-ensemble. For a generic
choice of a k-dimensional space (k ≤ 3) Σ1,n ∩W is smooth, but for larger k singularities are

unavoidable. Let us set Σ
(1)
W = Σ1,n ∩W and denote by Σ

(r)
W the set of singular points of Σ

(r−1)
W .

In [29] the first author proves that for a generic choice of W = span{q1, . . . , qk} the following

inequality holds between the Betti numbers of X = {q1 = · · · = qk = 0} and those of Σ
(r)
W :

b(X)− n ≤ 1

2

∑

r≥1

b(Σ
(r)
W ).

Thus, the homological complexity of X is bounded in terms of the sum of the complexities of the

Σ
(r)
W . For example in the case k = 2 we see that b(X)− n is bounded by the number of singular

lines in W ∩ Σ1,n (actually, in this case the above formula is almost exact and is key for the
theorem on the intersection of two random quadrics). Since they are defined by a homogeneous
equation of degree n, the maximum number of singular lines is at most n; on the other hand,
when we look at the average number we see asymptotically a constant times n1/2.

In the case k = 3 the situation is fairly more complicated; here we have to compute the
average number of components of the random curve:

ΣW = {(ω1, ω2, ω3) ∈ S2 | det(ω1Q1 + ω2Q2 + ω3Q3) = 0}, Q1, Q2, Q3 ∈ GOE(n).

A theorem of V. Vinnikov [39] states that every5 real algebraic curve arises in this way; thus
the above construction gives another possible model for random curves (already introduced in
[27, 30]): curves arising as intersection of Σ1,n with a random three-plane.

Gayet and Welschinger’s result on random algebraic manifolds states that fixing n and letting
the degree go to infinity one gets on average a homological complexity which is of order the
square root of the complete intersection in complex projective space [22]. Here for X we are
performing the opposite limit (k and d = 2 are fixed and n → ∞) but by analogy we guess
that we should get on average the square root of the homological complexity of a complete
intersection of k quadrics in complex projective space, which is O(nk−1). In particular, because
of the theorem on k quadrics, we see that this homological complexity should come from middle
Betti numbers, which in turn are bounded by the r.h.s. of the above inequality.

Closely related to this is a random version of a problem studied by J. Adams, P. Lax and R.
Phillips. In [1] the authors studied (topological) restrictions on the dimension of a subspace W
of Gβ,n missing Σβ,n (i.e. W hits the set of singular matrices only at the origin). It turns out

5Except empty curves of degree n when n ≡ 2mod4.
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that the maximal dimension ρβ(n) of such W is related to Radon-Hurwitz numbers (see [1]). In
particular if k ≤ ρβ(n), it is natural to ask the question:

“What is the probability that a random k-dimensional space in Gβ,n misses Σβ,n?”

Notice that in the case n is odd we must hit Σβ,n at a nonzero point (in fact the determinant is
a real polynomial of odd degree and must vanish somewhere on W ). For this reason we introduce
the following event:

Lβ(k, n) =

{

W ≃ R
k ⊂ Gβ,n such that max

Q∈W
i+(Q) =

⌊
n+ 1

2

⌋}

where i+(Q) denotes the number of positive eigenvalues of the matrix Q from Gβ,n. It is not
difficult to show that the probability of missing Σβ,n for even n equals the probability of Lβ(k, n).
Thus we can ask more generally for the probability of Lβ(k, n) and its asymptotic.

This problem relates to determinantal curves (and consequently also to the above question
on the topology of an intersection of three random quadrics) as follows:

P{L1(3, n)} = probability that a random determinantal curve of degree n is empty.

Remark 1. The uniform probability distribution on the Grassmannian of k planes in Gβ,n ≃ RN

is characterized as the unique probability distribution which is invariant under the action of the
orthogonal group O(N) (the Euclidean structure is the one given by the Frobenius norm). Sam-
pling Q1, . . . , Qk independenlty from the β-ensemble and considering their linear span produces
a random k-plane whose probability distribution is invariant by the O(N) action (by construc-
tion if M : Gβ,n → Gβ,n is an orthogonal linear map, then M(Qi) is distributed as Qi); thus
this k-plane is uniformly distributed in the Grassmannian in the above sense.

2. Betti numbers of intersections of random quadrics

Consider quadratic forms q1, . . . , qk on Rn (i.e. homogeneous polynomials of degree two in
n variables). Each qi defines a (possibly empty) quadric hypersurface in the projective space
RPn−1 and we consider the set X obtained by intersecting together these hypersurfaces:

X = {[x] ∈ RPn−1 | q1(x) = · · · = qk(x) = 0}.
Notice that, once a scalar product on R

n has been fixed, a quadratic form q determines a
unique symmetric matrix Q given by the equation:

q(x) = 〈x,Qx〉 for all x ∈ R
n.

In the random setting, it is assumed that the quadratic forms qi are independent and Kostlan
distributed (see [27]); this is equivalent to require that:

Qi ∈ GOE(n), i = 1, . . . , k.

The first result we will prove is the following, which is valid for i ∈ {0, . . . , dim(X)} sufficiently
bounded away from dim(X)/2 (the “middle” Betti numbers).

Theorem 1. Let X be a random intersection of k quadrics in RPn−1. For every 0 < α < 1 and
M > 0, if |i− n

2 | ≥ nα. then:

Ebi(X) = 1 +O(n−M ).

Note that the convergence in the above range will be uniform. In particular we get the
following corollary: since the error term in the above statement is of the order O(n−M ) for all
M > 0, then an accumulation of at most n such error terms has the same property.
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Corollary 2. For every M > 0 and every open set J ⊂ [0, 1
2 ) ∪ (1/2, 1] we have:

∑

j∈nJ

Ebi(X) = |N ∩ nJ |+O(n−M ).

Before proving the theorems, we need a way for computing Betti numbers of X in a deter-
ministic setting.

2.1. Betti numbers of intersections of quadrics: a deterministic approach. The coho-
mology of intersections of real quadrics is studied in [2, 3, 28, 29]. The main ingredient is a
cohomology spectral sequence converging to the homology of X ; since we will only need part of
this machinery, here we present a simplification of the theory adapted to our needs.

Given the quadratic forms q1, . . . , qk and the corresponding symmetric matrices Q1, . . . , Qk,
we consider their span:

W = span{Q1, . . . , Qk} ⊂ Sym(n,R).

For every symmetric matrix Q we denote by i+(Q) the number of its positive eigenvalues (usually
called the index of Q); we set

µ = max
Q∈W

i+(Q) and ν = min
Q∈W\{0}

i+(Q).

Notice that for the generic choice of q1, . . . , qk the span W is k-dimensional.
In order to study the topology of X we will need to consider also, for every j ≥ 0 the following

set:

Ωj = {ωQ s.t. ω ∈ Sk−1 and i+(ωQ) ≥ j}
where the notation ωQ simply means ω1Q1+ · · ·+ωkQk. By slightly abusing of notation we will
simply think of Ωj as a subset of Sk−1.

The Betti numbers6 of the sets Ω1 ⊃ Ω2 ⊃ · · · ⊃ Ωn together with µ are the ingredients we
need and we collect them into a table E = (ei,j) defined for i = 0, . . . , k and j = 0, . . . , n− 1 by:

ei,j = bi(W,Ωj+1).

The zero-th and the k-th columns look like (there are µ zeros in the first column and n − ν in
the second one):

e0,∗ =

1
...
1
0
...
0

ek,∗ =

0
...
0
1
...
1

For the zero-th column: if j ≥ µ then the set Ωj+1 is empty and e0,j = b0(W,Ωj+1) = 1;
on the other hand if j ≤ µ − 1 then Ωj+1 6= ∅ and e0,j = b0(W,Ωj+1) = 0. For the k-th
column: if j ≤ ν − 1 then Ωj+1 = Sk−1 (every point ω in Sk−1 has i+(ωQ) ≥ ν); hence
ek,j = bk(W,Sk−1) = bk−1(S

k−1) = 1. On the opposite if j ≥ µ then there is at least a point
on the sphere not in Ωj+1 (say a point where the index is minimum); in other words Ωj+1 is
a proper open subset of the sphere Sk−1 and ek,j = bk(W,Ωj) = bk−1(Ω

j) = 0 (proper open
subsets of Sk−1 do not have homology in dimension k − 1).

6Hereafter all homology and cohomology groups will be with Z2 coefficients.
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Thus the table E can be viewed as a partitioned table (blank spots are zeros):

E =

1 0
...

...
1 0
0 0
... S

...
0 0
0 1
...

...
0 1

and the table S is the following:

S =

b0(Ω
µ)− 1 b1(Ω

µ) · · · bk−2(Ω
µ)

...
...

...
b0(Ω

ν+1)− 1 b1(Ω
ν+1) · · · bk−2(Ω

ν+1)

(the −1 appear only in the first column).
Given the table E, for every 0 ≤ i ≤ n− 1 we define bi(E) by the sum of the elements on its

(n− 1− i)-th diagonal7, i.e.:

bi(E) = e0,n−1−i + e1,n−i−2 + · · ·+ en−i−2,1 + en−1−i,0.

The following theorem is a reformulation of [3, Thm. A] and [28, Thm. 8].

Theorem 3. The entries of E are related to the Betti numbers of the common zero locus
X ⊂ RPn−1 of the generic quadrics q1, . . . , qk by:

bi(X) ≤ bi(E) ∀i ≥ 0 and χ(X) =

n−1∑

j=0

(−1)jbj(E)

Moreover assume for every nonzero entry ej,n−1−i−j of the (n− 1− i)-th diagonal we have:

(7)
∑

t>j+2

et,n−t−i = 0 and
∑

t<j−2

et,n−t−i = 0

then:
bi(X) = bi(E).

In the case k = 2 we also have:

(8) |b(X)− b(E)| ≤ 2.

Proof. We sketch the steps to derive the current statement from the cited ones.
First, [3, Thm. A] asserts that there exists a spectral sequence whose E2 terms coincides with

the above table E and that converges to the homology of X. Since this spectral sequence is a
(finite in this case) sequence of groups with endomorphisms (E2, d2), (E3, d3), . . . , (E∞, d∞ ≡ 0)
with E∞ = H∗(X), and each term is the homology of the predecessor, then the first part of the
statement follows (ranks can only decrease and the Euler characteristic is preserved).

Property (7) is a consequence of the fact that the endomorphisms of the spectral sequence
have a bigrading and they can only influence the next term of the spectral sequence “locally”.
Let us explain this with a visual example. Let us pick an element ei,j (which belongs to the

7The strange but standard indexing is due to Alexander-Pontryiagin duality.
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b

b

b

b

bb

Q1

Q2

3

2

1

0

1

2

Ω1 =

Ω2 =

Ω3 =

bc bc

bc
bc

bc bc

Figure 2. The index function for the empty intersection of two quadrics.

(i+ j)-th diagonal and will give information on the (n− 1− i− j)-th Betti number) and look at
the left side of the diagonal below it and the right side of the one above it:

ei−3,j+2

ei−2,j+1 ∗ ∗
∗ ei,j ∗

∗ ∗ ei+2,j−1

ei+3,j−2

If the sum of all these elements is zero we say that ei,j survives. If every nonzero element
in a diagonal survives, then the the sum of all of them equals the corresponding Betti number
of X . In this example if every nonzero element in the diagonal containing ei,j survives, then
bn−1−i−j(X) = bn−1−i−j(E).

Finally, [28, Thm. 8] asserts that in the case k = 2 one has:

bk(X) = ẽ0,n−k + ẽ1,n−k−1 + ẽ2,n−k−2

where the elements ẽi,j come from a table that equals E except for e0,µ and e2,µ−1, but for which
in any case |e0,µ − ẽ0,µ| ≤ 1 and |e2,µ−1 − ẽ2,µ−1| ≤ 1. �

Example 1 (Empty intersection of two quadrics in RP2). Consider the quadratic forms:

q1(x) = x2
0 + x2

1 + x2
2 and q2(x) = 2x0x1 + 2x2x1 + 2x0x2 + x2

1

with corresponding symmetric matrices:

Q1 =





1 0 0
0 1 0
0 0 1



 and Q2 =





0 1 1
1 1 1
1 1 0





In this case the index function over the circle S1 ⊂ span{Q1, Q2} looks as in Figure 2. Conse-
quently µ = 3 and the table E consists of all zeros; this is confirmed by the fact that the common
zero locus of q1 and q2 is empty (q1 is positive definite).
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2.2. The expectation of the maximum of the index. Fix k, and let W = span{q1, q2, .., qk}
be the span of k (Kostlan distributed) random quadrics. This translates to a span of random
matrices {Q1, Q2, .., Qk} in GOE. By homogeneity, we may assume the matrices have been
rescaled by 1√

n
. Let µ be as above the maximum of the index function i+(ωQ) over ω =

(ω1, . . . , ωk) ∈ Sk−1; here and below we use the notation ωQ = ω1Q1 + · · ·+ ωkQk; notice that
if ω ∈ Sk−1 then ωQ ∈ GOE.

Lemma 4. For every α,M > 0

P

{

µ ≥ n

2
+ nα

}

= O(n−M ),

for every M > 0.

Proof of Lemma. Fix α > 0, and let En denote the event

En :=
{

µ ≥ n

2
+ nα

}

,

and

An :=
{
‖Qi‖ ≤ 4

√
n, i = 1, 2, .., k

}
.

Using the bound ‖Qi‖ ≤ √
n‖Qi‖op along with the fact that P{‖Qi‖op ≥ 4} is exponentially

small [37][Ch. 2], we have:

(9) P {En} = P {En ∩An}+O(cn1 ),

for some 0 < c1 < 1.
Let Nn be a maximal εn-net of points on the sphere Sk−1 (εn > 0 is specified later), i.e. Nn

is a finite set of points ωi ∈ Sk−1 that are separated from each other by a distance of at least
εn, and Nn is maximal with respect to set inclusion.
Claim 1: Let

En,j :=
{

i+(ωjQ) ≥ n

2
+ nα/2

}

.

and

Rn,j := {ωjQ has ≥ nα/2 eigenvalues in (−εn4
√
nk, εn4

√
nk)}.

Then:

En ∩ An ⊂ ∪ωj∈Nn
{En,j ∪Rn,j}.

Claim 2: For each M > 0, we have:

P{En,j} = O(n−M ).

If εn < n−3/2 then we also have:

P{Rn,j} = O(n−M ).

Choosing, for instance, εn = 1/n2 and applying both Claims we have

P{En ∪ An} <
∑

j

(PEn,j + PRn,j) = O(n−M+2k),

since the number of terms in the sum is |Nn| = O(1/εk−1
n ) = O(1/n2k−2). This proves the result

in light of (9).
It remains to prove the Claims.
To see Claim 1, assume the events En and An occur and note that for some ω ∈ Sk−1 we have

µ = i+(ωQ) and this ω is at most εn away from one of the points ωj ∈ Nn. The change in index
|i+(ωQ)− i+(ωjQ)| counts the number of changes in sign of the eigenvalues. If the ith eigenvalue
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λi changes sign, then |λi(ωQ)− λi(ωjQ)| > |λi(ωjQ)|. The Weilandt-Hoffman estimate [37][Ch.
1] states:

n∑

i=1

|λi(ωQ)− λi(ωjQ)|2 < ‖ωQ− ωjQ‖2.

In particular, for an eigenvalue that changes sign:

|λi(ωjQ)| < |λi(ωQ)− λi(ωjQ)| < ‖ωQ− ωjQ‖ ≤ εn4
√
nk,

where the last inequality is implied by the event An.
This implies that the change in the index |i+(ωQ) − i+(ωjQ)| is at most the number of

eigenvalues of ωjQ with absolute value less than εn4
√
nk. Thus, either

|i+(ωQ)− i+(ωjQ)| ≤ nα/2,

or ωjQ has at least nα/2 eigenvalues in (−εn4
√
nk, εn4

√
nk). These two possibilities imply the

events En,j and Rn,j respectively, so this proves Claim 1.
In order to prove Claim 2, we state a result providing a uniform convergence estimate for

Wigner’s semi-circle law. We state just a special case of the result from [14]:

Theorem 5 (L. Erdös, H-T. Yau, J. Yin, 2012). Let X be a (rescaled) random matrix in
GOE(n), and assume |bn| < 5. There exist positive constants A > 1, C, c, and φ < 1, such that

P
{
|NX(−∞, bn)− n ·m(−∞, bn)| ≥ (logn)L

}
< C exp{−c(logn)φL},

where L = A log log n, NX(−∞, bn) counts the number of eigenvalues of X in the interval
(−∞, bn), and m is the semi-circle measure.

Let us first apply this to event En,j . We have:

P{En,j} = P{|NX(−∞, 0)− n/2| ≥ nα/2} < P{|NX(−∞, 0)− n/2| ≥ (logn)L},
for all large enough n. So, P{En,j} < C exp{−c(logn)φL}. For any M > 0, eventually (whatever
the values of the constants):

c(logn)φL−1 > M.

Thus,

C exp{−c(logn)φL} = O(exp{−M(logn)}) = O(n−M ).

Next we apply the same theorem to the event Rn,j . Let bn = εn4
√
nk, and X = ωjQ (which

is a matrix in GOE). First, we have:

Rn,j = {|NX(−∞, bn)−NX(−∞,−bn)| ≥ nα/2}.
By the triangle inequality,

|NX(−∞, bn)−NX(−∞,−bn)| ≤ |NX(−∞, bn)−m(−∞, bn)|+ |NX(−∞,−bn)−m(−∞,−bn)|.
Accordingly, Rn,j ⊂ R̂n,j ∪ R̃n,j , where

R̂n,j := {|NX(−∞, bn)−m(−∞, bn)| ≥ nα/4},
R̃n,j := {|NX(−∞,−bn)−m(−∞,−bn)| ≥ nα/4}.

Applying Theorem 5 to P{R̂n,j} and P{R̃n,j}, we have:

P{Rn,j} ≤ P{R̂n,j}+ P{R̃n,j} = O(n−M ).

�

As a corollary we derive the following proposition, which computes the expectation of µ.
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Proposition 6. For every k-dimensional W ⊂ GOE(n) as above and every 0 < α < 1 we have:

Eµ =
n

2
+O(nα)

Proof. From one hand we have µ ≥ n/2, which gives Eµ ≥ n/2. On the other hand:

Eµ =
∑

j≥0

(
n+ j

2

)

P

{

µ =
n+ j

2

}

≤
(n

2
+ nα

)

P

{

µ ≤ n

2
+ nα

}

+ nP
{

µ >
n

2
+ nα

}

≤ n

2
+ nα +O(n1−M )

where in the last inequality we have used the assertion of Lemma 4 (if (n+j)/2 is not an integer,
then the corresponding event is empty). �

2.3. Proof of Theorem 1. Fix k and let i = i(n) be as in the statement. Then as n goes to
infinity the table E has a fixed number of columns (k+1) and the number of rows is increasing;
moreover Betti numbers of X can be studied (deterministically) using Theorem 3.

Let us start by proving the following property:

(10) bi(X) = 1 for all i < n− µ− k − 2

(in fact for the generic X , because of Poincaré duality the same will hold for i > µ+ 2). Let us
consider the table E and focus on the diagonal above the one containing e0,n−1−i:

E =

1
...
1
1

e0,n−1−i 0
1 0
... 0
1 0

e0,µ+1

S

1
...
1

Since n − µ − i > k + 2, then this diagonal consists of all zeros (except e0,n−i): in fact since
the number of ones below e0,n−1−i is bigger than the number of columns of S, the diagonal
(e0,n−i, e1,n−i−1, . . . , en−i,0) does not hit S, nor the ones in the last columns. This implies:

∑

t>2

et,n−t−i = 0 and
∑

t<−2

et,n−t−2 = 0

(the second condition is automatically satisfied because for negative indices i, j the numbers ei,j
are zeros). In particular for such an i the second part of Theorem 3 implies:

bi(X) = bi(E) = 1.
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Let now 0 < α < 1 and i = i(n) ≤ ⌊n
2 − nα⌋; recall that by Lemma 4 we have:

P

{

µ ≤ n

2
+ nα

}

≥ 1−O(n−M ) for all M > 0.

Interpreting bi as a nonnegative function on Sym(n,R)k endowed with the probability distribu-
tion dγk arising from GOE(n)k, this enables to compute for α′ < α:

Ebi =

∫

Sym(n,R)k
bidγk =

∫

{µ> n
2 +nα′}

bidγk +

∫

{µ≤n
2 +nα′}

bidγk

≥
∫

{µ≤n
2 +nα′}

dγk ≥ 1 +O(n−M ′

).

In the previous chain of inequalities we have used the fact that µ ≤ n
2 + nα′

combined with
i = i(n) ≤ n

2 − nα gives (for large enough n):

n− µ− k − 2 ≥ n− n

2
− nα′ − k − 2 =

n

2
− nα′ − k − 2 ≥ n

2
− nα ≥ i(n)

which in turn implies, because of (10), that for each j ≤ i(n) on {µ ≤ n
2 + nα′} one has bj ≡ 1.

This proves that for every 0 < α < 1 and M > 0 if i = i(n) ≤ ⌊n
2 − nα⌋ we have Ebi(X) ≥

1 +O(n−M ).
For the opposite inequality we need to know the following uniform bound from real algebraic

geometry [29] on the sum of the Betti numbers of an intersection X of k quadrics in RPn:

(11) bi(X) ≤ b(X) ≤ O(nk−1).

Reasoning as above we obtain:

Ebi =

∫

Sym(n,R)k
bidγk =

∫

{µ>n
2 +nα}

bidγk +

∫

{µ≤n
2 +nα}

bidγk

≤ O(n)k−1
P

{

µ >
n

2
+ nα

}

+ P

{

µ ≤ n

2
+ nα

}

≤ O(n−M+k−1) + 1 for all M > 0.

In particular we have proved that for every 0 < α < 1 and M > 0 if we take i < ⌊n
2 − nα⌋ we

have:

Ebi(X) = 1 +O(n−M ).

Poincaré duality implies that the same holds true for i > ⌊n
2 + nα⌋.

3. The case of two quadrics

3.1. Deterministic result for the case of two quadrics. Continuing the discussion of Sec-
tion 2.1, let us denote by b(S) the sum of all the numbers in the table S (and similarly by b(E)
the sum of all the numbers in the table E). Let us also define the set of singular, norm-one
matrices:

Σ1,n = {Q ∈ Sym(n,R) | det(Q) = 0 and ‖Q‖2F = 1}.
The following properties hold for S.

Proposition 7. For the generic choice of q1, . . . qk we have ν = n− µ; moreover if k = 2

b(S) = n− 2µ+
1

2
Card(W ∩Σ1,n)
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Proof. For the generic choice of q1, . . . , qk the set Σ1,n ∩ W is a proper algebraic set (it is by
definition the set of points in Sk−1 ⊂ W where the determinant is zero) and each set Ωj is an
open set; thus the minimum and the maximum of the index are attained at points where the
determinant doesn’t vanish; call these points QM and Qm respectively. Then, since det(QM ) 6=
0 6= det(Qm), we have:

n− µ = n− i+(QM ) ≤ n− i+(−Qm) = ν ≤ i+(−QM ) = n− µ.

Let us move to the second part of the statement. In the case k = 2, for the generic choice of
q1, q2 we have ν = n− µ and the table S is given by one single column

S =

b0(Ω
µ)− 1
...

b0(Ω
n−µ+1)− 1

Each set Ωj is a disjoint union of open intervals of S1 (it is a proper subset of the circle) and
b0(Ω

j) = 1
2b0(∂Ω

j). In particular:

b(S) = n− 2µ+
1

2

µ
∑

j=n−µ+1

b0(∂Ω
j).

Consider now the sum
∑µ

j=n−µ+1 b0(∂Ω
j): for the generic choice of q1, q2, it equals the number

of points ω on the circle S1 where i+(ωQ) changes its value. This happens exactly at the points
where the determinant vanishes, i.e. at the points in W ∩ Σ1,n. In other words:

µ
⋃

j=n−µ+1

∂Ωj = W ∩ Σ1,n.

�

3.2. Random intersection of two quadrics. We move now to the random case and prove
the following.

Theorem 8. For k = 2 the following formula holds:

Eb(X) = n+
2√
π
n1/2 +O(nc) for any c > 0.

Proof. The proof goes along the lines of the proof of Theorem 1 from [27]. In the case k = 2 we
can use the last part of the statement of Theorem 3 and write:

b(X) = b(E) +O(1).

In this case the first column of E has n − µ ones and the last has ν many; but for the generic
choice of q1, q2 Proposition 7 implies ν = n− µ; in particular:

(12) b(E) = n− µ+ b(S) + n− µ = 2n− 2µ+ b(S) = 3n− 4µ+
1

2
Card(W ∩ Σ1,n)

(here W = span{q1, q2}). The expectation of µ is computed in Proposition 6 and provides:

(13) E4µ = 2n+O(nα) for all α > 0.

It remains to compute 1
2ECard(W ∩ Σ1,n). We start by noticing that by assumption for

every g ∈ SO(N) the random quadratic forms q and gq have the same distribution (here N =
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dim Sym(n,R) and the action is not by change of variable, but directly on the space of the
coefficients). Thus we have:

ECard(W ∩ Σ1,n) =

∫

SO(N) ECard(gW ∩Σ1,n)dg

|SO(N)| =
E
∫

SO(N) Card(gW ∩ Σ1,n)dg

|SO(N)| =
2|Σ1,n|
|SN−2| .

The first equality is because for every g ∈ SO(N) we have ECard(gW∩Σ1,n) = ECard(W∩Σ1,n);
the second is just linearity of expectation, and the third one is the integral geometry formula
[12] (there is no expected value because the integral is constant).

Thus it remains only to compute the term
|Σ1,n|
|SN−2| (the intrinisic volume of the set of singu-

lar, norm-one symmetric matrices). This is done in the next section in Theorem 11, and the
asymptotic we need is provided in Corollary 17 in the Appendix:

(14)
1

2
ECard(W ∩ Σ1,n) =

|Σ1,n|
|SN−2| =

2√
π
n1/2 +O(1).

Combining now (13) and (14) into the expectation of (12) we get the result.
�

4. Intrinsic volume of the set of singular matrices

In Section 4.2, we provide a formula for the derivative at zero of the gap probability, and in
Section 4.3 we use this to compute the intrinsic volume of the set of singular matrices. First we
establish in Section 4.1 the key ingredient for relating these two quantities; an adaptation of the
Eckart-Young theorem.

4.1. Eckart-Young theorem. In its classical statement, the theorem of Eckart and Young [11]
provides the distance (in the Frobenius norm) between an invertible matrix Q and the set Z of
matrices with determinant zero:

d(Q,Z) = ‖Q−1‖−1
op .

We will be interested in computing the above distance in the metric space Gβ,n (the distance
is again induced by the Fobenius norm, but a priori it could be bigger than the above one;
a statement for the case of real symmetric matrices already appeared in [24]). Notice that if
Q ∈ Gβ,n is invertible then ‖Q−1‖−1

op equals the least singular value σ(Q) of Q.

Theorem 9. Let Q ∈ Gβ,n be invertible and Z be the set of matrices in Gβ,n with determinant
zero. Then:

dGβ,n
(Q,Z) = σ(Q).

Proof. Given Q ∈ Gβ,n invertible we consider the function:

fQ : X 7→ ‖Q−X‖2

and we look for a minimum on Z. We first prove that one such minimum must have rank n− 1.
In fact let X̂ such that:

rank(X̂) ≤ n− 2 and ‖Q− X̂‖2 = min
X∈Z

‖Q−X‖2.

For β = 1, 2, 4 let Vβ be respectively R,C and H; then for every v ∈ V n
β of norm one and ε ∈ R

we have rank
(

X̂ + εvvT
)

≤ n− 1 (adding a rank-one matrix to a rank-two one can increase the

rank by at most one) and:
∥
∥
∥Q− X̂ − εvvT

∥
∥
∥

2

= ‖Q− X̂‖2 − 2ε
〈

Q− X̂, vvT
〉

+ ε2 ≥ ‖Q− X̂‖2.
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In particular for every ε ∈ R we have ε2 ≥ 2ε
〈

Q− X̂, vvT
〉

= 2εtr
(

(Q − X̂)vvT
)

, which

implies tr
(

(Q− X̂)vvT
)

= 0. Since this holds for every v of norm one, then Q = X̂ which is

impossible.
Thus we restrict to find minima of fQ on the smooth stratum Z1 of Z where the corank is one:
since the stratum is smooth we can use Lagrange multipliers rule. Over this stratum we have
(∇det)X = α(X) (the adjoint matrix of X) and (∇fQ)X = 2(Q−X). Thus X ∈ Z1 is a critical
point of fQ if and only if for some λ we have λ(Q−X) = α(X). In particular multiplying both
sides of this equation by X and using the identity α(X)X = det(X)1 we get:

X ∈ Crit(fQ|Z1) implies QX = X2.

In particular since X
T
= X we get:

QX = X2 =
(

X
T
)2

= QX
T
= X

T
Q

T
= XQ

which says Q and X can be simultaneously diagonalized by β-unitary operators; since conjuga-
tion by such operators is an isometry in Gβ,n, then we can assume both Q and X are already
diagonal andx satisfy QX = X2; it remains to compute the norm of Q−X to detect minima. If
Q = diag(λ1, . . . , λn) and X = (x1, . . . , xn), then for every k = 1, . . . , n we have λkxk = x2

k and
λk, xk ∈ R. Thus:

‖Q−X‖2 =
n∑

k=1

λ2
k − x2

k.

Now we already know that the matrix X has rank n − 1 and exactly one of the xk is zero, say
xs. In particular ‖Q−X‖2 = x2

s and the minimum of fQ is attained when x2
s = σ(Q)2.

�

Remark 2. In fact the proof can be adapted to find critical points of fQ over a stratum of Z
where the corank is bigger, say r. Then a corresponding minimum is obtained by setting in the
diagonal form of Q the first r singular values to zero. Also note that if Q has multiple eigenvalues
we can find several minima.

4.2. Gap probabilities. In this section we derive the explicit formula for f ′
β,n(0) = lim

ε→0+
f ′
β,n(ε).

Theorem 10.

f ′
β,n(0) = −2n

Cβ(n)

Cβ(n− 1)
EQ∈Gβ,n−1

{
| det(Q)|β

}
.

Proof. We make use of the important and well-known formula [31, Ch. 3] for the joint p.d.f.
Fβ,n(λ) of the eigenvalues λ = (λ1, λ2, .., λn) of a random matrix in the Gβ,n ensemble:

Fβ,n(λ) = Cβ(n) exp



−β

2

n∑

j=1

λ2
j




∏

j,k∈[1,n]

|λk − λj |β/2,

where

(15) Cβ(n) = (2π)−n/2βn(n−1)β/4+n/2
n∏

j=1

Γ(1 + β/2)

Γ(1 + jβ/2)
.

By definition, fβ,n(ε) is an integral of Fβ(λ) over the set where all eigenvalues have absolute
value at least ε, i.e.

(16) fβ,n(ε) = P{σ(Q) ≥ ε} =

∫

((−∞,ε)∪(ε,+∞))n
Fβ,n(λ)dλ,
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Next differentiate both sides of this equation with respect to ε. Since ε only appears in the limits
of integration (and not in the integrand), this simply produces boundary integrals; by symmetry
under permutations of the variables, these n integrals are equal, so we just multiply the last one

by n (here we have used λ̂ to denote the first n− 1 entries in λ):

(17) f ′
β,n(ε) = −n

∫

((−∞,−ε)∪(ε,+∞))n−1

(

Fβ,n(λ̂,−ε) + Fβ,n(λ̂, ε)
)

dλ̂.

For example, let us consider the case n = 2; we have:

fβ,2(ε) =

(∫ −ε

−∞

∫ −ε

−∞
+

∫ −ε

−∞

∫ ∞

ε

+

∫ ∞

ε

∫ ∞

ε

+

∫ ∞

ε

∫ −ε

−∞

)

Fβ,2(λ1, λ2)dλ1dλ2

=

(∫ −ε

−∞

∫ −ε

−∞
−
∫ −ε

−∞

∫ ε

∞
+

∫ ε

∞

∫ ε

∞
−
∫ ε

∞

∫ −ε

−∞

)

Fβ,2(λ1, λ2)dλ1dλ2

Thus taking derivative the fundamental Theorem of calculus implies:

f
′
β,2(ε) =−

∫ −ε

−∞
Fβ,2(−ε, λ2)dλ2 −

∫ −ε

−∞
Fβ,2(λ1,−ε)dλ1 +

∫ ε

∞
Fβ,2(−ε, λ2)dλ2 −

∫ −ε

−∞
Fβ,2(λ1, ε)dλ2

+

∫ ε

∞
Fβ,2(ε, λ2)dλ2 +

∫ ε

∞
Fβ,2(λ1, ε)dλ1 −

∫ −ε

−∞
Fβ,2(ε, λ2)λ2 +

∫ ε

∞
Fβ,2(λ1,−ε)dλ1

=−

∫ −ε

−∞
Fβ,2(−ε, λ2)dλ2 −

∫ −ε

−∞
Fβ,2(λ1,−ε)dλ1 −

∫ ∞

ε

Fβ,2(−ε, λ2)dλ2 −

∫ −ε

−∞
Fβ,2(λ1, ε)dλ2

−

∫ ∞

ε

Fβ,2(ε, λ2)dλ2 −

∫ ∞

ε

Fβ,2(λ1, ε)dλ1 −

∫ −ε

−∞
Fβ,2(ε, λ2)λ2 −

∫ ∞

ε

Fβ,2(λ1,−ε)dλ1 = (∗)

Collecting together and using the invariance under permutations of the variables of Fβ,2, we
can rewrite the above expression as:

(∗) =

∫
(−∞,−ε)∪(ε,+∞)

Fβ,2(−ε, λ2) + Fβ,2(ε, λ2)dλ2 −

∫
(−∞,−ε)∪(ε,+∞)

Fβ,2(λ1,−ε) + Fβ,2(λ1, ε)dλ1

= −2

∫
(−∞,−ε)∪(ε,+∞)

Fβ,2(−ε, λ2) + Fβ,2(ε, λ2)dλ2

Taking the limit ε → 0 in the general case (17), the dominated convergence Theorem gives:

(18) lim
ε→0

f ′
β,n(ε) = −2n

∫

Rn−1

Fβ,n(λ̂, 0)dλ̂.

The integrand Fβ,n(λ̂, 0) can be rearranged in an interesting way that expresses it in terms of

the density Fβ,n−1(λ̂) and the determinant |λ1 · λ2 · · ·λn−1|:

Fβ,n(λ̂, 0) = Cβ(n) exp



−β

2

n−1∑

j=1

λ2
j











∏

j,k∈[1,n]

|λk − λj |β/2






λn=0

= Cβ(n) exp



−β

2

n−1∑

j=1

λ2
j











∏

j,k∈[1,n−1]

|λk − λj |β/2





|λ1 · λ2 · · ·λn−1|β

=
Cβ(n)

Cβ(n− 1)
|λ1 · λ2 · · ·λn−1|βFβ,n−1(λ̂)



GAP PROBABILITIES AND BETTI NUMBERS 19

Substituting this into (18) finally leads to an expression for limε→0 f
′
β,n(ε) in terms of the

Mellin transform:

lim
ε→0

f ′
β,n(ε) = −2n

Cβ(n)

Cβ(n− 1)

∫

Rn−1

|λ1 · λ2 · · ·λn−1|βFβ,n−1(λ̂)dλ̂

= −2n
Cβ(n)

Cβ(n− 1)
EQ∈Gβ,n−1

{
| det(Q)|β

}

�

4.3. The intrinsic volume of Σβ,n. In this section we compute the intrinsic volume (induced
by the Frobenius norm) of the set:

Σβ,n = {Q ∈ Gβ,n : ‖Q‖2 = 1 and det(Q) = 0}.
Let us recall that the Mellin transform M+

n−1(β, s) [31] provides the moments of the deter-
minant of a random matrix from the β-ensemble. Namely,

(19) M+
n (β, s) =

1

2
Eβ,n| det |s−1 =

1

2
Eβ,n|λ1 · λ2 · · ·λn|s−1,

where we have used the notation Eβ,n to emphasize that the expectation is taken using the
probability density associated to Gβ,n. In terms of this, we state a precise formula for the
volume of Σβ,n.

Theorem 11. For β = 1, 2, 4:

|Σβ,n| = 2n
√
2π

Cβ(n)

Cβ(n− 1)
M+

n−1(β, β + 1) · |SNβ−2|,

where Nβ,n = dimGβ,n = n+ 1
2n(n− 1)β, and Cβ(n) is defined in (15).

Remark 3. Plugging in the exact values for the normalization constants we have:

Cβ(n)

Cβ(n− 1)
=

β(n−1)β/2+1/2Γ(1 + β/2)√
2πΓ(1 + βn/2)

which in turn implies:

|Σβ,n| = 2nβ
nβ−β+1

2
Γ(1 + β/2)

Γ(1 + βn/2)
M+

n−1(β, β + 1) · |SNβ−2|.

We prove this using Theorem 9 along with several lemmas. We first reduce the problem to
some Random Matrix Theory computations. To avoid cumbersome notation, let us suppress the
dependence on β and n for the next two statements.

Proposition 12.

|Σ| = |SN−1| · lim
ε→0

P{σ(Q) ≤ ε‖Q‖}
2ε

Proof. Since Σ is an algebraic subset of the sphere SN−1 of codimension one, then its intrinsic
volume is computed by:

|Σ| = lim
ε→0

|USN−1(Σ, ε)|
2ε

,

where USN−1(Σ, ε) is an ε-tube aorund Σ in SN−1 (i.e. the set of points in SN−1 at distance less
than ε from Σ).
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Consider now the functions v(ε) = |USN−1(Σ, ε)| and v̂(ε) = |UG(Z, ε)∩SN−1| (where UG(Z, ε)
is an ε-tube of Z in G). We will prove that these functions have the same derivative at zero.
First notice that if dSN−1(X,Σ) ≤ ε then also dG(X,Z) ≤ ε; hence:

(20) USN−1(Σ, ε) ⊂ UG(Z, ε) ∩ SN−1.

Assume now that dM (X,Z) ≤ ε for X ∈ SN−1. Then the geodesic joining X to Σ is an “arc” on
the sphere and by the triangle inequality dSN−1(X,Σ) ≤ dG(X,Z) + 1− cos(dG(X,Z)) ≤ ε+ ε2

(the last inequality for ε small enough). In particular we get the inclusion:

(21) UG(Z, ε) ∩ SN−1 ⊂ USN−1(Σ, ε+ ε2).

Combining (20) and (21) gives v(ε) ≤ v̂(ε) ≤ v(ε + ε2), which in turn implies limε→0
v(ε)
2ε =

limε→0
v̂(ε)
2ε . In particular this implies that |Σ| is also computed by:

(22) |Σ| = lim
ε→0

|UG(Z, ε) ∩ SN−1|
2ε

.

We apply now Theorem 9 getting that:

UG(Z, ε) ∩ SN−1 = {σ(Q) ≤ ε} ∩ S.

Since the probability distribution on the ensemble G is uniform on the unit sphere, then the
volume of {σ(Q) ≤ ε}∩S equals |SN−1| times the probability of the cone generated by {σ(Q) ≤
ε} ∩ SN−1; in other words:

|UG(Z, ε) ∩ SN−1| = |SN−1| · P{σ(Q) ≤ ε‖Q‖}.
�

In the following, we have the least singular value in mind for the function σ(Q), but we state
the Lemma in more generality.

Lemma 13. Fix N and for Q ∈ RN suppose σ(Q) is a continuous positive function that is
homogeneous of degree one, so σ(Q) = ‖Q‖σ(Q/‖Q‖). Define:

f(ε) = P{σ(Q) ≥ ε} and g(ε) = P{σ(Q) ≥ ε‖Q‖}.
Then,

lim
ε→0

−g′(ε) =
(

lim
ε→0

−f ′(ε)
)
√
2Γ(N2 )

Γ(N−1
2 )

.

Proof. First we establish the equation:

(23) f(ε) =
Vol(SN−1)

(2π)N/2

∫ ∞

0

g(ε/r)rN−1e−
r2

2 dr.

Starting from the definition for f , we have:

f(ε) =
1

(2π)N/2

∫ ∞

0

∫

SN−1

χ{σ(Q)≥ε}r
N−1e−

r2

2 dθdr

=
1

(2π)N/2

∫ ∞

0

∫

SN−1

χ{σ(Q)≥ε}dθ
︸ ︷︷ ︸

Vol(SN−1)g(ε/r)

rN−1e−
r2

2 dr

=
Vol(SN−1)

(2π)N/2

∫ ∞

0

g(ε/r)rN−1e−
r2

2 dr.
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This proves (23). Differentiating (23), we get:

(24) f ′(ε) =
Vol(SN−1)

(2π)N/2

∫ ∞

0

g′(ε/r)rN−2e−
r2

2 dr.

Next we take the limit ε → 0 and apply the dominated convergence theorem. Note that for
each ε, g′(ε/r) as a function of r is continuous and has a limit as ε → 0 and ε → +∞. This
implies that |g′(ε/r)| is uniformly bounded by say M . Thus, for all ε > 0, the integrands in (24)

are all dominated by the integrable function MrN−2e−
r2

2 . This justifies the following:

lim
ε→0

∫ ∞

0

g′(ε/r)rN−2e−
r2

2 dr =

∫ ∞

0

lim
ε→0

g′(ε/r)rN−2e−
r2

2 dr

=

∫ ∞

0

lim
ε→0

g′(ε)rN−2e−
r2

2 dr

= lim
ε→0

g′(ε)
∫ ∞

0

rN−2e−
r2

2 dr.

Applying this while taking the limit ε → 0 in (24) yields the statement in the Lemma:

lim
ε→0

f ′(ε) =
(

lim
ε→0

g′(ε)
) Vol(SN−1)

(2π)N/2

∫ ∞

0

rN−2e−
r2

2 dr

︸ ︷︷ ︸

Γ( N−1
2

)
√

2Γ( N
2

)

=
(

lim
ε→0

g′(ε)
) Γ(N−1

2 )√
2Γ(N2 )

.

�

We are finally in the position to give the proof of Theorem 11, which in fact is just given by
the following chain of equalities:

|Σβ,n| = |SNβ−1| · lim
ε→0

1− P{σ(Q) ≥ ε‖Q‖}
2ε

= |SNβ−1| · lim
ε→0

1− g(ε)

2ε
(by Proposition 12)

= |SNβ−1| · lim
ε→0

−g′(ε)
2

= |SNβ−1|
√
2Γ(

Nβ

2 )

Γ(
Nβ−1

2 )
· 1
2

(

lim
ε→0

−f ′(ε)
)

(by Lemma 13)

= 2n|SNβ−1|
√
2Γ(

Nβ

2 )

Γ(
Nβ−1

2 )
︸ ︷︷ ︸

2n
√
2π|SNβ−2|

Cβ(n)

Cβ(n− 1)
M+

n−1(β, β + 1) (by Theorem 10 and (19)).

Appendix. Asymptotic analysis of Theorem 11

The following lemma is a combination of Prop. 7 and Cor. 3 from [20] and gives the exact
formula for M+

n−1(1, 2) together with its asymptotic behavior.

Lemma 14.

M+
n−1(1, 2) =

1

2

{
2
√
2

π Γ
(
n+1
2

)
for even n,

(−1)m (n−1)!
m!2n−1 + (−1)m−1 4

√
2(n−1)!√

πm!2n−1

∑m−1
k=0 (−1)k Γ(k+3/2)

k! for odd n = 2m+ 1
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Moreover as n goes to infinity (regardless its parity):

M+
n−1(1, 2) ∼

√
2

π
Γ

(
n+ 1

2

)

.

As for the other two cases we have the following lemmas.

Lemma 15.

M+
n−1(2, 3) =

{
1
πΓ
(
n+1
2

)2
for even n,

n
2πΓ

(
n
2

)2
for odd n = 2m+ 1

Moreover as n goes to infinity (regardless its parity):

M+
n−1(2, 3) ∼

1

π
Γ

(
n+ 1

2

)2

.

Proof. We start by recalling the following formula from [31]:

M+
n−1(2, 3) =

1

2

n−1∏

j=1

Γ(3/2 + ⌊j/2⌋)
Γ(1/2 + ⌊j/2⌋) .

Using the identity Γ(z + 1) = zΓ(z) in the above formula with z = 1/2 + ⌊j/2⌋, we can rewrite
it as:

M+
n−1(2, 3) =

1

2

n−1∏

j=1

(
1

2
+

⌊
j

2

⌋)

=
1

2




∏

1 ≤ j ≤ n − 1, j even

j + 1

2



 ·




∏

1 ≤ j ≤ n − 1, j odd

j

2





=
1

2n




∏

2≤k≤n, k odd

k



 ·




∏

1≤k≤n, k odd

k



 =
cn
2n

∏

1≤k≤n, k odd

k2,

where cn = 1 for even n and n for odd ones. Thus if n = 2m is even, we have:

M+
n−1(2, 3) =

1

2n
(2m− 1)!!2

=
22m−n

π
Γ(m+ 1/2)2 =

1

π
Γ

(
n+ 1

2

)2

,

where in the last line we have used the identity Γ(m+1/2) =
√
π (2m−1)!!

2m . In the case n = 2m+1
is odd, recalling the value cn odd = n, have:

M+
n−1(2, 3) = n

1

2n
(1 · 2 · · · (2m− 1))2 = n

Γ(m+ 1/2)2

2π

=
n

2π
Γ
(n

2

)2

.

The asymptotics are a simple application of Stirling’s formula.
�

Lemma 16.

M+
n−1(4, 5) =

4−n+1

π
Γ

(

n+
1

2

)2

2Hn(−1),
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where Hn is a hypergeometric function such that 2Hn(−1) = 1 + o(1) as n → ∞. In particular
as n goes to infinity:

M+
n−1(4, 5) ∼

1

4n−1π
Γ

(

n+
1

2

)2

.

Proof. We start by recalling equation (26.3.10) from [31]:

M+
n−1(4, 5) =

1

22n−1

n−2∏

j=0

Γ(j + 5/2)

Γ(j + 3/2)

n−1∑

k=0

(
n− 1

k

)

(1)k(3/2)n−1−k

=
1

22n−1





n−2∏

j=0

Γ(j + 5/2)

Γ(j + 3/2)



 · 2
π
Γ (n+ 1/2) 2F1

(

1, 1− n,
1

2
− n,−1

)

.

In the above line 2F1 denotes the hypergeometric function; let us set

Hn(−1) = 2F1

(

1, 1− n,
1

2
− n,−1

)

.

With this notation we have:

M+
n−1(4, 5) =

2Hn(−1)√
π22n−1

Γ(n+ 1/2)

n−2∏

j=0

Γ(j + 5/2)

Γ(j + 3/2)

=
2Hn(−1)√
π22n−1

Γ(n+ 1/2)

n−2∏

j=0

(j + 3/2),

where again the last line we have used Γ(z + 1) = zΓ(z) for z = j + 3/2. Recalling also the

identity
∏n−2

j=0 (j + 3/2) = 2
πΓ(n+ 1/2), we finally get:

M+
n−1(4, 5) =

2Hn(−1)

π4n−1
Γ

(

n+
1

2

)2

.

It remains to prove the limit 2Hn(−1) → 1. First we use the Pfaff transformation:

2F1(a, b; c; z) = (1− z)−a · 2F1

(

a, b− c; c;
z

z − 1

)

.

In our case:

2 · 2F1

(

1,−n;−n− 1

2
;−1

)

= 2F1

(

1,−1

2
;−n− 1

2
;
1

2

)

.

Now we use the series definition in terms of the Pockhammer symbol:

2F1

(

1,−1

2
;−n− 1

2
;
1

2

)

=

∞∑

k=0

(−1/2)k
(−n− 1/2)k

(1/2)k.

We need to show that the right hand side → 1. We have

∞∑

k=0

(−1/2)k
(−n− 1/2)k

(1/2)k = 1+
1

4(n+ 1/2)

∞∑

k=1

(1/2)k−1

(−n+ 1/2)k−1
(1/2)k−1.(25)
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We use the rough bound:
∣
∣
∣
∣
∣

∞∑

k=0

(1/2)k
(−n+ 1/2)k

(1/2)k

∣
∣
∣
∣
∣
≤

n∑

k=0

(1/2)k +
1

|(−n+ 1/2)n|

∞∑

k=n+1

(1/2)k
(1/2)k−n

(1/2)k,

≤ 2 +
(1/2)n

|(−n+ 1/2)n|

∞∑

k=n+1

k!

(k − n)!
(1/2)k−n

= 2 +
n!

|(−n+ 1/2)n|
(1/2)n

F (n)(1/2)

n!
,

where

F (z) =
1

1− z
.

We have
F (n)(1/2)/n! = O(1) · 2n.

Applying this along with Stirling’s approximation:

2 +
n!

|(−n+ 1/2)n|
(1/2)n

F (n)(1/2)

n!
= 2 +

n!

|(−n+ 1/2)n|
O(1) = o(n).

This shows that (25) equals 1 + 1
4(n+1/2)o(n) = 1 + o(1), as desired. �

As a corollary we get the following asymptotic for the volume of Σβ,n.

Corollary 17. For each β = 1, 2, 4 we have:

|Σβ,n|
|SNβ−2| ∼

2√
π
n

1
2 .

Remark 4. In our main application of this asymptotic (Thm. 8) we will need, for β = 1, a more
precise error bound:

|Σ1,n|
|SN1−2| =

2√
π
n

1
2 +O(1).

Proof. Recall from Theorem 11 (and the remark below it) that:

|Σβ,n|
|SNβ−2| = 2nβ

nβ−β+1
2

Γ(1 + β/2)

Γ(1 + βn/2)
M+

n−1(β, β + 1).

The result follows applying Stirling’s approximation to the asymptotic for M+
n−1(β, β+1) given

in Lemma 14, 15, 16.
The error bound stated in the Remark follows immediately from the error in Stirling’s ap-

proximation for n even. For n = 2m+ 1 odd, reading the proof of Lemma 14 which was given
in [20, Cor. 3], one can conclude that:

(26) M+
n−1(1, 2) =

(n− 1)!

m!2n−1

(

(−1)m +
4
√
2√
π
Sm

)

,

where

Sm =
1

2

m/2−1
∑

j=0

Γ(2j + 2− 1/2)

Γ(2j + 2)
,

for m even, and

Sm =
Γ(m+ 1/2)

Γ(m)
− 1

2

(m−1)/2−1
∑

j=0

Γ(2j + 2− 1/2)

Γ(2j + 2)
,
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for m odd. Using the asymptotic [34]

Γ(z + a)

Γ(z + b)
= za−b(1 +O(1/z)),

along with an integral estimate for the sum we have (regardless of the parity of m):

Sm =

√
m

2
+O(m−1/2).

Applying this to (26) gives:

M+
n−1(1, 2) =

(n− 1)!

m!2n−1

(

(−1)m +
4
√
2√
π
Sm

)

=

√
2

π
Γ

(
n+ 1

2

)(

1 +O(n−1/2)
)

.

Using Stirling’s approximation for

C1(n)

C1(n− 1)
=

Γ(1 + 1/2)√
2πΓ(1 + n/2)

,

and plugging this into the exact formula gives:

|Σ1,n|
|SN1−2| =

2√
π
n

1
2 (1 +O(n−1/2)).

The asymptotic of Theorem 10 follows again from Lemma 14, Lemma 15 and Lemma 16.

Corollary 18. The following asymptotic holds for the derivative at zero of the gap probability:

f ′
β,n(0) ∼ −2

√
2

π
n1/2.

�
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transcendent Physica D 1 (1980), 80-158.
[27] A. Lerario: Random matrices and the expected topology of quadric hypersurfaces, Proc. Amer. Math. Soc.

143 (2015), 3239-3251.
[28] A. Lerario: Convex pencils of real quadratic forms, Discrete and Computational Geometry 48 (2012), 1025-

1047.
[29] A. Lerario: Complexity of intersection of real quadrics and topology of symmetric determinantal varieties,

J. Eur. Math. Soc., to appear.
[30] A. Lerario, E. Lundberg: Statistics on Hilbert’s Sixteenth Problem, Int. Math. Res. Notices, (2015) 2015

(12): 4293-4321.
[31] M. L. Mehta, Random Matrices, Elsevier, 2004.
[32] M. Nastasescu: The number of ovals of a real plane curve, Senior Thesis, Princeton 2011. Thesis and

Mathematica code available at: http://www.its.caltech.edu/mnastase/Senior_Thesis.html
[33] F. Nazarov, M. Sodin: On the Number of Nodal Domains of Random Spherical Harmonics, Amer. J. Math.

131 (2009), 1337-1357.
[34] F. W. J. Olver, On an asymptotic expansion of a ratio of gamma functions, Proc. Roy. Irish Acad. Sect. A

95 (1995), 5-9.
[35] S. S. Podkorytov: The mean value of the Euler characteristic of an algebraic hypersurface, St, Petersburg

Math. J. 11 (2000), 853-860.
[36] P. Sarnak: Letter to B. Gross and J. Harris on ovals of random plane curves (2011) available at:

http://publications.ias.edu/sarnak/section/515

[37] T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, 2012.
[38] C. A. Tracy, H. Widom: Introduction to Random Matrices, Geometric and Quantum Aspects of Integrable

Systems, Lecture Notes in Physics 424 (1993), 103-130.
[39] V. Vinnikov: Self-adjoint determinantal representations of real plane curves, Mathematische Annalen 296

(1993), 453-479.


