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Abstract

Fluctuation and Correlation Effects in Electrostatics of Highly-Charged

Surfaces

by

Andy Wing-Chi Lau

This work explores the statistical mechanics of counterions associated with

their oppositely charged surfaces, which is relevant to many systems in soft con-

densed matter physics: charged colloids, membranes, and polyelectrolytes immersed

in solutions containing mobile neutralizing counterions. The mean-field treatment

for these systems is the Poisson-Boltzmann (PB) theory, or its linearized version, the

Debye-Hückel theory. Among other results, the mean-field theory predicts repulsion

between two like-charged plates. However, recent experimental and numerical works

suggest that two like-charged objects may attract! After reviewing the main features

of PB theory, we describe an approach which takes charge fluctuations explicitly into

account to improve the mean-field picture and demonstrate that charge-fluctuations

can induce a long-ranged attraction, similar to the van der Waals interaction. We

also analyze the effects of charge fluctuations on the bending properties of a charged

membrane. Furthermore, we argue that fluctuations may induce a novel condensa-

tion phenomenon in an overall neutral system, consisting a single charged plate and

its oppositely charged counterions. Finally, we study the interactions between two

2-dimensional Wigner crystals, which may be the ground state of the counterions

condensed onto charged surfaces. In particular, we show that at low temperatures,

quantum zero-point fluctuations of the plasmon modes (charge-fluctuations) of two

mutually coupled 2D Wigner crystals give rise to a novel long-range attractive force.
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Chapter 1

Introduction

This thesis focuses on the role of the electrostatic interaction in soft con-

densed matter physics. Soft materials are characterized by their ease of response to

external forces and thermal fluctuations[1]. A convenient way to understand this is

to consider an elastic modulus for these systems of building blocks of size L:

G ∼ kBT
L3 , (1.1)

where kBT is a typical energy scale. Thus, “softness” means that G is small and

the building blocks are huge compared to atomic dimensions a: L � a. Thus, in

these systems, quantum effects may often be neglected but thermal fluctuations play

an important role. An especially exciting area of current research is the overlap of

soft matter physics with biology. Indeed, the fundamental building blocks of life –

the plasma membrane, the cytoskeleton, microtubule, DNA, actin molecules – are

all soft materials.

To understand the essential properties of any system, we have to study the

interactions of its constituents. Of all interactions, electrostatics is arguably the most

fundamental for soft systems, and is ubiquitous in biological materials. For example,

DNA is a highly negatively charged polymer in solutions with one electronic charge e

per 1.7Å, and consequently the rich phase behavior of DNA in solutions is governed

1



2 CHAPTER 1. INTRODUCTION

by the competition between electrostatic interaction and entropy.

Usually, the charging of a surface can come about by ionization of sur-

face groups. Recall that the energy it takes to break an ionic bond in vacuum is

about 100 kBT . However, in aqueous solutions, the dielectric constant ε ' 80 is

sufficiently high that the surface groups are ionized by the thermal fluctuations. For

example, some charged membranes made out of polar surfactants carry carboxylic

groups COOH. At room temperature, they dissociate protons (COOH → COO−+

H+) and leave behind a negatively charged surface which is balanced by oppositely

charged mobile counterions, (H+ in this example). In some situations, there may be

additional salt present, e.g. NaCl, KCl, and CaCl2; in practice, even pure water at

room temperature is an ionic solution of 10−7 M of H3O+ and OH− ions, which is

not always negligible. The physical situation that will be considered in this thesis is

the following: Mobile point-like charges (the counterions) in the presence of charged

surfaces, in an overall neutral system, interact with each other via the long-ranged

Coulomb potential

Vij(r) =
eiej

ε|xi − xj |
. (1.2)

To better appreciate its range, let us try to evaluate the free energy density using

the virial expansion for the electrostatic interaction:

f = f0 +
1
2
B2 n2 +

1
3!

B3 n3 + · · · . (1.3)

We find that the second virial coefficient

B2 = kBT
∫

d3r
[

1− e−βVij(r)
]

(1.4)

diverges for both small and large r. Thus, this naive treatment does not work for

electrostatics, and a special treatment has to be employed to deal with electrostatics,

namely the Poisson-Boltzmann theory.

In chapter 2, we formulate the standard mean-field approach, i.e. the

Poisson-Boltzmann (PB) theory. It provides an adequate description for weakly
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charged membranes and charged polymers. Using the PB theory, we analyze the

electrostatic interaction between two charged plates. At higher charge densities,

however, the PB theory is no longer valid, because it neglects correlation effects.

Indeed, there is experimental[2] and numerical[3] evidence that two highly charged

macroions may attract each other in solutions, while the mean-field theory predicts

that they should never attract!

In Chapter 3, we present an approach to improve on the mean field picture.

Essentially, for a highly charged plate, the counterions become condensed onto the

surface[4], forming a quasi-two-dimensional gas interacting with a 1/r potential – a

“salty” surface. By incorporating the in-plane fluctuations of the “condensed” coun-

terions, we show that this leads to a long-ranged attractive force which scales as d−3

for large distances d between two planar surfaces[5]. Using similar ideas, we compute

the renormalization of the bending constants of a charge-fluctuating membrane. The

result helps to explain the spontaneous formation of vesicles composed of anionic and

cationic surfactants, observed in experiments. Furthermore, in Chapter 4, we argue

that the mean-field (PB) solution for a single charged plate is unstable against the

condensation of counterions driven by fluctuations. Using a “two-fluid” model, in

which the counterions are divided into a “free” and a “condensed” fraction, we show

a finite fraction of counterions is “condensed” onto the charged plate via a variational

approach.

At sufficiently low temperatures, the “condensed” counterions crystallize to

form a 2-D hexagonal lattice (a Wigner crystal). The classical force per unit area

between two staggered planar Wigner crystals at distance d apart can be computed to

give a short-range attraction. These correlation effects have been studied by Rouzina

and Bloomfield[6]. However, their treatment does not include fluctuations, which

are expected to give rise to yet stronger correlation effects at low temperatures. In

Chapter 5, we include the zero-point fluctuations of the counterions to this problem

and find a long-ranged attractive interaction. Surprisingly, rather than a force with

the usual Casimir-like distance dependence (d−4), this attractive interaction, which
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owes its existence to the plasmons on two correlated planar Wigner crystals, scales as

d− 7/2 for large separations. Furthermore, we analyze the temperature dependence of

this fluctuation-induced force and of the short-ranged force, arising from structural

correlations. These results provide insight to the nature of counterion-mediated

attractions between like-charged macroions, which are believed to play a major role

in DNA condensation.
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Chapter 2

The Poisson-Boltzmann Theory

2.1 Introduction

The standard Poisson-Boltzmann equation encapsulates a mean-field ap-

proach to the many-body problem of mobile ions in aqueous solutions containing

charged surfaces[1, 2]. It may be derived heuristically as follows. Suppose that the

charged system generates a local electric field E(x) = −∇ϕ(x), which causes the

mobile ions of species i of charge Zie to move, and thus gives rise to a current Ji
e. In

a linear response theory, Ji
e must be proportional to the “external” force

Ji
e = − Zie

ζ
ci∇ϕ, (2.1)

where ci(x) is the mobile ion density and ζ is the friction coefficient; this is just

Ohm’s law. In addition, the diffusion of the charged particle in the presence of a

concentration gradient is described by Fick’s law:

Ji
D = − kBT

ζ
∇ci, (2.2)

where the diffusion constant D = kBT/ζ is the Einstein relation. Thus, the total

current of the charged particles of species i is

Ji
tot = − 1

ζ
(kBT ∇ci + Zieci∇ϕ)

7



8 CHAPTER 2. THE POISSON-BOLTZMANN THEORY

= − ci

ζ
∇ [kBT ln(ci/c0i) + Zieϕ] . (2.3)

Since the total current must be zero at thermal equilibrium, we have the standard

result that the density of charged particles must be Boltzmann weighted:

ci(x) = c0i e−Zieϕ(x)/kBT . (2.4)

Note that the constant c0i can be defined through the zero of the potential ϕ(x).

Now we need another equation to relate the total charge density in the solutions

ρ(x) and the electric potential ϕ(x) self-consistently. This is provided by the Poisson

equation:

∇2ϕ(x) = −4π
ε

ρ(x). (2.5)

The total charge density is comprised of the mobile ions and external fixed charges:

ρ(x) =
∑

i

Zieci(x) + ρext(x). (2.6)

Combining Equations (2.5) and (2.4), we obtain a self-consistent equation for the

potential ϕ:

∇2ϕ(x) +
∑

i

4πZiec0i

ε
e−Zieϕ(x)/kBT = −4π

ε
ρext(x). (2.7)

This is known as the Poisson-Boltzmann (PB) equation. Its solutions describe the

electrostatic potential and counterion density in space, where the boundary condi-

tions are determined by the external charges or alternatively, by the charge neutrality

condition
∫

d3x ρ(x) = 0. (2.8)

We note that the PB equation is a nonlinear equation, and thus it is difficult to solve

in general. In fact, exact solutions are known only in special cases, e.g. with planar

and cylindrical symmetries.
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2.1.1 Relevant Scales and Dimensionless Parameters

Before solving the mean-field PB equation for different geometries, we dis-

cuss various dimensionless parameters and physical scales in the theory. Multiplying

the PB equation by e/kBT and rescaling the potential ϕ → eϕ/kBT , we obtain

∇2ϕ(x) +
∑

i

4πlBZic0i e−Ziϕ(x) = −4πlB [ρext(x)/e]. (2.9)

The length defined by

lB =
e2

εkBT
(2.10)

is the Bjerrum length, at which the electrostatic potential energy of a pair of charges

equals their thermal energies. In other words, if two oppositely charged particles

with magnitude e are separated by a distance r, they are “bound” if r < lB and

ionized if r > lB (by thermal fluctuations). In a solution of dielectric constant ε = 80

(H2O) at room temperature, lB ' 7 Å.

In an electrolyte solution in which there is an equal number of positively

and negatively charged particles of valence Z in the absence of any external fixed

charges, the PB equation reduces to

−∇2ϕ(x) + 8πlBZcs sinhZϕ(x) = 0, (2.11)

where cs is the bulk ion density. The solution to this equation is trivial: ϕ(x) = 0,

since the mean electric field vanishes in an overall neutral system of two uniform and

independent charge distributions of opposite sign. To capture correlations, we single

out a positive charged particle fixed at x′ and consider the electrostatic potential at

x by linearizing Eq. (2.11)

[

−∇2
x + κ2

s

]

G(x,x′) = 4πZ2lBδ(x− x′), (2.12)

where κ2
s = 8πlBZ2cs. This is the Debye-Hückel equation. It is important to note

that although we have derived Eq. (2.12) from linearizing the PB equation, G(x,x′)

should be regarded as a fluctuating potential at point x generated by the test charge
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in the presence of fluctuating charges around it. Therefore, G(x,x′) is actually the

Green’s function which contains information about the correlations of the system. It

can also be interpreted as the electrostatic interaction between two Ze test charges

located at x and x′ in the presence of the fluctuating ions in the bulk. (Note that in

the limit cs → 0, G(x,x′) reduces to the usual Coulomb’s interaction.) The solution

to Eq. (2.12), which decays to zero as r →∞, is given by the Yukawa potential

G(x,x′) =
4πZ2lB
|x− x′|

e−κs |x−x′|, (2.13)

with decay length κ−1
s . Hence, this test charge is screened by the induced charges

which surround it. The screening length κ−1
s associated with this property is

κ−1
s =

(

8πlBZ2cs

)− 1
2 , (2.14)

which plays an important role in the classic work of Debye and Hückel[3]. Physically,

due to accumulation of oppositely charged particles (an ion cloud) near the test

charge, the magnitude of its charge is screened and the potential decays exponentially

with distance. For 1 mM of monovalent salt κ−1
s ∼ 100 Å.

The modification of the self-energy (correlation energy) of a particle of

charge e, when it is brought into an electrolyte solution (assuming monovalent, for

simplicity), is given by half the difference between the Yukawa potential and Coulomb

potential in the limit of zero separation:

βVs =
lB
2

lim
r→0

[

e−κsr

r
− 1

r

]

= − lBκs

2
. (2.15)

Each particle in an electrolyte contributes this correction to the thermodynamic

internal energy, and thus the change in the internal energy density is

β∆u = −2cs
lBκs

2
= −κ3

s

8π
. (2.16)

Using the standard thermodynamic identity

∆u =
∂
∂β

[β∆fs] (2.17)
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with the condition that ∆fs → 0 as T →∞, we obtain the electrostatic contribution

to the free energy:

∆fs = − kBT
κ3

s

12π
. (2.18)

This is the well-known result obtained by Debye and Hückel[3, 4]. Note that its

dependence on density is f ∼ c3/2
s , which differs from the c2 dependence in the usual

virial expansion for short-ranged interactions.

Similar to the virial expansion, the Debye-Hückel theory is valid as long

as the kinetic energy is much greater than the interaction energy among particles.

Defining a dimensionless parameter by the ratio of the potential to kinetic energy:

Γ ≡ lB
a0

= lB c1/3
s , (2.19)

where a0 = c−1/3
s is the mean inter-particle separation, we expect that Debye-Hückel

theory is valid if Γ � 1. Alternatively, we note that the parameter defined by

g = κs lB ∼ Γ3/2 (2.20)

is inversely proportional to the number of particles Nκs contained within the “Debye”

sphere, i.e. whose radius equals the screening length:

Nκs ∼ κ−3
s cs ∼

1
g
. (2.21)

Hence the weak coupling condition g � 1 is equivalent to the requirement that

the number of charges within the screening volume be large, although Γ � 1 indi-

cates that charges must be dilute. In this case, the Debye-Hückel theory captures

correlation effects to the leading order and perturbation theory is a controlled ap-

proximation.

In the vicinity of a charged surface with charge density σ, a neutralizing

counterion (assuming monovalent) in the solution experiences an (unscreened) elec-

trostatic attractive force of magnitude 2πlB(σ/e) kBT . The Gouy-Chapman length

at which the thermal energy balances the electrostatic energy is given by[5]

λ =
e

πlBσ
. (2.22)
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It defines a layer within which most of the counterions are confined. For a moderate

charge density of σ/e ∼ 1/100 Å−2, λ is of the order of a few angstroms. To estimate

the validity of PB theory for charged surfaces, we note the counterions may be

considered as an ideal gas with density n ∼ σ/(eλ). This implies that κ2
s ∼ nlB ∼

1/λ2, and so g ∼ lB/λ. Thus, we expect that the PB theory is good when lB/λ � 1.

Note that this condition is not satisfied for highly charged surfaces.

2.2 Derivation of the Poisson-Boltzmann Equation

In this section, we derive a functional integral representation of the grand

canonical partition function for a system of interacting mobile charges in the pres-

ence of an external charged surface. To understand what “mean-field” means, we

rigorously derive the Poisson-Boltzmann equation as a saddle-point equation to an

exact field theory. For simplicity, we only consider a system of N point-like particles

of charge −Ze and a fixed external charge density σ(x) = en(x) at surfaces. The

energy for this system is

βEN = Z2lB
N

∑

j>k

1
| xj − xk |

−
N

∑

j=1

φ(xj), (2.23)

where φ(x) = ZlB
∫

d3x′ n(x′)
|x−x′| is the “external” field. The partition function for this

system is

ZN [φ] =
1

N !

N
∏

k=1

∫ d3xk

a3 exp (−βEN ), (2.24)

where a is the molecular size of the counterions. To map the partition function

Eq. (2.24) into a field theory, we perform the well-known Hubbard-Stratonovich

transformation[6], which is just a Gaussian identity for N variables:

e−
1
2

∑

j,k yj A−1
jk yk =

∏N
j=1

∫∞
−∞ dxj e−

1
2

∑

jk xj Ajk xk+i
∑

j xj yj

∏N
j=1

∫∞
−∞ dxj e−

1
2

∑

jk xj Ajk xk
. (2.25)
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First noting that
1

| xj − xk |
=

∫ d3q
(2π)3

4π
q2 e−iq·(xj−xk), (2.26)

the first term in Eq. (2.23) can be written as

Z2lB
N

∑

j>k

1
| xj − xk |

=
N

∑

j>k

∫ d3q
(2π)3

4πZ2lB
q2 e−iq·(xj−xk)

=
∫ d3q

(2π)3
4πZ2lB

q2





1
2

∑

jk

e−iq·(xj−xk) − N
2





= −NV0 +
1
2

∫ d3q
(2π)3

c(q)V (q)c(−q), (2.27)

where c(q) =
∑N

i eiq·xi , V (q) = 4πZ2lB
q2 , and V0 =

∫ d3q
(2π)3

4πZ2lB
2q2 . Using the

Hubbard-Stratonovich transformation Eq. (2.25) to obtain

e
− 1

2

∫

d3q
(2π)3

c(q) V (q) c(−q)
= N0

∏

q

∫

dψ(q)

{

e
− 1

2

∫

d3q
(2π)3

ψ(q)V −1(q)ψ(−q)

× e
+ i

∫

d3q
(2π)3

c(q) ψ(−q)
}

, (2.28)

where N0 = [det(V −1)]−1/2, and noting that the second term in the exponential is

∫ d3q
(2π)3

c(q) ψ(−q) =
N

∑

j=1

∫ d3q
(2π)3

eiq·xj ψ(−q) =
N

∑

j=1

ψ(xj), (2.29)

the partition function Eq. (2.24) can be cast into

ZN [φ] = N0
1

N !

N
∏

j=1

∫ d3xj

a3

∏

q

∫

dψ(q)×

e
− 1

2

∫

d3q
(2π)3

ψ(q)V −1(q)ψ(−q)+ i
∑N

k=1 ψ(xk)+
∑N

k=1 φ(xk)+NV0

= N0
1

N !

∏

q

∫

dψ(q)







e
− 1

2

∫

d3q
(2π)3

ψ(q)V −1(q)ψ(−q)

×
[

∫ d3x
a3 eiψ(x)+V0+φ(x)

]N






. (2.30)
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In the grand canonical ensemble, a chemical potential µ is introduced:

Zµ[φ] =
∞
∑

N=0

[eµ]N ZN [φ] (2.31)

= N0
∏

q

∫

dψ(q) e
− 1

2

∫

d3q
(2π)3

ψ(q)V −1(q)ψ(−q)+
∫

d3x
a3 eiψ(x)+φ(x)+V0+µ

.

The first term in the exponential can be further simplified by noting that

1
2

∫ d3q
(2π)3

ψ(q)V −1(q)ψ(−q) =
1
2

∫ d3q
(2π)3

ψ(q)
q2

4πZ2lB
ψ(−q)

=
1

8πZ2lB

∫

d3xψ(x) [−∇2]ψ(x). (2.32)

Therefore, we obtain a functional representation [7] for the grand partition function

with the action S[ψ, φ]:

Zµ[φ] = N0

∫

Dψ e−S[ψ,φ], (2.33)

S[ψ, φ] =
1
`B

∫

d3x
{

1
2

ψ(x) [−∇2] ψ(x)− κ2eiψ(x)+φ(x)
}

, (2.34)

where `B = 4πlBZ2, κ2 = c0`B, and c0 = eµ+V0

a3 .

Now, we show that the saddle-point for the action S, i.e. δS
δψ(x) = 0, cor-

responds to the mean-field Poisson-Boltzmann equation. Using the Euler-Lagrange

equation, we have

∇2ψ0(x) + iκ2eiψ0(x)+φ(x) = 0. (2.35)

Defining ϕ(x) = −iψ0(x)− φ(x), Eq. (2.35) becomes

∇2ϕ(x) + κ2e−ϕ(x) = −∇2φ(x)

=
`B

Z
n(x). (2.36)

This is the Poisson-Boltzmann equation, which has been obtained in Sec. 2.1, based

on physical arguments. It is also interesting to note that the Poisson equation

∇2〈iψ(x)〉 = `B 〈c(x)〉 (2.37)
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with the (mean) counterion distribution

〈c(x)〉 =
1

ZlB

δ lnZλ[φ]
δφ(x)

= c0

〈

eiψ(x)+φ(x)
〉

, (2.38)

follows exactly from the fact that the functional integral of a total derivative must

vanish,
〈

δS
δψ(x)

〉

= 0:

∇2〈iψ(x)〉 = κ2
〈

eiψ(x)+φ(x)
〉

. (2.39)

2.3 Electrostatics of Charged Surfaces

In this section, we solve the PB equation for planar geometries – systems

of charged planes with their neutralizing counterions – to illustrate some physical

aspects of the many-body problem of charged particles within a mean-field approach.

Consider an infinite array of parallel uniformly charged planes immersed

in an aqueous solution containing only counterions. Due to in-plane translational

invariance, the PB equation for these problems is essentially one dimensional and

thus the normalized electrostatic potential ϕ(x) and counterion density c(x) depend

only on the axis perpendicular to the charged planes – say z. With this in mind, the

PB equation can be written as

d2ϕ(z)
dz2 + κ2e−ϕ(z) =

`B

Z
n(z). (2.40)

In the region where the external charge density n(z) is zero, the homogeneous PB

equation
d2ϕ(z)

dz2 + κ2e−ϕ(z) = 0 (2.41)

can be solved exactly by the “energy” method. Multiplying both sides by dϕ
dz and

integrating, we obtain a constant of “motion”

E =
1
2

(

dϕ
dz

)2
− κ2e−ϕ(z). (2.42)

The solution to the PB equation can now be obtained by solving the following integral

z − z′ = ±
∫ ϕ

ϕ′

dϕ
√

2(E + κ2e−ϕ)
. (2.43)
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z

σ

Figure 2.1: A schematic picture of a single charged plane immersed in an aqueous
solution containing counterions. The Gouy-Chapman length λ is defined in Eq.
(2.50)

It turns out that depending on whether E > 0, E = 0, or E < 0, the solutions given

by

ϕ(z) =



























ln
[

κ2

E sinh2
√

E
2 (z − z′)

]

if E > 0,

ln κ2

2 (z − z′) if E = 0,

ln
[

κ2

|E| cos2
√

|E|
2 (z − z′)

]

if E < 0.

(2.44)

correspond to different boundary conditions as imposed by the external charge den-

sity n(z). In addition, using Eq. (2.38), the counterions distribute in space according

to

c(z) = c0 e−ϕ(z), (2.45)

at the mean-field level. In the following subsections, we will discuss a few specific

physical situations to which these solutions apply.
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2.3.1 A Single Charged Plate

For a single charged plane located at z = 0, i.e. n(z) = n0δ(z) = (σ/e) δ(z),

immersed in an aqueous solution containing only counterions (see Fig. 2.1), the

boundary condition is obtained by integrating the PB equation (2.40) over z in the

range −ε < z < ε and taking the limit ε → 0:

dϕ(z)
dz

∣

∣

∣

∣

z=0
=

σ`B

2Ze
. (2.46)

Since the counterion density must vanish at infinity, i.e. ρ(z) → 0 as |z| → ∞, we

must choose the E = 0 solution given in Eq. (2.44). When normalized, i.e. ϕ(0) = 0,

the electrostatic potential can be written as

ϕ(z) = 2 ln
(

1 +
κ|z|√

2

)

. (2.47)

Matching the derivative of this solution at the boundary, Eq. (2.46) leads to

κ =
σ`B

2
√

2 Ze
. (2.48)

With this constant determined, the solution to this problem is uniquely specified by σ.

Note that due to the screening of the counterions, the potential ϕ(z) is logarithmically

divergent as |z| → ∞, in contrast to the linear divergence for a single charged plane

without counterions. Furthermore, the counterion distribution

c(z) =
c0

(

1 + κ|z|√
2

)2 =
2

`B (|z|+ λ)2
(2.49)

decays to zero algebraically, instead of the exponential decay naively expected for an

ideal gas in an external field. As noted in Sec. 2.1.1, there is a characteristic length

given by

λ ≡
√

2
κ

=
4Ze
`Bσ

=
e

πlBZσ
, (2.50)

in the counterion distribution. This Gouy-Chapman length defines a sheath near the

charged surface within which most of the counterions are confined. Typically, it is
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on the order of a few angstroms for a moderate charge density of σ ∼ e/100 Å−2

and monovalent counterions. Note that since λ scales inversely with σ and linearly

with T , at sufficiently high densities or low temperature, the counterion distribution

is essentially 2-dimensional.

The (mean-field) free energy per unit area of this counterion gas may be

estimated by noting that they form an ideal gas with a 3D density c ∼ n0/(Zλ),

which is confined to a slab of thickness λ

βf0 ' c ln[c a3] λ =
n0

Z
ln

(

n0 a3

Zλ

)

. (2.51)

To compute the free energy rigorously, we return to the field theory formulation of

this problem presented in Sec. 2.2. Let us start with the zero-loop effective action,

which is the action S[ψ, φ] in Eq. (2.34) evaluated at the saddle point solution ψ0(x)

S0[φ] = − 1
`B

∫

d3x
{

1
2

iψ0(x) [−∇2] iψ0(x) + κ2eiψ0(x)+φ(x)
}

, (2.52)

where iψ0(x) is related to the PB solution by ϕ(x) = −iψ0(x) − φ(x). Note that

although S0[φ] expressed in terms of iψ0(x), S0[φ] is actually independent of iψ0(x)

because it satisfies the saddle point equation (2.35). In terms of ϕ(x) and the mean

field counterion distribution c(x) in Eq. (2.49) for the one plate problem, S0[φ] can

be rewritten as

S0[φ] = −1
2

∫

d3xφ(x) c(x)− 1
2

∫

d3x [ϕ(x) c(x) + 2c(x) ] . (2.53)

Using the Legendre transformation:

Ω0[c(x)] = S0[φ] +
∫

d3xφ(x) c(x), (2.54)

we obtain the Grand potential for the counterions

Ω[c(x)] =
1
2

∫

d3xφ(x) c(x)− 1
2

∫

d3x [ϕ(x)c(x) + 2c(x)] , (2.55)

and the Helmholtz free energy is related to the Grand potential Ω[c(x)] by another

Legendre transformation involving the chemical potential:

βF0 = Ω0[c(x)] + µ
∫

d3x c(x). (2.56)
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Using the fact that
∫ ∞

−∞
dz ϕ(z)c(z) =

2n0

Z
, (2.57)

and the chemical potential µ can be solved from its definition

eµ+V0

a3 =
κ2

`B
→ µ = −V0 + ln

(

n0a3

2Zλ

)

, (2.58)

where V0 is the (infinite) self-energy, the free energy per unit area is

βf0 = −n0V0

Z
+

n0

Z
ln

(

n0 a3

2Zλ

)

− 2n0

Z
+

1
2

∫

dz φ(z) c(z). (2.59)

Now solving for the external field φ(x)

∇2φ = −n0`B

Z
δ(z) → φ(z) = U0 −

n0`B

2Z
|z|, (2.60)

where U0 is an arbitrary constant and evaluating
∫ ∞

−∞
dz φ(z) ρ0(z) =

n0

Z
U0 −

2n0

Z

∫ ∞

0
dx

x
(1 + x)2

=
2n0

Z
+

n0

Z

[

U0 −
∫ ∞

1
dx

2
x

]

,

we note that the second term in the parentheses is logarithmic divergent, which can

be canceled by the arbitrary constant U0. Putting these results together, the free

energy per unit area is

βf0 = −n0

Z
V0 +

n0

Z
ln

(

n0 a3

2Zλ

)

− n0

Z
. (2.61)

Apart from the infinite self-energy term, which will be canceled below in Chapter 4,

when we consider fluctuation corrections to the PB solution, Eq. (2.61) agrees with

Eq. (2.51) above and indeed has the form of the free energy of an ideal gas. Note

that λ in the logarithm indicates the effect of mutual interaction of the counterions.

2.3.2 Electrostatic Interaction between Two Charged Plates

In this section, we shall use the PB equation to derive the electrostatic

potential, counterion distribution and the pressure between two charged plates as



20 CHAPTER 2. THE POISSON-BOLTZMANN THEORY

BAσ σ

d

Figure 2.2: A schematic picture of neutralizing counterions confined between two
charged plates.

illustrated in Fig. 2.2. We treat both cases of similarly charged and oppositely

charged plates[8].

Following Ref. [2], we derive a general expression for the pressure associated

with counterions confined between two charged plates. The pressure is defined by

the variation of the free energy with respect to the inter-layer distance d:

P (d) = − 1
A0

∂F
∂d

, (2.62)

where A0 is the area of the plane and F is the Helmholtz free energy given by

βF =
∫

d3x c(x)
[

ln c(x)a3 − 1
]

+
1

2`B

∫

d3x [∇ϕ(x)]2, (2.63)

where a is the ionic size of the charges, the first term is the entropy of the counterions,

and the second is the electrostatic energy of the system. Defining a normalized

electric field

E = −dϕ
dz

(2.64)
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and using Eq. (2.40), the counterions density c(z) can be rewritten as

c(z) =
1
`B

dE
dz

(2.65)

in the region where n(z) = 0. Note that the boundary conditions for E are inde-

pendent of d. Therefore, rescaling ξ = z/d, the free energy can be re-expressed

as

βF/A0 =
1
`B

∫ 1

0
dξ

{

dE
dξ

[

ln

(

dE
dξ

a3

`Bd

)

− 1

]

+
E2

2
d

}

. (2.66)

Using Eqs. (2.62) and (2.42), we find

P (d) = −kBT
`B

∫ 1

0
dξ

(

E2

2
− 1

d
dE
dξ

)

= −kBT
`B

E. (2.67)

We arrive at a simple result that the pressure is proportional to −E; hence, the

solutions obtained in Eqs. (2.44) for E > 0 and E < 0 describe, respectively, two

plates attracting and repelling each other. We may have anticipated this result since

E in Eq. (2.42),

E =
1
2

(

dϕ
dz

)2
− κ2e−ϕ(z),

can be interpreted physically as the difference of the electrostatic stress and the

thermal pressure of the counterions (∼ c(z) kBT ), and hence the resulting pressure

between two plates.

The boundary conditions for two charged planes with surface charge densi-

ties σA at z = 0 and σB at z = d as shown in Fig. 2.2 are

dϕ(z)
dz

∣

∣

∣

∣

z=0
=

σA`B

Ze
and

dϕ(z)
dz

∣

∣

∣

∣

z=d
= −σB`B

Ze
. (2.68)

First, we consider the case E ≥ 0; using Eq. (2.44) and the boundary conditions, we

obtain
√

E
2

coth

√

E
2

z′ = −σA `B

2Ze
, (2.69)

√

E
2

coth

√

E
2

(d− z′) = −σB `B

2Ze
. (2.70)



22 CHAPTER 2. THE POISSON-BOLTZMANN THEORY

0 202d/λ
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−0.5

0

0.5

1

γ

repulsive (E<0)

attractive (E>0)

Figure 2.3: The phase diagram of two charged plates. The solid line represents d∗ in
Eq. (2.73). γ = σB/σA.

Using a standard identity to expand the left-hand side of the latter equation, we find

that E satisfies a transcendental equation:

E = −1
2
σA σB

(

`B

Ze

)2
− `B(σA + σB)

Ze

√

E
2

coth

√

E
2

d. (2.71)

Similarly, for E < 0 we find

|E| = 1
2
σA σB

(

`B

Ze

)2
+

`B(σA + σB)
Ze

√

|E|
2

cot

√

|E|
2

d. (2.72)

Interestingly, the E = 0 solution, in which the pressure between plates is zero, can

be achieved at the equilibrium distance d∗ as determined by the E → 0 limit of Eq.

(2.71):

d∗ = −2Ze
`B

(

1
σA

+
1

σB

)

. (2.73)
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The phase diagram depicted in Fig. 2.3 summarizes the physical picture

of the PB theory for the two plates problem. For large separations, d > d∗, the

counterions is dilute and the electrostatic attraction dominates1. On the other hand,

when the separation is small d < d∗, the counterions are dense and thermal pressure

dominates. When d = d∗, electrostatic and thermal pressure balance out, leaving

zero net pressure.

It is clear from Eq. (2.73) or from Fig. 2.3 that zero pressure can be achieved

only when σB/σA < 0, i.e. two plates are oppositely charged. As a corollary of this

observation, PB theory predicts that two similarly charged plates never attract! This

conclusion is general and has been proven within PB theory rather rigorously for

other geometries as well[9]. To obtain quantitatively the repulsive pressure between

similarly charged plates, we restrict ourselves to the case of σA = σB = σ. In this

limit, Eq. (2.72) simplifies to
√

|E|
2

d
2

tan

√

|E|
2

d
2

=
d
λ

. (2.74)

Let us first consider the large distance limit, d � λ, and note that
√

|E|
2

d
2 approaches

to a limiting value of π
2 or E = −2π2

d2 . Using Eq. (2.67), we obtain P (d) = π
2Z2

kBT
lBd2 .

In the opposite short distance limit, d � λ, we expand the tangent to obtain E =

−8/(λd); Hence, P (d) = 2
πZ2

kBT
lBλ d . Therefore, we obtain the following regimes for

the mean-field repulsion between two similarly charged plates:

P (d) ∼







kBT/lBd2, for d � λ,

kBT/(lBλ d), for d � λ.
(2.75)

In Fig. 2.4, we plot the pressure as a function of d by solving Eq. (2.74) numerically.

To understand the results from PB theory physically, we first note that the pressure

is independent of the electrostatic field in between the two charged surfaces, as a

consequence of the fact that there would be no electric field in this region if there
1Note that in this regime, the two plates are oppositely charged since σB/σA < 0 in order to

satisfy Eq. (2.71).
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Figure 2.4: The mean-field repulsive pressure as a function of d; P0 ≡ 2σkBT
Zeλ . Inset:

a plot of the counterion distribution for d/λ = 2.5, where cν ≡ 2σ/(Zeλ).

were no counterions between them – the field emanating from one surface is canceled

exactly by the other. The spatial non-uniformity in the counterion distribution

(see the inset in Fig. 2.4) stems from their mutual repulsion and their entropy of

mixing. Furthermore, the surface charge density σ only determines the total number

of counterions in the gap by charge neutrality. Thus, the pressure is simply the ideal

gas pressure of the counterions. Indeed, since the symmetry of the problem dictates

that the electric field must be zero at the mid-plane, the pressure is proportional to

the counterion density at z = d/2:

P (d) = kBT c(d/2). (2.76)

This observation helps to understand physically the distance dependence of the

mean-field pressure in Eq. (2.75). For small distance d � λ, the counterions dis-
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tribute uniformly in the gap; thus, c(d/2) ∼ σ/(Zed), implying P (d) ∼ d−1. For

large distance d � λ, the counterion concentration at midplane can be viewed as a

single plate density with z replaced by d in Eq. (2.49): c(d/2) ∼ σλ/(Zed2), imply-

ing P (d) ∼ d−2. Finally, we remark that since P ∼ 1/Z, the mean-field repulsions

for higher valence Z are reduced in magnitude, due to the collective behavior of the

counterions.

2.3.3 Manning Condensation

In this section, we solve the PB equation with cylindrical symmetry. As it

turns out, this symmetry gives rise to an interesting phenomenon, namely, Manning

condensation. It is associated with the counterion distribution of a highly charged

rigid polyelectrolyte[10]. Intuitively, it can be essentially understood as follows. Con-

sider an infinite charged rod with a radius R and counterions distributed outside the

rod, r > R (r is the radial distance), which is depicted in Fig. 2.5. The electrostatic

potential arising from the charged rod with a linear charge density of 1/b is

φ(r) =
2lB
b

ln(r/R), (2.77)

and the counterion density can be estimated by using the Boltzmann distribution:

n(r) ∼ e−φ(r). (2.78)

Now, consider the number of counterions contained in a cylindrical shell of radius

R0:

Q(R0) = 2π
∫ R0

R
rdr n(r) ∼

∫ R0

R
drr1−2ξm ∼ r2 (1−ξm)

∣

∣

∣

R0

R
, (2.79)

where we have defined ξm ≡ lB/b, the Manning parameter. There are two distinct

asymptotic behaviors of Q(R0) in the limit R0 → ∞. If ξm < 1, Q(R0) grows

with R0 and counterions escape to infinity. On the other hand, if ξm > 1, Q(R0) is

independent of R0 in the limit R0 →∞, and therefore, counterions are bound. This

phenomenon is called Manning condensation.
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Figure 2.5: A schematic picture of a single infinite charged rod with a surface charged
density σ immersed in an aqueous solution containing counterions. Its radius is R

To obtain the behavior of the electrostatic potential and counterion density,

we need to solve PB equation in cylindrical coordinates,

d2ϕ(r)
dr2 +

1
r

dϕ(r)
dr

+ κ2e−ϕ(r) =
`Bσ
Ze

δ(r −R). (2.80)

This equation belongs to a general class of solvable partial differential equations

known as Liouville’s equation. In connection to the present problem, its solution was

first obtained by Fuoss et al.[11]. Making a change of variable

x = R ln(r/R), (2.81)

for r > R, Eq. (2.80) can be written as

d2ϕ(x)
dx2 + κ2e−ϕ(x)+2x/R = 0. (2.82)

It can be seen that the shifted potential ϕ̃(x) = ϕ(x)−2x/R satisfies the planar PB
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equation in Eq. (2.40), but with a slightly different boundary condition

dϕ̃(x)
dx

∣

∣

∣

∣

x=0
=

`Bσ
Ze

− 2
R

. (2.83)

Since the counterion density must vanishes at r →∞, we choose the E = 0 solution,

just as in the case of a single charged plane:

ϕ̃(x) = 2 ln
(

1 +
κ x√

2

)

. (2.84)

Matching the boundary condition yields

κ =
1√
2

(

`Bσ
Ze

− 2
R

)

, (2.85)

which is, however, fundamentally different from the planar case. If the charge density

σ is sufficiently low, in other words

`BRσ
Ze

< 2, (2.86)

so that κ < 0, the solution (2.84) clearly makes no sense.

In this case, we have to make a new assumption that κ = 0 in the cylindrical

PB equation (2.80), as if there were no counterions, to obtain the bare logarithmic

potential

ϕ(r) = 2 ξm ln(r/R), (2.87)

where we have defined the Manning parameter

ξm ≡ `BRσ
2Ze

=
ZlB
b

(2.88)

and b is the average distance between charges (or inverse of the linear charge density).

Therefore, the full solution for the charged rod problem is

ϕ(r) =







2 ξm ln(r/R), for ξm ≤ 1,

2 ln(r/R) + 2 ln {1 + (ξm − 1) ln(r/R)} for ξm > 1.
(2.89)

We note that when ξm > 1, the electrostatic potential for r � R behaves like

ϕ(r) ∼ 2 ln(r/R), (2.90)
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Figure 2.6: Counterion distribution for a single charged rod. Inset: Effective Man-
ning parameter ξeff.

which is essentially independent of the charge density. Thus, in this case, some of

the counterions are loosely “bound” to the rod, partially neutralizing its charge, so

that the effective distance between charges b∗ is of the order of the Bjerrum length

lB, independent of the bare value of b. Defining the effective Manning parameter by

ξeff =







ξm for ξm ≤ 1;

1 for ξm > 1,
(2.91)

as plotted in the inset of Fig. 2.6, the large distance behavior of the electrostatic

potential can be conveniently expressed by

ϕ(r) ∼ 2 ξeff ln(r/R). (2.92)

Finally, The counterion distribution for ξm > 1 can be obtained by applying Eq.
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(2.45). This result is

c(r) =
2

`B r2
(ξm − 1)2

[1 + (ξm − 1) ln(r/R)]2
, (2.93)

as shown in Fig. 2.6 for ξm = 2. We note that c(r) is independent of ξm for large r.

In contrast, for ξm < 1 all the counterions are at infinity since c0 = 0, as assumed

earlier.

2.4 Electrostatic Contribution to Bending Rigidity

As a final application of PB theory, we shall briefly discuss the electrostatic

contribution to the elastic constants of a stack of charged membranes[12]. This sit-

uation arises from charged surfactants dissolved in water. Under suitable conditions

they form lamellar phases, consisting of a stack of alternating amphiphilic bilayers

and water regions[1, 2]. The curvature elasticity of these flexible membranes are well

described by the Helfrich free energy[13]

fcur =
κb

2
(H − H0)2 + κG K,

where H and K are the mean and Gaussian curvature, respectively, κb is the bending

modulus, κG is the Gaussian bending modulus, and H0 is the spontaneous curvature.

As summarized in the Appendix, the electrostatic contribution to the bending moduli

κb and κG can be identified by expanding the electrostatic free energy up to the

second order in curvatures H and K and comparing with the Helfrich free energy

of the same geometry. In order to calculate the changes in the free energy of these

charged layers, the PB equation for curved geometry must be solved for a unit cell

of the repeating array of membranes. Thus, we consider counterions confined in

between two concentric charged cylindrical shells of radius Ra and Rb(> Ra), as

shown in Fig. 2.7. Note that by restricting to the cylindrical geometry, we can only

obtain the bending rigidity κb, since the solution to the PB equation for spherical

geometries is needed to extract κG, which is not analytically known. The PB equation



30 CHAPTER 2. THE POISSON-BOLTZMANN THEORY

d
R_a

R_b

σσ

x

y

Figure 2.7: Two concentric charged cylindrical shells with counterions in between.
This geometry is used to determine the bending rigidity κb.

in cylindrical geometry reads

d2ϕ(r)
dr2 +

1
r

dϕ(r)
dr

+ κ2e−ϕ(r) =
`Bσ
Ze

{ δ(r −Ra) + δ(r −Rb) } . (2.94)

Using the same transformation as in Sec. 2.3.3:







x = R ln(r/R);

ϕ̃(x) = ϕ(x)− 2x/R,
(2.95)

the transformed potential ϕ̃(x) satisfies the planar PB equation Eq. (2.41) with the

boundary conditions

dϕ̃(x)
dx

∣

∣

∣

∣

x=xa

=
(

1− d
2R

)

`Bσ
Ze

− 2
R

; (2.96)

dϕ̃(x)
dx

∣

∣

∣

∣

x=xb

= −
(

1 +
d

2R

)

`Bσ
Ze

− 2
R

, (2.97)
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where R = (Ra +Rb) /2 and d = Rb−Ra. From the general solution obtained in Eq.

(2.44), we must choose the E < 0 solution

ϕ̃(x) = ln



cos2
√

|E|
2

(x− x′)



 , (2.98)

from which the constant |E| can easily be obtained using the boundary conditions:

|E|
2

=
(

`Bσ
2Ze

)2
− 1

R2

(

1 +
`Bσd
4Ze

)2
+

`Bσ
Ze

√

|E|
2

cot





√

|E|
2

2R tanh−1(d/2R)



 .

(2.99)

We can now use Eq. (2.63)

βF =
∫

d3x c(x)
[

ln c(x)a3 − 1
]

+
1

2`B

∫

d3x [∇ϕ(x)]2

to calculate the free energy per unit area:

βfel =
2σ
Ze

[ ln(|E| a3/`B)− 2 ] +
2R
`B

(

|E|+ 2
R2

)

tanh−1(d/2R)

− σ
Ze

[ϕ(Rb) + ϕ(Ra)]−
2

`BR

(

1 +
`Bσd
4Ze

)

[ϕ(Rb)− ϕ(Ra)]. (2.100)

To deduce κel, the electrostatic contribution to the bending rigidity, we expand the

electrostatic free energy in powers of the inverse of the mean radius R up to second

order, while keeping d fixed. Substituting the expansion

|E|
2

= e0 +
e1

R
+

e2

R2 + · · · (2.101)

into Eq. (2.99) and expanding it in powers of 1/R, we obtain the following coefficients

up to second order in 1/R by equating terms of the same order:

e0 = a2
0 + 2a0

√
e0 cot

√
e0d; (2.102)

e1 = 0 ; (2.103)

e2 = −2e0
2a0a2

1 + d3(a2
0 + e0)2/12

(a2
0 + e0)[2a0 + d (a2

0 + e0)]
, (2.104)
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where a0 ≡ `Bσ/(2Ze) = 2/λ, a1 ≡ 1+`Bσd/(4Ze) = 1+d/λ, and λ = 4Ze/(`Bσ) is

the Gouy-Chapman length. We note that e0 satisfies the same planar transcendental

equation in Eq. (2.74) and the first correction to |E| is of the order of 1/R2. Fur-

thermore, the potential at the charged surfaces at Ra and Rb, ϕ(Ri) can be written

as

ϕ(Ra/b) = − ln

[

1 +
(a0 ∓ a1/R)2

E/2

]

+ 2 ln
(

1∓ d
2R

)

. (2.105)

The free energy Eq. (2.100) can be systematically expanded

fel = f0 +
f1

R
+

f2

R2 + · · · , (2.106)

with

βf0 =
2σ
Ze

{

ln[2a3(4 + e0λ2)/(`Bλ2)]− 2
}

+
2e0d
`B

; (2.107)

βf1 = 0 ; (2.108)

βf2 =
1
`B

[

4a0e2

e0
+

e0d3

6
+ 2 d (1 + e2)− 2 a1

(

2d− 4a0a1

e0 + a2
0

)

− 2 a0

(

− d2

2
+

2 a2
1 (a2

0 − e0)
(

a2
0 + e0

)2 +
2 a2

0e2

e0(e0 + a2
0)

)]

. (2.109)

The first term f0 is the electrostatic free energy for two interacting charged plates.

The term of order 1/R vanishes, due to a cancellation of the contributions from the

two charged surfaces. The bending modulus is then given simply by κel = 2f2 and

after some algebra, the final result reads[14]

κel = 4 kBT
d
`B





d
λ

(

1 + 2d
λ − e0d2

4

)

( d
λ)2 + e0d2

4

−
(

e0d2

12
+ 1

)



 . (2.110)

We first note that this contribution is positive; hence electrostatics make a charged

membrane harder to bend. Although Eq. (2.110) is valid for all densities, the most

interesting case is the strong coupling limit in which d � λ, e0d2 ≈ π2, and κel is

given by

κel '
kBT
Z2

d
lB

(

1
π
− π

12

)

. (2.111)
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The bending rigidity in this case is proportional to kBT with an additional factor

of l−1
B , which indicates the role of entropy in determining the spatial distribution of

the counterions; if T → 0, there would be no resulting contribution to the bending

energy, since all the counterions collapse onto the charged surfaces.

2.5 Conclusion

In this chapter, we have studied the mean-field Poisson-Boltzmann theory

to understand the interaction of charged surfaces. An interesting aspect is that

the counterions may or may not be confined near the charged surface, depending

on geometry of the problem. For a charged plane, counterions are always confined,

while for an infinite charged rod, condensation depends on the linear charged density.

Moreover, PB theory always predicts repulsion between like-charged objects, which

may not be the case for highly charged surfaces as recent experiments suggest. This

may be attributed to the fact the PB theory neglects correlations among counterions.

Indeed, for highly charged surfaces, we have λ � lB which, as we have argued, signals

the breakdown of PB theory. In this limit, fluctuations and correlations about the

mean field potential become so large that the solution to the PB equation no longer

provides a reasonable approximation. The next two chapters describe how to go

beyond PB theory by incorporating fluctuations.
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Chapter 3

Effects of Charge Fluctuations

3.1 Introduction

As we saw in the last chapter, PB theory provides a mean-field description

for charged systems. Among other things, it predicts that for a single charged surface,

the counterions are essentially confined to a thin layer defined by the Gouy-Chapman

length λ. Note that λ scales inversely with surface charge density σ. At sufficiently

high charge densities, λ � L, where L is some characteristic length scale of the plate,

the “condensed” counterions can be considered as a quasi-two-dimensional ideal gas

(see Fig. 3.1). On physical grounds, we expect that at sufficiently low temperature

the fluctuations of these condensed counterions about a uniform density give rise to

new phenomena. Indeed, simulations [1] show that the effective force between two

like-charged rods and planar surfaces actually becomes attractive at short distances.

These surprising results shed new light on the understanding of the electrostatic

adhesion between cells [2] and the puzzling problem of DNA condensation [3]. In

this chapter, we model the condensed counterions and charges on the charged surfaces

effectively as a 2D Coulomb gas interacting with a r−1 potential and examine the

effect of their in-plane fluctuations.

37
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z

σ

Figure 3.1: For highly charged surfaces, counterions are mostly confined within a
layer so thin that they might be considered “condensed”. Charge-fluctuations of
these counterions can be described by the 2D Debye-Hückel theory.

3.2 Debye-Hückel Theory in 2D

Consider an equal mixture of oppositely charged point-like particles with

number density n0 confined to move on a 2D surface. This “salty” surface model re-

sembles a mixed charged lipid membrane or a highly charged plane whose counterions

are restricted to a nearby layer so thin that their fluctuations may be considered as

two-dimensional. The effective Hamiltonian for the system is the sum of the entropy

of the charges and the electrostatic interaction energy among them:

βHel =
∑

i=±

∫

d2r ni(r)
{

ln[ni(r) a2]− 1
}

+
lB
2

∑

i=±

∫

d2r
∫

d2r′
ni(r)ni(r′)
|r − r′|

− lB
∫

d2r
∫

d2r′
n+(r)n−(r′)
|r − r′|

, (3.1)

where r is the in-plane position vector, a is the molecular size of the charges, lB ≡
e2

εkBT is the Bjerrum length, ε is the dielectric constant, β−1 ≡ kBT , kB is the

Boltzmann constant, T is the temperature, and ni(r) is the coarse-grained two-

dimensional density of the charges of species i. The domain of the integral in Eq.

(3.1) spans the entire surface. In order to calculate the change in the free energy due
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to fluctuations, we assume that ni(r) = n0 + δni(r) and expand the electrostatic free

energy to second order in δni[4]:

βδHel =
1
2

∫

d2r d2r′
[

lB
|r − r′|

+
δ(r − r′)

2n0

]

δσ(r) δσ(r′), (3.2)

where δσ = δn+ − δn−. The first term in the bracket is the Coulomb interaction

of the charges. The second term comes from the second variation of the ideal gas

entropy of the charges. The change in the free energy is obtained by summing all

fluctuations weighted by the Boltzmann factor:

∆F = − kBT ln
{∫

Dσ(r) exp [−βδHel]
}

. (3.3)

It should be mentioned that Eq. (3.3) contains a divergent self-energy term which

has to be subtracted out. This means that we have to discard the first two terms in

the expansion for lB → 0, as can be seen easily by considering the zero-temperature

limit. As T → 0, the free energy is reduced to the electrostatic energy which is first

order in lB. Since the self-energy is just a constant independent of temperature, it

must be linear in lB. In the following, we use this formalism to study effects of charge

fluctuations.

3.2.1 Charges in a Plane

For the case of charges confined to a plane δHel in Eq. (3.2) can be di-

agonalized by Fourier transform and is quadratic in δσ. Performing the Gaussian

integrals in Eq. (3.3) and subtracting out the self-energy term, we obtain the free

energy per unit area due to fluctuations [4, 5]

∆f2d =
kBT

2

∫ d2q
(2π)2

{

ln
[

1 +
1

qλD

]

− 1
qλD

}

, (3.4)

where 1/λD = 4πn0lB, which scales like the Gouy-Chapman length, is a length scale

analogous to the Debye screening length in 3-D. Note that Eq. (3.4) is ultravio-

letly divergent because of the infinite energy associated with the collapse of opposite
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charges. Thus a microscopic cut-off is necessary. In Ref.[6], the author shows by

partial summation of the Mayer series that the resulting free energy is convergent

and indeed equivalent to a microscopic cut-off. Eq. (3.4) can be evaluated to yield

the electrostatic correction to the the free energy per unit area[7]:

∆f2d = − kBT
8πλ2

D
ln(λD/a) + · · · . (3.5)

Note that this correction contains a logarithmic term, in contrast to the DH theory

in 3-D, where the change in the free energy per unit volume obtained in Eq. (2.18)

is

∆fs ∼ − kBT λ−3
s + · · · ,

where λs ≡ κ−1
s is the 3D screening length.

It is interesting to consider the charge correlation function 〈 δσ(q) δσ(k) 〉,
which can be deduced from δHel in Eq. (3.2) with the help of the equipartition

theorem:

〈 δσ(q) δσ(k) 〉 = (2π)2δ(q + k)
2n0 qλD

1 + qλD
. (3.6)

In real space, 〈 δσ(0) δσ(r) 〉 can be interpreted as the 2-D charge distribution given

that a point-charge is located at the origin. Fourier transforming Eq. (3.6), we have

〈 δσ(0) δσ(r) 〉 = 2n0δ(r)−
τ0(r/λD)
4π2lBλ2

Dr
, (3.7)

where the function τ0(x) defined by

τ0(x) =
∫ ∞

0
dy

y J0(y)
x + y

, (3.8)

where J0(x) is the Bessel function, has the following asymptotics

τ0(x) =







1 + x
(

ln x
2 + C

)

− x2 + O(x3), for x � 1,
1
x2 − 9

x4 + O(x−6), for x � 1,
(3.9)

where C is the Euler’s constant. The charge distribution decays algebraically for

large distances away from the test charge, in contrast with the DH in 3D, where
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screening charges decay exponentially with distance from the test charge. Thus,

physically, the second term in Eq. (3.7) represents a cloud of induced charges, whose

charge distribution consists of a multipolar expansion. This point will become clear

when we consider the 2D Debye-Hückel equation.

Closely related to the charge correlation function is the Green’s function

G2d(x,x′) of the 2-D Debye-Hückel equation

[

−∇2
x +

2
λD

δ(z)
]

G2d(x,x′) = 4πlBδ(x− x′). (3.10)

This equation may be derived from the same argument leading to Eq. (2.12), and the

second term in the bracket takes into account of the fact that charges are confined

on a plane. We note that due to in-plane translation invariance, the Green’s function

G2d(x,x′) can be Fourier transformed in the directions parallel to the plane:

[

− d2

dz2 + q2 +
2

λD
δ(z)

]

G2d(z, z′; q) = 4πlBδ(z − z′), (3.11)

where q2 = q2
x + q2

y . A physically transparent way to solve this equation is to split

G2d(z, z′; q) into two parts:

G2d(z, z′; q) = G0(z − z′; q) + G2d(z, z′; q), (3.12)

where

G0(z − z′; q) =
2πlB

q
e−q|z−z′| (3.13)

is the potential for a point charge, which satisfies
[

− d2

dz2 + q2

]

G0(z − z′; q) = 4πlBδ(z − z′). (3.14)

Substituting the decomposition into Eq. (3.10) and rearranging, we obtain

G2d(z, z′; q) = G0(z − z′; q)− 1
2πlBλD

∫ ∞

−∞
dz′′G2d(z, z′′; q) δ(z′′) G0(z′ − z′′; q),

(3.15)
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which can be solved algebraically for G2d(z, 0; q):

G2d(z, 0; q) =
2πlBλD G0(z; q)

2πlBλD + G0(0; q)
=

2πlBλD

1 + qλD
e−q|z|. (3.16)

Physically, G2d(z, 0; q) is the electrostatic potential at a distance z above or below the

plane due to a point charge located at origin. The in-plane potential is the Fourier

transform of G2d(z, 0; q) at z = 0,

G2d(r,0) =
∫ d2q

(2π)2
e−iq·r G2d(0, 0; q) =

lB
r

τ0(r/λD), (3.17)

where in the last line, we have made use of the function defined in Eq. (3.8). From

this result, we see that the screening is weak in 2D: the potential decays algebraically

as ∼ r−3 to the lowest order, similar to that of a dipolar field where λD plays the role

of the dipole moment. Using Eq. (3.10) and Poisson’s equation Eq. (2.5), we can

calculate the probability of finding a charged particle at x given that a test charge

is fixed at the origin:

g(x,0) = − 1
4πlB

∇2G2d(x,0) = δ(x)− 2
λD

δ(z) G2d(x,0). (3.18)

In Fourier space, g(z, 0; q) can be easily shown to be

g(z, 0; q) = δ(z)− δ(z)
1 + qλD

= δ(z)
qλD

1 + qλD
, (3.19)

which is indeed proportional to the charge correlation function 〈 δσ(q) δσ(−q) 〉, as

it should be. Finally, G2d(z, 0; q) can be substituted back into Eq. (3.15) to obtain

the full Green’s function

G2d(z, z′; q) =
2πlB

q

{

e−q|z−z′| − e−q ( |z|+ |z′| )

1 + qλD

}

. (3.20)

The physical meaning of the Green’s function

G2d(x,x′) =
∫ d2q

(2π)2
e−iq·(r−r′) G2d(z, z′; q), (3.21)
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is identical to the Coulomb potential – the electrostatic interaction between two unit

charges located at x and x′ in the presence of a “salty” surface. In particular, the

self-energy of a charged particle on the plane is related to the Green’s function by

βVs =
1
2

∫ d2q
(2π)2

G2d(0, 0; q), (3.22)

from which the correlation energy for the “salty” surface follows:

βEc =
2n0

2

∫ d2q
(2π)2

G2d(0, 0; q) = −1
2

∫ d2q
(2π)2

1
qλD(1 + qλD)

. (3.23)

Alternatively, this result can be derived from Eq. (3.4) using a standard thermody-

namic identity

Ec =
∂
∂β

[βf2d]; (3.24)

therefore, the two formulations – charge-fluctuations and the DH equation – are

completely equivalent, as it should be. In the next two subsections, we compute the

fluctuation free energy for charges confined on the surface a sphere and a cylinder,

respectively.

3.2.2 Charges on a Sphere

For the case of charges confined on a sphere of radius R, after following a

similar procedure leading to Eq. (3.4), we obtain the free energy

fsp =
kBT
8πR2

∞
∑

l=0

( 2l + 1 )
{

ln
[

1 +
R/λD

2l + 1

]

− R/λD

2l + 1

}

. (3.25)

It is easy to show that by setting k = l/R and taking the limit R → ∞, we recover

the planar result. Equivalently we may write Eq. (3.4) as

f2d =
kBT
8πR2

∫ ∞

−1/2
dl ( 2l + 1 )

{

ln
[

1 +
R/λD

2l + 1

]

− R/λD

2l + 1

}

. (3.26)

The difference fsp − f2d, can be evaluated as an asymptotic expansion in 1/R using

the Euler-MacLaurin summation formula [8]

N
∑

l=0

f(l) =
∫ N

0
dx f(x) +

1
2

[f(0) + f(N)] +
1
12

[

f ′(0) + f ′(N)
]

+ · · · , (3.27)
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with f(l) = (2l + 1) ln(2l + 1 + R/λD). The result is:

fsp − f2d = −11 kBT
96πR2 ln(R/λD ) + · · · . (3.28)

In deriving the result above, we have regularized the integral in Eq. (3.26) and the

sum in Eq. (3.25) by an ultraviolet cut-off Λ. However, the leading term in Eq.

(3.28) is cut-off independent and those higher order cut-off dependent terms tend to

zero as Λ →∞.

3.2.3 Charges on a Cylinder

For the case of a cylinder, we obtain the free energy:

fcyl =
kBT
4πR

∑

m≥0

∫ ∞

0
dq

2
π

{

ln
[

1 +
R
λD

Im(qR)Km(qR)
]

− R
λD

Im(qR)Km(qR)
}

,

(3.29)

where Im and Km are modified Bessel functions of order m. The evaluation of

the integrals here is relatively difficult. However, we argue that fcyl − f2d has the

following asymptotic expansion:

fcyl − f2d = − kBT
48πR2 ln(R/λD ) + · · · , (3.30)

for R → ∞. First, we note that the only relevant contributions to the q-integral in

Eq. (3.29) are sharply peaked at q ≈ 0 with width ∆ q ≈ m/R. Hence, the Bessel

functions can be approximated by Im(qR)Km(qR) ∼ 1/2m, yielding

fcyl =
kBT
4πR2

∑

m≥0

m
[

ln
(

1 +
R/λD

2m

)

− R/λD

2m

]

+ O(1/R3). (3.31)

Equation (3.30) can now be obtained by using the Euler-MacLaurin summation for-

mula with f(m) = m ln(2m + R/λD).

3.3 Renormalization of Bending Rigidity

The problem of the electrostatic contribution to the bending constants of

charged membranes within the PB mean field approach has been briefly discussed
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in Section 2.4. The electrostatic renormalization of the bending rigidity turns out to

be positive; hence electrostatics augments the rigidity of a charged membrane. Here

we go beyond these PB approaches by assuming that the surface charge density n0

of the membrane is sufficiently high that the condensed counterions are confined to

a layer of thickness λ � L, where λ is the Gouy-Chapman length and L is the linear

size of the charged membrane.

As mentioned in Section 2.4, the electrostatic contribution to the bending

moduli κb and κG can be identified by expanding the electrostatic free energy up to

second order in curvatures H and K and comparing with the Helfrich free energy

f =
κb

2
(H − H0)2 + κG K

of the same geometry. Using the results from previous section, the renormalization

of the bending constants can be deduced from Eqs. (3.28) and (3.30) to yield[9]

∆κb = −kBT
24π

ln(R/λD), (3.32)

∆κG = −kBT
12 π

ln(R/λD). (3.33)

We thus find that the contribution to the membrane elastic constants due to charge

fluctuations is non-analytic. This kind of non-analyticity in the bending constants

exists in the literature in other situations, for example in a system consisting of a

membrane and rod-like cosurfactants[10]. In the present case, this non-analyticity

can be considered a signature of 2-D charged systems. Recall that the free energy

contains a logarithmic term as in Eq. (3.5). Therefore, it is not surprising to find

logarithmic corrections to the bending constants. Typically, for R/λD ∼ 104 − 106

the factor ln(R/λD) is of order 10 and thus ∆κ and ∆κG are of the order of kB T .

Secondly, we remark that both ∆κb and ∆κG are negative, in contrast to

the mean-field PB contributions, where the renormalization of the bending moduli

are always positive and the Gaussian moduli may be negative in some cases. In a sys-

tem in which R/λD � 1, ∆κb is large compared to the mean-field contribution and
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the membrane becomes more flexible. Therefore, charge fluctuations induce bending

of a charged membrane. The negative contribution of ∆κG from charge fluctuations

has interesting experimental consequences since strongly negative values of κG fa-

vor the formation of many disconnected pieces with no rims, like spherical vesicles.

Therefore, when the surface charge density is made sufficiently large, the membrane

might spontaneously form vesicles, due to fluctuations of condensed counterions.

Experiments [11] on charged surfactant systems support this conclusion.

The results presented in this section are particularly relevant to recent ex-

periments [12] where the authors find the formation of vesicles by mixing anionic

and cationic surfactants. In the regions of the phase diagram where vesicles form

spontaneously, the composition of each vesicle in oppositely charged species is almost

equimolar [13]. Two aspects of their experiment can be qualitatively accounted for

by the present model. They find, in equilibrium, large vesicles with R ∼ 1000 Åand

substantial size polydispersity. Indeed, the vesicle free energy per unit area given by

fves = κ0
b/R2 − 11 kB T

96πR2 ln(R/λD ), (3.34)

where κ0
b is the bare value of the bending rigidity, including possibly the mean field

contribution due to the small excess charges on the vesicle, has an equilibrium value

R∗ ∼ λD exp(κ0
b/kBT ), which can be large even for a moderate value of κ0

b of the order

of 5–7 kBT . Furthermore, the second derivative of the free energy f ′′(R∗) ∼ e−κ0
b/kBT

is exponentially small. Hence the variance or fluctuations in R, 〈(∆R)2〉 ∼ 1/f ′′(R∗)

is large, implying size polydispersity.

3.3.1 An Undulating “Salty” Membrane

In this subsection, we evaluate the charge fluctuation contribution to the

bending rigidity from a different geometry, namely an undulating 2D membrane em-

bedded in 3D space. In the Monge gauge (see Appendix), the shape of the membrane

is described by a height field h(r). Confined on the membrane are equal numbers

of positive and negative mobile charges, interacting via the Coulomb’s law. In the
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continuum limit, the Hamiltonian for an undulating “salty” membrane is

βH =
1
2

∫

d2r
[

r0(∇h)2 + κb(∇2h)2
]

(3.35)

+
1
2

∫

d2r d2r′
[

δ2(r − r′)
2n0

+
lB

√

(r − r′)2 + [ h(r)− h(r′) ]2

]

δσ(r) δσ(r′),

where r0 is the surface tension of the membrane. The first term is the Helfrich free

energy and the second term is the charge-fluctuation free energy Eq.(3.2), modi-

fied by the out-of-plane displacement h(r) of the membrane. Now, we rewrite the

electrostatic contribution βHel as

βHel =
1
2

∫

d2r d2r′
[

lB
|r − r′|

+
δ2(r − r′)

2 n0

]

δσ(r) δσ(r′)

− 4 lB
∫

d2r d2r′
∫ ∞

0

dα
2π

K0(α r) sin2
(

α ∆h
2

)

δσ(r) δσ(r′), (3.36)

where K0(x) is the modified Bessel function, r = r − r′, and ∆h ≡ h(r) − h(r′); we

treat the last term as a perturbation:

βHI = − 4 lB
∫

d2r d2r′
∫ ∞

0

dα
2π

K0(α r) sin2
(

α ∆h
2

)

δσ(r) δσ(r′), (3.37)

and expand HI in the cumulant expansion:

βδH[h(r)] = β〈HI〉 −
1
2

β2
[

〈H2
I〉 − 〈HI〉2

]

+ · · · , (3.38)

where the average is only taken with respect to charge fluctuations δσ(r). To calcu-

late the renormalization of bending rigidity, we make use of a gradient expansion of

∆h = h(R + r/2)− h(R− r/2):

∆h =
∑

i

ri∂ih +
2

23 3!

∑

ijk

rirjrk∂i∂j∂kh + · · · , (3.39)

where R = (r + r′) /2. To second order in ∆h, HI is given by

〈βHI〉 = − lB
∫

d2r d2r′
∫ ∞

0

dα
2π

K0(α r) α2 (∆h)2 〈δσ(r) δσ(r′)〉. (3.40)
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Expanding out (∆h)2:

(∆h)2 =
∑

ij

rirj∂ih∂jh +
4

23 3!

∑

ijkl

rirjrkrl∂ih∂j∂k∂lh + O(r6), (3.41)

shifting the spatial integrals in Eq. (3.40) from
∫

d2r d2r′ →
∫

d2R d2r, and evaluat-

ing the angular integrals of the form:
∫

d2r rirj I(r) = π
∫

dr r3 I(r) δij ; (3.42)
∫

d2r rirjrkrl I(r) =
π
4

∫

dr r5 I(r) [δijδkl + δikδjl + δilδjk], (3.43)

where I(r) is defined by

I(r) =
lB
2π

∫ ∞

0
dα α2 K0(α r) 〈δσ(r) δσ(r′)〉, (3.44)

we finally obtain

〈βHI〉 = −π
∫

d2R (∇h)2 ·
∫

dr r3 I(r) +
π
16

∫

d2R (∇2h)2 ·
∫

dr r5 I(r) + · · ·
(3.45)

Clearly, the second term renormalizes the bending rigidity:

β∆κb =
π
8

∫

dr r5 I(r). (3.46)

Now, using the asymptotics of the correlation function 〈δσ(0) δσ(r)〉 calculated in

Eq. (3.8), we have

∆κb = − kBT
128π

∫ L/λD

1
dxx τ0(x) = − kBT

128π
ln (L/λD) + O(L−2), (3.47)

which agrees with the logarithmic correction to the bending rigidity obtained previ-

ously, but the overall numerical prefactor is quite different, a factor of 5-10 smaller.

3.4 Attraction Arising from Charge Fluctuations

As mentioned in the Introduction to this chapter, experiments and simu-

lations suggest that there could be attraction between highly like-charged surfaces.
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σ

d

σ

Figure 3.2: Density fluctuations of “condensed” counterions lead to an attractive
force between two plates.

This attraction cannot be accounted for by PB theory, since it only predicts repul-

sion. To go beyond mean-field theory, we consider the in-plane fluctuations of the

“condensed” counterions, shown in Fig. 3.2, and show that attraction between two

plates is possible.

The effective Hamiltonian for this system is

H =
∑

i=A,B

Hi
el +Hint, (3.48)

where Hi
el is the intralayer electrostatic energy as in Eq. (3.2):

βHi
el =

1
2

∫

d2r d2r′
[

lB
| r − r′ |

+
δ2(r − r′)

2n0

]

δσi(r) δσi(r′), (3.49)

and Hint is the interlayer electrostatic interaction:

βHint =
lB
2

∫

d2r d2r′
δσA(r) δσB(r′)

√

(r − r′)2 + d2
. (3.50)
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A convenient way of calculating the pressure is to use the expression

Π(d) = − 1
A0

〈

∂Hint

∂d

〉

H
. (3.51)

Using the Fourier transform of Eq. (3.50), the pressure can be expressed in terms of

the interlayer density correlation function 〈 δσA(q) δσB(−q) 〉 as

βΠ(d) =
2πlB
A0

∫ d2q
(2π)2

e−qd 〈 δσA(q) δσB(−q) 〉. (3.52)

To calculate the correlation function, we note that H can be diagonalized by intro-

ducing δσ±(r) = 1√
2
{δσA(r)± δσB(r)}; in Fourier space, we have

βH =
1
2

∑

±

∫ d2q
(2π)2

[

1
2n0

+
2πlB

q

(

1± e−qd
)

]

δσ±(q) δσ±(−q). (3.53)

Using the equipartition theorem, it follows that

1
A0

〈 δσ±(q) δσ±(−q) 〉 =
q

2πlB

2
(1 + qλD)± e−qd , (3.54)

and thus

1
A0
〈 δσA(q) δσB(−q) 〉 =

1
2A0

{ 〈 δσ+(q) δσ+(−q) 〉 − 〈 δσ−(q) δσ−(−q) 〉 }

= − q
2πlB

e−qd

(1 + qλD)2 − e−2qd . (3.55)

Substituting this result into Eq. (3.52), we obtain the pressure[4]

Π(d) = − kBT
∫ ∞

0

dq
2π

q2

e2qd (1 + qλD)2 − 1
. (3.56)

Thus, charge-fluctuations indeed give rise to an attraction between charged planes.

To evaluate the integral, we consider two limiting cases: (i) d � λD and

(ii) d � λD. In the large distance limit, d � λD, the integral may be expanded

in powers of qλD in the denominator, and the leading term is independent of λD

and scales like d−3. For small distances, we expand 1/(qλD) to obtain Π ∼ d−1.

Therefore, we have the following regimes:

Π(d) =







− ζ(3)
8π

kBT
d3 , for d � λD,

− kBT
4πλ2

Dd , for d � λD.
(3.57)
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Note that this attraction is long-ranged and the prefactor ζ(3)
8π ≈ 0.048 is universal

for this interaction, induced by the long wavelength fluctuations. Furthermore, this

charge-fluctuation-induced force is similar to the van der Waals interaction, and

indeed formally identical to the Casimir force between two partially transmitting

mirrors at high temperature. Also, we note that Π(d) → 0 as T → 0, as it should be

since charge fluctuations are entirely controlled by thermal energy.

It is interesting to compare the magnitude of this attraction to the mean-

field PB repulsion. For large distances, the mean-field repulsion which scales as P ∼
d−2 always dominates the fluctuation-induced attraction. Note that this conclusion

is independent of the charge density of the surfaces. In the opposite limit, d � λ, the

attraction can overcome the mean-field repulsion provided that lB/λ > 8Z−2, which

is the case for sufficiently low temperature or high valence. It is important to note

that the charge-fluctuation picture as described by the Debye-Hückel theory may

break down at such temperature. Nevertheless, this picture provides some insight

into the correlation effects for charged surfaces beyond PB theory.

3.5 Conclusion

In this chapter, we have formulated the “salty” surface model to describe the

fluctuations of the “condensed” counterions near a highly charged plate. We argue

that their fluctuations neglected in PB theory are well captured by the 2D Debye-

Hückel theory. First, we learn that charge-fluctuations may reduce the bending

constants of a “salty” membrane to the extent that they may spontaneously form

large vesicles. More interestingly, we have shown that the charge fluctuations are

correlated between two “salty” planes in such a way that there is a long-ranged

attractive force, scaled as d−3, for large distances d. This attractive force may explain

the attractions observed in experiments and simulations.
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Chapter 4

Fluctuation-Driven Counterion

Condensation

4.1 Introduction

In this chapter, we continue to illustrate the importance of fluctuations by

presenting a novel condensation phenomenon in an overall neutral system, consisting

a single charged plate and its oppositely charged counterions. We saw in Chapter 2,

that at the mean-field level, the counterion distribution as described by PB theory is

valid only for sufficiently high temperature, where fluctuation and correlation effects

are negligible. Here, we propose a “two-fluid” model for the low temperature regime,

in which the counterions are divided into a “free” and a “condensed” part. Using a

variational approach, we show that for sufficiently low temperatures, a finite fraction

of counterions is “condensed” onto the charged plate.

55
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4.2 Fluctuation Corrections to Possion-Boltzmann The-

ory

In this section, we discuss fluctuation corrections to the mean-field PB free

energy. This will establish the technical tools we need to tackle the interesting

problem of counterion condensation. First, we expand the action S[φ, ψ] in Eq.

(2.34) about the saddle point ψ0, which satisfies Eq. (2.35), in the second order in

∆ψ(x) = ψ(x)− ψ0(x):

S[φ, ψ] = S[φ, ψ0] +
∫

d3x
δH

δψ(x)

∣

∣

∣

∣

ψ=ψ0

∆ψ(x)

+
1
2

∫

d3x
∫

d3y
δ2H

δψ(x) δψ(y)

∣

∣

∣

∣

∣

ψ=ψ0

∆ψ(x)∆ψ(y) + · · · . (4.1)

Defining the operator

K(x,y) =
δ2H

δψ(x) δψ(y)

∣

∣

∣

∣

∣

ψ=ψ0

=
1
`B

[

−∇2
x + κ2eiψ0(x)+φ(x)

]

δ(x− y), (4.2)

and performing the Gaussian integrals in the function integral, we obtain a formal

expression for the change in the free energy due to fluctuations of the counterions:

β∆F =
1
2

ln det K̂− 1
2

ln det

[

−∇
2

`B

]

, (4.3)

where the second term comes from the normalization constant N0 in Eq. (2.34). To

evaluate β∆F explicitly for the case of a single charged plate, we first differentiate

it with respect to `B by making use of the identity δ ln det X̂ = Tr X̂−1 δ X̂ to obtain

∂β∆F
∂`B

= − 2
`B

∂λ
∂`B

∫

d3x
Gpb(x,x)
(|z|+ λ)3

, (4.4)

where we use the fact that

iψ0(x) + φ(x) = −ϕ(z) = − 2 ln
(

1 +
κ|z|√

2

)

(4.5)
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for the saddle point solution for a single charged plate, and Gpb(x,x′) is the Green’s

function defined by
∫

d3y K(x,y) Gpb(y,x′) = δ(x− x′), (4.6)

i.e. Gpb(x,x′) is the inverse of K̂. Using the definition of K(x,y) above, we find that

Gpb(x,x′) satisfies the following differential equation
[

−∇2
x +

2
(|z|+ λ)2

]

Gpb(x,x′) = `B δ(x− x′), (4.7)

where λ is the Gouy-Chapman length. Since the second term in the bracket only

depends on z, we Fourier transform Gpb(x,x′) to obtain
[

− d2

dz2 + q2 +
2

(|z|+ λ)2

]

Gpb(z, z′; q) = `B δ(z − z′), (4.8)

where q2 = q2
x + q2

y , and λ is the Gouy-Chapman length.

Clearly, to obtain fluctuation energy in Eq. (4.4) explicitly, we must solve

for Gpb(z, z; q). First, consider the homogeneous equation of Eq.(4.8)
[

− d2

dz2 + q2 +
2

(|z|+ λ)2

]

h(z; q) = 0. (4.9)

For |z| > 0, this equation can be reduced to the Wittaker’s equation, which has two

linearly independent solutions:

h+(z; q) = e−q |z|
[

1 +
1

q (|z|+ λ)

]

, (4.10)

h−(z; q) = eq |z|
[

1− 1
q (|z|+ λ)

]

. (4.11)

To solve for the Green’s function, we need only to consider the case z′ > 0 since

G(z, z′) = G(−z,−z′) by symmetry. We split space into 3 regions:

G>(z, z′; q) = A(z′) h+(z; q), for z > z′, (4.12)

G<(z, z′; q) = B(z′) h+(z; q) + C(z′)h−(z; q), for 0 ≤ z < z′, (4.13)

G−(z, z′; q) = D(z′)h+(z; q), for z < 0, (4.14)
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and impose the following boundary conditions:

1) G<(0, z′; q) = G−(0, z′; q), (4.15)

2)
dG<(z, z′; q)

dz

∣

∣

∣

∣

z=0
=

dG−(z, z′; q)
dz

∣

∣

∣

∣

z=0
, (4.16)

3) G<(z′, z′; q) = G>(z′, z′; q), (4.17)

4)
dG<(z, z′; q)

dz

∣

∣

∣

∣

z=z′
− dG>(z, z′; q)

dz

∣

∣

∣

∣

z=z′
= `B, (4.18)

to determine the coefficients A(z′), B(z′), C(z′), and D(z′). After some algebra, the

Green’s function follows, and Gpb(z, z; q) is given by

Gpb(z, z; q) =
`B

2q

{

1− 1
q2 (|z|+ λ)2

+
e−2q|z|

(1 + qλ)[1 + qλ + (qλ)2]

[

1 +
1

q (|z|+ λ)

]2
}

. (4.19)

Note that the first term is just the usual Coulomb self-energy, which upon substi-

tuting into Eq. (4.4) exactly cancels the self-energy in the mean-field free energy

Eq. (2.61). Subtracting out this self-energy, i.e. replacing Gpb(x,x) by Gpb(x,x) =

Gpb(x,x)−G0(x,x) in Eq. (4.4), and using the following integrals

∫ ∞

0
dz

1
(z + λ)5

=
1

4λ4

∫ ∞

0
dz

e−2qz

(z + λ)3

[

1 +
1

q(z + λ)

]2
= q2 1 + 2qλ

4(qλ)4
,

Eq. (4.4) can be evaluated to be

1
A0

∂β∆F
∂`B

=
1
2

∂λ
∂`B

∫ d2q
(2π)2

q
(qλ)2

2 + qλ
(1 + qλ) [1 + qλ + (qλ)2]

=
1

4πλ3
π√
3

∂λ
∂`B

.

(4.20)

This can be integrated back to obtain the fluctuation correction to the mean-field

free energy for a single charged plate:

∆f = − kBT
8
√

3λ2
. (4.21)
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Note that fluctuations lower the mean-field free energy. The result in Eq. (4.21) may

be understood physically as follows. According to PB theory, the counterions are

confined to a slab of thickness λ, and thus may be considered as an ideal gas with a

3D concentration of c ∼ n0/λ. This implies that the inverse of the 3D “screening”

length is κs ∼
√

c lB ∼ 1/λ. Using the 3D Debye-Hückel free energy (per unit volume)

β∆fs ∼ −κ3
s, the correction to the mean-field PB free energy (per unit area) scales

like β∆f ∼ −λ · λ−3 ∼ −λ−2, as obtained above. Note also that Eq. (4.21) is not

logarithmic divergent in contrast to the 2D Debye-Hückel theory. Combining with

the mean-field free energy, the total free energy for the one plate system is

βf =
n0

Z
ln

(

n0 a3

2Zλ

)

− n0

Z
− 1

8
√

3λ2
. (4.22)

4.3 Counterion Condensation

Recall that for a single plate of charge density σ(x) = en0δ(z) immersed

in an aqueous solution of dielectric constant ε, containing point-like counterions of

charge −Ze on both sides of the plate, PB theory predicts that the counterion dis-

tribution in Eq. (2.49)

c(z) =
1

2πZ2lB (|z|+ λ)2
,

decays to zero algebraically with a characteristic length λ ≡ 1/(πlBZn0). This Gouy-

Chapman length λ defines a sheath near the charged surface within which most of

the counterions are confined. Typically, it is on the order of few angstroms for a

moderate charge density of n0 ∼ 1/100 Å−2. Note that since λ scales inversely with

n0 and linearly with T , at sufficiently high density or low temperature, the counterion

distribution is essentially two-dimensional:

lim
T→0

∫ ζ

−ζ
c(z) dz = lim

T→0
2 · n0

2Z
· ζ
λ + ζ

=
n0

Z
, (4.23)

where ζ is an arbitrarily small but fixed positive value of z, i.e. the counterion

concentration c(z) reduces to a surface density coating the charged plane with a
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density of n0/Z as T → 0. Therefore, according to PB theory, all of the counterions

collapse onto the charged plane at zero temperature.

However, at low temperatures Z2lB � λ, the fluctuation corrections be-

come so large that the solution to the PB equation no longer provides a reasonable

approximation[1, 2]. Therefore, we might expect a quantitative deviation from the

conclusion above. Indeed, as pointed out by Netz et al.[1], when the temperature

is sufficiently low, a perturbative expansion about the PB solution breaks down, as

indicated by an unphysical (negative) counterion density in the one-loop approxima-

tion. This suggests that a simple perturbation theory may not capture the additional

binding, which may lead to condensation of the counterions. To capture this, we pro-

pose here a “two-fluid” model in which the counterions are divided into a “free” and

a condensate fraction. The “free” counterions have the usual 3D spatial distribution,

while the “condensed” counterions are confined to move only on the charged plane.

By minimizing the total free energy, which includes fluctuations of the whole system,

we show that a finite fraction of the counterions is “condensed” onto the charged

surface if g ≡ lB/λ exceeds some critical value g ≥ gc (see Fig. 4.2). We emphasize

that our approach, in which fluctuation and correlation effects play a crucial role,

differs from the more familiar theory of counterion condensation, e.g. Manning con-

densation, which considers only the competition between electrostatics and entropy

in a mean field framework.

In our picture, the 2D density of “condensed” counterions has a spatially

dependent fluctuation about a uniform mean: nc(r) = nc + δnc(r)[3]. Thus, the

presence of the condensate modifies the electrostatics of the “free” counterions in

two ways. First, the condensate partially neutralizes the charged plane, effectively

reducing its surface charge density from en0 to enR = e(n0 − Znc). Second, their

fluctuations renormalize the electrostatic interaction of the system; thus, instead of

the usual Coulomb potential, the “free” counterions and the charged plane interact

via the interaction G2d(x,x′), which is the inverse (the Green’s function) of the 2D
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Figure 4.1: A schematic picture of the system considered.

Debye-Hückel operator in Eq. (3.10)
[

−∇2
x +

2
λD

δ(z)
]

G2d(x,x′) = `Bδ(x− x′), (4.24)

where `B = 4πlBZ2, λD = 2/(`Bnc) is the Debye screening length in 2-D, and the

second term in the bracket takes into account of the fluctuating “condensate”. Hence,

in the limit nc → 0 or λD →∞, G2d(x,x′) reduces to the usual Coulomb interaction

G0(x,x′) = `B/|x− x′|.
In order to obtain the condensate density nc consistently, the “order” pa-

rameter τ ≡ Znc/n0 must minimize the free energy per unit area of the system:

f(τ) = f2d(τ) + f3d(τ). The free energy for the “condensed” counterions f2d(nc) is

given by Eq. (3.4)

βf2d(nc) = nc

{

ln[nc a2]− 1
}

+
1
2

∫ d2q
(2π)2

{

ln
[

1 +
1

qλD

]

− 1
qλD

}

, (4.25)

where β−1 = kBT and a is the molecular size of the counterions. The first term in Eq.

(4.25) is their entropy and the second term arises from the 2D charge-fluctuation of
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the “condensed” counterions, which lowers the 2D ideal gas entropy (see Eq. (3.4)).

The task now is to determine f3d(τ).

As argued above, the electrostatic energy of the “free” counterions, in the

presence of the fluctuating “condensate” on the the charged plane, is

βEN = −NV0 +
∫

d3x
∫

d3x′ ρ(x)G2d(x,x′)ρ(x′)−
∫

d3xφ(x) ρ(x), (4.26)

where V0 = `B
2

∫ d3q
(2π)3 q−2 is the self-energy of the free counterions, ρ(x) =

∑N
i=1 δ(x−

xi) is their number density, G2d(x,x′) is the interaction among them taking into ac-

count the fluctuating “condensate”, and φ(x) ≡
∫

d3x′ Z−1 G2d(x,x′) nR(x′) is the

external field arising from the charged plate. After a Hubbard-Stratonovich trans-

formation similar to what is done in Sec. 2.2, the grand canonical partition function

for the “free” counterions, characterized by the interaction energy in Eq. (4.26), can

be mapped into a functional integral representation: Zµ[φ] = N0
∫

Dψ e−S[ψ,φ] with

an action

S[ψ, φ] =
1
`B

∫

d3x
{

1
2

ψ(x)[−∇2 ]ψ(x) +
1

λD
δ(z) [ψ(x)]2 − κ2eiψ(x)+φ(x)

}

,

(4.27)

where ψ(x) is the fluctuating field, `B = 4πlBZ2, κ2 = eµ+V0`B/a3, µ is the chem-

ical potential, and N0 is the normalization factor. The minimum of the action
δS

δψ(x)

∣

∣

∣

ψ=ψ0
= 0, defines the saddle-point equation for ψ0(x), which reads

∇2ϕ(x) + κ2e−ϕ(x) =
`BnR

Z
δ(z) +

2
λD

δ(z)ϕ(x) (4.28)

in terms of the mean-field potential ϕ(x) = −iψ0(x) − φ(x). It has the solution

ϕ(x) = 2 ln
(

1 + κ|z|√
2

)

, which satisfies the boundary conditions: i) ϕ(0) = 0 and

ii) dϕ
dz

∣

∣

∣

z=0
= nR`B

2Z , with κ = nR `B/(2
√

2Z). Thus, at the mean-field level, the

distribution of the “free” counterions ρ0(x) = κ2 e−ϕ(x)/`B = 2/[ `B(|z| + λR)2 ]

has the standard form as in Eq. (2.49) with a renormalized Gouy-Chapman length

λR ≡
√

2/κ = 4Z/(`BnR), in terms of the “reduced” surface charge density nR.

To obtain the mean-field free energy of the “free” counterions F0(nR), we

note that it is related to the Gibbs potential Γ0[φ] ≡ S[ψ0, φ] by two Legendre
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transformations: F0(nR) = Γ0[φ] +
∫

d3xφ(x) ρ0(x) + µ
∫

d3x ρ0(x). Solving for the

chemical potential µ from its definition: µ = −V0 + ln
(

nRa3

2ZλR

)

and using the mean-

field solution ϕ(x), we find

βF0(nR)/A0 = −nR

Z
V0 +

nR

Z
ln

(

nR a3

2ZλR

)

− nR

Z
(4.29)

where A0 is the area of the charged plane. Apart from the infinite self-energy term

V0 to be canceled below, F0(nR) has the form of an ideal gas entropy with a 3D

concentration of a gas confined to a slab of thickness λR. To capture correlation

effects, we must also include fluctuations of the “free” counterions, thereby treating

the “free” and “condensed” counterions on the same level. Expanding the action

S[ψ, φ] about the saddle-point ψ0(x) to second order in ∆ψ(x) = ψ(x) − ψ0(x)

and performing the Gaussian integrals in the functional integral, we obtain a for-

mal expression for the change in the free energy due to fluctuations of the “free”

counterions: β∆F3d = 1
2 ln det K̂3d − 1

2 ln det K̂2d, where the differential operator

K̂3d(x,y) ≡
[

−∇2
x + 2

λD
δ(z) + 2

(|z|+λR)2

]

δ(x−y) comes from the second variation

of the action S[ψ, φ] and K̂2d(x,y) ≡
[

−∇2
x + 2

λD
δ(z)

]

δ(x − y) is the 2D Debye-

Hückel operator, coming from the normalization factor N0.

To evaluate β∆F3d explicitly, we first differentiate it with respect to `B by

making use of the identity δ ln det X̂ = Tr X̂−1 δ X̂ to obtain

∂β∆F3d

∂`B
= − 2

`B

∂λR

∂`B

∫

d3x
G3d(x,x)
(|z|+ λR)3

− 1
`B

∂λD

∂`B

∫

d3x
δ(z)
λ2

D
[G3d(x,x)−G2d(x,x)] , (4.30)

where

G2d(x,x) =
∫ d2q

(2π)2
`B

2q

[

1− e−2q|z|

1 + qλD

]

(4.31)

is the diagonal part of the 2D Green’s function and G3d(x,x′) is the Green’s function

for the 3D “free” counterions. It satisfies
[

−∇2
x +

2
λD

δ(z) +
2

(|z|+ λR)2

]

G3d(x,x′) = `B δ(x− x′), (4.32)
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which can be solved in a similar fashion in Sec. 4.2 to yield an expression for

G3d(x,x):

G3d(x,x) =
∫ d2q

(2π)2
`B

2q











1 − 1
q2(|z|+ λR)2

+
e−2q|z|

[

1 + 1
q (|z|+λR)

]2

(1 + qλR)[1 + qλR + (qλR)2]

−
γ (qλR)3 e−2q|z|

[

1 + 1
q (|z|+λR)

]2

[1 + qλR + (qλR)2] [(1 + qλR)(1 + γ) + (qλR)2]











, (4.33)

where γ ≡ λR/λD = 2 τ/(1 − τ). Note that the first term in G3d(x,x) is just the

Coulomb self-energy G0(0) =
∫ d2q

(2π)2
`B
2q which, upon substituting into Eq. (4.30),

exactly cancels the self-energy term in the mean-field free energy Eq. (4.29). Insert-

ing Eq. (4.33) with the self-energy term subtracted and the expression for G2d(x,x)

into Eq. (4.30), we obtain 1
A0

∂β∆F3d
∂`B

= I1(γ)
4πλ3

R

∂λR
∂`B

+ I2(γ)/γ
4πλ3

D

∂λD
∂`B

+ (self-energy), where

the functions I1,2(γ) are given by

I1(γ) =
1
2

ln(1 + γ) + 3

∣

∣

∣

∣

∣

√

1 + γ
3− γ

tan−1

√

3− γ
1 + γ

∣

∣

∣

∣

∣

,

I2(γ) =
γ
2

ln
γ2

1 + γ
+ (2− γ)

∣

∣

∣

∣

∣

√

1 + γ
3− γ

tan−1

√

3− γ
1 + γ

∣

∣

∣

∣

∣

.

Because I1,2(γ) are independent of `B, we can integrate Eq. (4.30) back to obtain

β∆F3d; thus, the total free energy per unit area for the “free” counterions is

βf3d(τ) =
nR

Z
ln

(

nR a3

2ZλR

)

− nR

Z
− I1(γ)

8πλ2
R
− I2(γ)

8πλDλR
. (4.34)

Incidentally, in the limit nc → 0 (or λR → λ), I1(0) = π√
3
. Eq. (4.34) reduces to the

fluctuation correction to the mean-field PB free energy: ∆fpb = − kBT/(8
√

3λ2),

obtained in the previous section. Note that Eq. (4.34) also contains additional

couplings among the fluctuations of the “condensed” and “free” counterions.

The result of the minimization of the total free energy f(τ) = f2d(τ)+f3d(τ)

with respect to the order parameter τ is summarized by its behavior as a function

of the bare coupling constant g = lB/λ, as shown in Fig. 4.2 (at a fixed temperature
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Figure 4.2: The fraction of “condensed” counterions τ ≡ Znc/n0 as a function of
g ≡ lB/λ. It is obtained through the minimization of the total free energy for
lB/a = 10, where a ∼ 1 Å is the size of the counterions. At low surface charge
g � 1, there is no “condensate” and the counterion distribution is described by PB
theory. However, at high surface charge, correlation effects leads to a finite fraction
of condensate.

lB = 10 Å) [4]. At weak coupling g � 1 (low surface charge density), where fluctua-

tion corrections are negligibly small, the counterions prefer to be “free”, i.e. nc → 0,

in order to gain entropy. This is because f3d(nR) in Eq. (4.34) is lower than the

2D ideal gas entropy by a term ∼ ln(λR/a ) which is large when λR/a � 1. This

is not surprising since PB theory is a weak-coupling theory which becomes exact

in the limit T → ∞. However, for higher surface charge density, where correlation

effects become more important, the order parameter τ (the fraction of counterions

“condensed”) makes a finite jump at gc ≈ 1.42 for monovalent counterions (Z = 1).

Thus, the system appears to exhibit a first order phase transition[5]. The physical

mechanism leading to this counterion “condensation” is the additional binding aris-

ing from 2D charge-fluctuations, which dominate the system at lower temperatures.
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For divalent counterions (Z = 2), the correlation effects are even more pronounced

(as expected): the jump occurs at gc ≈ 0.42 with a magnitude ≈ 0.9. Thus, in this

case the charged plate is almost neutralized by the “condensed” counterions. For

lB = 10 Å, the “bare” surface charge density at the condensation threshold is one

unit charge per Σc ∼ 2 nm2 for monovalent counterions and Σc ∼ 15 nm2 for divalent

counterions. Furthermore, we find that Σc decreases with increasing temperature,

e.g., at room temperature lB ≈ 7 Å, Σc ∼ 1 nm2, 7 nm2 for Z = 1 and Z = 2, respec-

tively. These estimates suggest that our results are within the reach of experiments

on charged membranes.

4.4 Conclusion

In summary, using a “two-fluid” model and a variational approach, we have

demonstrated that correlation and fluctuation effects may lead to a “condensation”

transition of the counterions onto their oppositely charged plate. This results, which

may be tested experimentally, provide new insights into the counterion distribution

for highly charged macroions. In particular, this condensation picture may be crucial

to understanding the attraction between two similarly charged plates, separated by

a distance d. Recall that the total pressure of this system is comprised of the mean-

field repulsion and the correlated fluctuation attraction. The repulsion comes solely

from the ideal gas entropy and it is proportional to the concentration at the mid-

plane: Π0(d) = kBTρ0(d/2) = 8kBT/(`BλRd) for d < λR. The fluctuation-induced

attraction is Π(d) = −α kBT/d3 for d > λD, where α ≈ 0.048. Clearly, when a large

fraction of the counterions is “condensed”, the mean-field repulsion is greatly reduced.

Therefore, the attraction arising from correlated fluctuations of the “condensed”

counterions can overcome the mean-field repulsion. This is achieved if d2 < α `BλR/8

and d > λD. Using the estimates in the last paragraph above, these conditions are

met only for divalent counterions at g = gc (corresponding to one unit charge per

Σc ∼ 7 nm2 at room temperature). This is in accord with the simulation performed
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by Guldbrand et al.[6], where the attraction is observed only for divalent counterions

for surface charge densities greater than one unit charge per Σ ∼ 2 nm2. However,

our estimates should be supplemented by a more precise calculation for the system

of two charged plates.
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Chapter 5

The Wigner Crystal Picture

5.1 Introduction

Recent interest in understanding the attraction arising from correlations

between highly-charged macroions focus on formulating theories that go beyond the

PB treatment. For an idealized system of two highly charged planar surfaces, with

counterions distributed between them, PB theory as demonstrated in Sec. 2.3.2

always predicts repulsions. To account for the attraction arising from correlations,

two distinct approaches have been proposed. The first approach as discussed in Sec.

3.4, based on charge fluctuations, treats the “condensed” counterion fluctuations in

the Gaussian approximation. This theory predicts a long-ranged attraction which

vanishes as T → 0[1]. In the other approach based on “structural” correlations

first proposed by Rouzina and Bloomfield [2], the attraction comes from the ground

state configuration of the “condensed” counterions. Indeed, at low temperature, the

“condensed” counterions crystallize on the charged surface to form a 2D Wigner

crystal. When brought together, the counterions of two Wigner crystals correlate

themselves to minimize the electrostatic energy (see Fig. 5.1). The pressure between

71
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d

A

B

Figure 5.1: A schematic picture of two staggered Wigner crystals formed by the
“condensed” counterions at very low temperatures.

them can easily be calculated at zero temperature[2, 4]

ΠSR(d) = − ∂
∂d

{

e2n
ε

∑

l

1
√

|Rl + c|2 + d2
− (en)2

ε

∫ d2r√
r2 + d2

}

' −2π(en)2

ε
e−G0d

(5.1)

for large d, where Rl are the lattice sites, c is the relative displacement vector between

two lattices of the different plane, G0 ≡ 4π/(
√

3 a) is the magnitude of the first

reciprocal lattice vector, and a ≡
(

2/(
√

3n)
)1/2

is the lattice constant. Hence, these

staggered Wigner crystals attract each other via a short-range force which decays

exponentially with the lattice constant as the characteristic length scale. Clearly,

this short-ranged force is strongest at zero temperature and thermal fluctuations

diminish this attraction.

Although the physical origin of the attraction is clear in each approach,

the relationship between them remains somewhat obscure, and this has generated a

debate in the literature[5]. Therefore, it is desirable to formulate a unified approach

which captures the physics of both mechanisms and addresses some important issues,

for example, the temperature dependence of the short-ranged force, computed only

at zero-temperature in Eq. (5.1). It is the goal of this chapter to formulate such an

approach. Since at low temperature the counterion distribution is essentially two-

dimensional, we consider a model system composed of two uniformly charged planes

a distance d apart, each having a charge density en. Confined on the surfaces are
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negative point-like mobile charges of magnitude e. In order to understand correlation

effects that are not captured by PB theory, we assume that the charges form a

system of interacting Wigner crystals and develop a detailed physical picture of the

electrostatic interaction between them at finite temperatures but below their melting

temperature[6].

In particular, we compute the electrostatic attraction between the two layers

by explicitly taking into account both correlated fluctuations and “structural” cor-

relations. (By “structural” correlations, we mean the residual ground state spatial

correlations which remain at finite temperature.) By adopting an elasticity theory,

the total force of the system can be decomposed (approximately) into a short-ranged

component arising from “structural” correlations and a long-ranged component from

correlated fluctuations. They are calculated in Sec. 5.2 within the harmonic ap-

proximation using Boltzmann statistics (classical), which is valid below the melting

temperature of the Wigner crystals. We show that the short-ranged force persists at

finite temperature, and obtain a simple expression – see Eq. (5.24) below – which re-

duces to the zero-temperature result in Eq. (5.1) above[2, 4]. The interesting effect of

thermal fluctuations is to reduce the range of this force and thus the effect is not negli-

gible even below the melting temperature of the Wigner crystals. For the long-ranged

force, this “elastic” calculation – see Eq. (5.20) below – finds exactly the same re-

sult, even including the prefactor, as the Debye-Hückel (Gaussian) approximation[1].

This is to be expected since the long-wavelength density fluctuations, which gives

rise to the long-ranged force, are independent of the local Wigner-crystal-like order-

ing. Thus, an important insight gained here is that what is previously thought of

as disparate mechanisms for the attractions – the short-ranged attraction (ground

state) for low-temperature and the long-ranged attraction (charge-fluctuation) for

high-temperature – are both captured within a single framework.

In addition, at zero temperature there must also be a long-ranged attraction

derived from the quantum fluctuations of the plasmons[4]. This is the low temper-

ature counterpart of the long-ranged force arising from charge-fluctuation at finite
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temperature. While this low-temperature result only bears a conceptual interest for

macroions, it may have real relevance in the larger context of fluctuation-induced

interactions in general, and in semiconductor bilayers in particular[7]. Interestingly,

although similar to the Casimir effect, arising from zero-point fluctuations at T = 0,

the fluctuation-induced force associated with two coupled Wigner crystals is funda-

mentally different. The Casimir effect pertains to two metal slabs separated by a

gap of distance d, outside of which there is no electric field; this force scales d−4

at T = 0[8]. For the case of coupled Wigner crystals, zero-point fluctuations of the

plasmons lead to a characteristically different force, which decays with a novel power-

law: d−7/2[4]. Hence, this long-ranged attractive force dominates the ground state

short-ranged attraction in Eq. (5.1) for large d. Furthermore, it is of fundamental

interest to consider finite temperature effects as well. This is done in Sec. 5.4, where

we first recall the phonon spectrum of the coupled Wigner crystals, identify the plas-

mon modes, which characterize the density fluctuations of the system, and compute

the attractive force arising from fluctuations using explicitly the Bose-Einstein dis-

tribution, which appropriately captures quantum effects at very low temperatures

and thermal effects at higher temperatures for phonons in general and for plasmons

in this particular case. Our result in the classical regime, which scales d−3, agrees

exactly including the prefactor with that based on 2D Debye-Hückel theory and

“elasticity” theory in Sec. 5.2. Thus, we have provided an interesting but different

perspective on the same problem and explicitly show how the d−7/2 force-law at zero

temperature crosses over to the d−3 law at high temperature via an intermediate d−2

regime.

Another point worth mentioning concerns the ordering of 2D solids which

exhibit quasi-long-range-order (QLRO)[9]. It is well-known that a true long-range

order is impossible for 2D systems with continuous symmetries. For a 2D solid, which

is describable by continuum elasticity theory with nonzero long-wavelength elastic

constants, the Fourier components of the density function n(r) =
∑

G nG(r) eiG·r av-

erage out (thermally) to zero for a nonzero reciprocal lattice vector G, i.e. 〈nG(r)〉 =
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〈eiG·u(r)〉 = 0, where u(r) are the displacements of the particles from their equilib-

rium positions; the correlation function decays algebraically to zero:〈nG(r)n∗G(0)〉 ∼
r−ηG(T ) with ηG(T ) = kBTG2(3µs+λe)

4πµs(2µs+λe)
, where µs and λe are Lamé elastic constants.

This slow power-law decay of the correlation function is very different from the expo-

nential decay one would expect in a liquid. Hence the term QLRO. For a single 2D

Wigner crystal, QLRO implies that the thermal average of the electrostatic potential

at a distance d above the plane is zero at any non-zero temperature, in contrast to

a perfectly ordered lattice (T = 0) where the electrostatic potential decays expo-

nentially with d. This may lead to the conclusion that at finite temperatures the

short-ranged force between two coupled Wigner crystals should likewise be zero. As

we show below, this is not the case because the susceptibility, which measures the

linear response of a 2D lattice to an external potential, nevertheless diverges at the

reciprocal lattice vectors as in 3D solids[10].

However, we should mention that in real biological systems the counterions

are best described as a correlated Coulomb fluid, which may be far away from a

Wigner crystal. Nevertheless, it is important to understand counterion-mediated

attractions between two highly charged surfaces in this Wigner-crystal limit, since it

does provide useful qualitative insights into the nature of this problem, and moreover,

the present formulation may serve as a starting point for a more sophisticated theory

which includes melting of coupled Wigner crystals.

This chapter is organized as follows. In Sec. 5.2, we derive an effective

Hamiltonian which describes two interacting planar Wigner crystals starting from

the zero temperature ground state. The total pressure is then decomposed into a

long-ranged and a short-ranged component, which are evaluated in Sec. 5.3.1 and

5.3.2, respectively, and a detailed discussion of our results is presented in Sec. 5.3.3.

In Sec. 5.4, we present an argument for a long-ranged attractive force arising from the

zero-point fluctuations at zero temperature. In addition, we use the Bose-Einstein

distribution to calculate the attractive long-ranged pressure in the quantum regimes.
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5.2 Effective Hamiltonian for Coupled Wigner Crystals

We start with the Hamiltonian for two interacting Wigner crystals: H =

H0 +Hint. Here, H0 is the elastic Hamiltonian for two isolated Wigner crystals

βH0 =
1
2

∑

i

∫ d2q
(2π)2

Παβ(q) u(i)
α (q) u(i)

β (−q), (5.2)

where β−1 = kBT , u(i)(q) is the Fourier transform of the displacement field of ith

layer (i = A or B), Παβ(q) =
[

2πlBn2

q PL
αβ + µs P T

αβ

]

q2 is the dynamical matrix,

µs ≈ 0.245n3/2 lB is the shear modulus[11] in units of kBT , PL
αβ = qαqβ/q2 and

P T
αβ = δαβ−qαqβ/q2 are longitudinal and transverse projection operator, respectively.

Hint is the electrostatic interaction between the two layers:

βHint = lB
∫

d2x d2x′
( ρA(x)− n ) ( ρB(x′)− n )

√

(x− x′)2 + d2
, (5.3)

where ρi(x) is the number density of charges in the ith layer. In order to capture

the long-wavelength coupling as well as discrete lattice effects which are essential for

our discussions on the short-ranged force, we employ a method, similar to that in

Ref.[12], which allows us to derive an effective Hamiltonian that is valid in the elastic

regime where the displacement fields are slowly varying in space, i.e. ∇·u(i)(x) � 1,

but |uA(x)− uB(x)| need not be small compared to the lattice constant a.

Let us introduce a slowly varying field for each layer:

φ(i)
α (x) = xα − u(i)

α [~φ(i)(x)], (5.4)

where the displacement field u(i)(x) is defined in such a way that it has no Fourier

components outside of the Brillouin Zone (BZ). Then, the density ρi(x) can be

written as:

ρi(x) =
∑

l

δ2(Rl − ~φ(i)(x)) det[∂α φ(i)
β (x)], (5.5)

where Rl are the equilibrium positions of the charges, i.e. the underlying lattice sites.

Using the Fourier expansion of the delta function and solving φ(i)
α (x) iteratively in
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terms of the displacement field, we obtain a decomposition of the density for the ith

layer into a slowly and a rapidly spatially varying pieces:

ρi(x)− n ∼= −n∇ · u(i)(x) +
∑

G 6=0

n eiG·[x+u(i)(x) ], (5.6)

where G is a reciprocal lattice vector. Note that we have neglected terms that are

products of the slowly and the rapidly varying terms. Physically, the first term

represents density fluctuations for wavelengths greater than the lattice constant, and

the second term represents the underlying lattice, modified by thermal fluctuations.

Using the density decomposition (5.6), Hint may be written as

βHint =
∫ d2q

(2π)2
2πlB

q
e−qd

∫

d2x
∫

d2x′ eiq·(x−x′)



 n∇ · uA(x)

−
∑

G 6=0

n eiG·[x+uA(x) ]







 n∇ · uB(x′)−
∑

G′ 6=0

n eiG′·[x′+ c+uB(x′) ]



 ,

where c is the relative displacement vector between two lattices of the different

plane and we have used the fact that 1√
x2+d2 =

∫ d2q
(2π)2 eiq·x 2π

q e−qd. Again neglect-

ing the products of slowly and rapidly varying terms, which give vanishingly small

contributions when integrating over all space, Hint separates into two pieces: a long-

wavelength term

βHL
int =

∫ d2q
(2π)2

2πlBn2

q
e−qd qαqβ uA

α (q)uB
β (−q), (5.7)

and a short-wavelength term

βHS
int = +

∑

G 6=0

∑

G′ 6=0

∫ d2q
(2π)2

2πlBn2

q
e−qd

×
∫

d2x
∫

d2x′ eiq·(x−x′) eiG·[x+uA(x) ] eiG′·[x′+ c+uB(x′) ]. (5.8)

In order to obtain a tractable analytical treatment, we approximate this expression

by splitting the sum over G′ into two parts. The dominant part, with G′ = −G is

βHS
int = −

∑

G6=0

∫ d2q
(2π)2

2πlBn2e−qd

q

∫

d2x
∫

d2x′ei (q+G)·(x−x′)eiG·[uA(x)−uB(x′)],

(5.9)
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where we have used eiG·c = −1. The second part (those terms with G′ 6= −G)

contains extra phase factors which tend to average to zero in the elastic limit. As a

first approximation, we neglect such terms. Finally, Eq. (5.9) can be systematically

expanded using a gradient expansion:

βHS
int = −

∑

G6=0

∆G(d)
∫

d2x cos
{

G ·
[

uA(x)− uB(x)
]}

+O(∂αu(i)
β ∂γu(j)

τ ), (5.10)

where ∆G(d) = 4πlBn2

G e−Gd. Putting Equations (5.2), (5.7), and (5.10) together, we

obtain an effective Hamiltonian for the coupled planar Wigner crystals:

βHe = βH0 +
∫ d2q

(2π)2
2πlBn2

q
e−qd qαqβ uA

α (q) uB
β (−q)

−
∑

G 6=0

∆G(d)
∫

d2x cos
{

G ·
[

uA(x)− uB(x)
]}

. (5.11)

The second term in Eq. (5.11) comes from the long-wavelength couplings while the

third term reflects the periodicity of the underlying lattice structure. It is convenient

to transform the displacement fields into in-phase and out-of-phase displacement

fields by u+(x) = uA(x) + uB(x) and u−(x) = uA(x)− uB(x), respectively, so that

the Hamiltonian (5.11) separates into two independent parts: He = H+ +H− with

βH+ =
1
2

∫ d2q
(2π)2

Π+
αβ(q) u+

α (q) u+
β (−q), (5.12)

and

βH− =
1
2

∫ d2q
(2π)2

Π−αβ(q) u−α (q) u−β (−q)−
∑

G 6=0

∆G(d)
∫

d2x cos[G ·u−(x)], (5.13)

where Π±αβ(q) = 1
2

[

2πlBn2

q (1± e−qd)PL
αβ + µs P T

αβ

]

q2. Furthermore, at low temper-

ature, where |u−(x)| is small compared to the lattice constant a, the cosine term

in Eq. (5.13) can be expanded up to second order in |u−(x)| to obtain the “mass”

terms. Within a harmonic approximation H−, up to an additive constant, may be

written as

βH− ' 1
2

∫ d2q
(2π)2

Π−αβ(q) u−α (q) u−β (−q)
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+
1
2

∫ d2q
(2π)2

[

m2
LPL

αβ + m2
T P T

αβ

]

u−α (q)u−β (−q), (5.14)

where m2
L,T = 4πlBn2 ∑

G 6=0 Ge−Gd = 4πlBn2∆0(d). This approximation is valid

below the melting temperature of the Wigner crystals. Note that the mass terms

vanish exponentially with d as also found in Ref.[13]. The fact that the transverse mT

and longitudinal “mass” mL are degenerate is related to the underlying triangular

structure of the lattices[13]. These “masses” are associated with the finite energy

required to uniformly shear the two Wigner crystals, and thus give rise to a gap in

the dispersion relations of the out-of-phase modes. In the next two subsections, we

derive expressions for the long-ranged and the short-ranged pressure as given in Eq.

(5.15) within the harmonic approximation.

5.3 Attractive Force within the Harmonic Approxima-

tion

In this section, we compute the attractive pressure between two planar

Wigner crystals within the harmonic approximation at finite temperatures. The

density decomposition Eq. (5.6) leading to the effective Hamiltonian allows the total

force to be separated into two pieces – an exponentially decaying (short-ranged) force

and a long-ranged power-law force:

Π(d) = − 1
A0

〈

∂Hint

∂d

〉

He

= − 1
A0

〈

∂HS
int

∂d

〉

He

− 1
A0

〈

∂HL
int

∂d

〉

He

= ΠSR(d) + ΠLR(d), (5.15)

where A0 is the area of the plane.

5.3.1 Long-Ranged Pressure

The long-ranged power-law force comes from the correlated long-wavelength

density fluctuations (the plasmon modes). Using Eqs. (5.7) and (5.15), we obtain
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an expression for the long-ranged force:

βΠLR(d) =
2πlB
A0

∫ d2q
(2π)2

e−qd 〈 δρA(q) δρB(−q) 〉, (5.16)

where δρi(x) = −n∇ · u(i)(x) is the long-wavelength density fluctuation to the

lowest order. Making use of the equipartition theorem, the correlation function

〈 δρA(q) δρB(−q) 〉 can be evaluated

〈 δρA(q) δρB(−q) 〉 ≡ N−1
∫

Du±(q) δρA(q) δρB(−q) e−βHe

= −A0
q2

4πlB

[

1
q (1− e−qd) + 4∆0

− 1
q (1 + e−qd)

]

,(5.17)

where N ≡
∫

Du±(q) e−βHe is the normalization factor and ∆0 ≡
∑

G 6=0 Ge−Gd.

Substituting this result into Eq. (5.16), we find

ΠLR(d) = − kBT
d3 α(∆0 d), (5.18)

where

α(x) ∼=
ζ(3)
8π

+
x
π

[

Ci ( 2
√

x ) cos( 2
√

x ) + Si ( 2
√

x ) sin( 2
√

x )
]

, (5.19)

ζ is the Riemann zeta function, and Ci(x) and Si(x) are the cosine and sine integral

functions, respectively. In the large distance limit, the second term in Eq. (5.19)

is exponentially suppressed and can be neglected, yielding α = ζ(3)
8π . Therefore, for

large d we have

ΠLR(d) = − ζ(3)
8π

kBT
d 3 . (5.20)

This is the well-known result from the Debye-Hückel approximation[1]. Note also

that the amplitude ζ(3)
8π

∼= 0.048 is universal for this interaction, induced by the long

wavelength fluctuations[3]. Although the scaling of this charge-fluctuation-induced

force coincides with that of the finite temperature van der Waals interaction, they

are very different at low temperature. This is explored in Sec. 5.4.
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5.3.2 Short-Ranged Pressure

The short-ranged force which decays exponentially owes its existence to the

“structural” correlations. It survives even at non-zero temperature, in contrast to the

conclusion drawn from a single 2D Wigner crystal, as discussed in the Introduction.

However, we expect on physical grounds that the short-ranged force is weakened by

thermal fluctuations. To compute explicitly its temperature dependence, we start

with the expression for this force derived from Eqs. (5.9) and (5.15):

βΠSR(d) = − 2πlBn2
∑

G 6=0

e−
G2
2 〈|u

−(0)|2〉 fG(d), (5.21)

where fG(d) =
∫ d2q

(2π)2 S(q−G) e−qd , S(q−G) =
∫

d2r ei (q−G)·r e−
G2
8 [ B+(r)−B−(r)] ,

and B±(r) = 〈 [u±(r) − u±(0)]2 〉. Note that Eq. (5.21) is exact, provided all the

expectation values are evaluated exactly. For a system of coupled perfect Wigner

crystals at zero temperature, fG(d) = e−Gd. At finite temperature, but below the

melting temperature Tm, we note that B±(r) varies very slowly in space, so that

fG(d) can be approximated by its zero temperature value: fG(d) ' e−Gd. Hence,

we obtain

βΠSR(d) ∼= − 2πlBn2
∑

G6=0

e−Gd
〈

eiG·[uA(0)−uB(0)]
〉

He
. (5.22)

The thermal average of the displacement fields in Eq. (5.22) resembles a “Debye-

Waller” factor which measures the degree to which the short-ranged force is depressed

by thermal fluctuations from its zero temperature maximum value. Because of the

cosine term present in Eq. (5.11), this “Debye-Waller” factor is in general not zero,

unlike the case of a single 2D Wigner crystal. However, if the system has melted

into a Coulomb fluid, this cosine term, which comes from the lattice structure, would

have to be modified.

The required expectation value in Eq. (5.22) only involves H−. Within

the harmonic approximation, the mean-square out-of-phase displacement field can
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be evaluated

〈|u−(x)|2〉 =
λD

2πnd
ln

[

d
4∆0(d)a2

]

+
1

2πµs
ln

[

µs

8πlBn2∆0(d)a2

]

' G0d
2π

[

λD

nd
+

1
µs

]

,

(5.23)

where λD = 1/(2πlBn), a is the lattice constant, µs ≈ 0.245n3/2 lB is the shear

modulus of an isolated Wigner crystal in units of kBT , and in the last line, we

have approximated ∆0(d) by the first nonzero reciprocal lattice vector contribution:

∆0(d) ≈ G0 e−G0d. Note also that the logarithmic dependence on the “mass” (=

4πn2lB∆) is a characteristic of 2D solids. Inserting Eq. (5.23) into Eq. (5.22), we

obtain an expression for the short-ranged pressure at finite temperatures

βΠSR(d) ' − 2πlBn2 e−(1+ ξ/2) G0d. (5.24)

Here, the parameter ξ defined by

ξ =
G2

0

2π

(

λD

nd
+

1
µs

)

, (5.25)

characterizes the relative strengths of thermal fluctuations and the electrostatic en-

ergy of a Wigner crystal, i.e. ξ ∼ kBT a
e2 . Thus, the sole effect of thermal fluctuations

on the short-ranged force is to reduce its range: G0 → G0

(

1 + ξ
2

)

.

5.3.3 Discussion

In summary, we have shown that the total pressure between two coupled

Wigner crystals can be decomposed into a long-ranged ΠLR and a short-ranged

pressure ΠSR. Each force is computed below their melting temperature, where the

harmonic approximation is expected to be valid. The result for the total force is

βΠ(d) ' − 2πlBn2 e−(1+ ξ/2) G0d − α(∆0d)
d3 , (5.26)

where ξ = G2
0

2π

[

λD
nd + 1

µs

]

and α(∆0d) = ζ(3)
8π for large d. In Fig. 5.2, we have plotted

ΠSR and ΠLR for two values of the coupling constant, Γ ≡ lB
a = 150 and 50. Note

that Γ ≡ e2√πn/(εkBT ) is the ratio of the average Coulomb energy among charges
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and their thermal energy. Not surprisingly, they show that ΠSR dominates for small

d, and ΠLR for large d. However, it is interesting to note that even for high values

of Γ, ΠLR dominates as soon as d ∼ a.

According to Eq. (5.24), the magnitude of ΠSR tends to decrease expo-

nentially with temperature. This strong decrease with increasing temperature is

consistent with the Brownian dynamics simulations of Grønbech-Jensen et al.[3].

The shortening of its range may be attributed to the generic nature of strong fluctu-

ations in 2D systems, and can also be understood by the following scaling argument.

Referring back to H− in Eq. (5.13), one can show that the anomalous dimension

of the operator cos[G0 · u−(x)] is [ Length ]−ξ and correspondingly the dimension

of ∆G0(d) is [ Length ]ξ−2. Since ∆G0(d) is the only relevant length scale in H−,

we must have
〈

eiG0·u−(0)
〉

∼ ∆
ξ

2−ξ
G0

[14]. Therefore, the short-ranged pressure scales

like

ΠSR(d) ∼ −∆G0(d)×
〈

eiG0·u−(0)
〉

∼ −∆G0 ×∆
ξ

2−ξ
G0

∼ − e−G0d
(

2
2−ξ

)

. (5.27)

In the low temperature limit (ξ � 1), we see that the range of ΠSR is G0

(

1 + ξ
2

)

as

in Eq. (5.24). This scaling argument also suggests that at higher temperatures ther-

mal fluctuations may have interesting nonperturbative effects. At zero temperature

ξ = 0, so ΠSR in Eq. (5.24) reproduces the known result of exponentially decaying

attractive force[2, 4]. It should be mentioned that in real biological systems, coun-

terions are likely to be a correlated fluid with short-ranged order. However, as long

as Γ � 1 and the lateral characteristic correlation length is much larger than the

spacing between the layers, it is possible to have “structural” correlations and our

calculation should capture the short-ranged attraction at least qualitatively.

The long-ranged pressure for large d in Eq. (5.20) agrees exactly, includ-

ing the prefactor, with the Debye-Hückel approximation. This is hardly surprising

since the existence of plasmons (average density fluctuations) is independent of local

structure, and they are present for solids and fluids alike. Thus, the asymptotic

long-ranged power-law force must manifest itself even after QLRO is lost via a 2D
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Figure 5.2: Plots of ΠSR and ΠLR versus d for Γ = 150 (a) and 50 (b). Observe that
the crossover (ΠLR ≈ ΠSR) occurs at about d ∼ a. Π0 ≡ kBT (lB/a4)× 10−3.
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melting transition driven by dislocations[15]. Therefore, our formulation captures the

essential physics of the attraction not only arising from the ground state “structural”

correlations, but also from the high temperature charge-fluctuations.

5.4 Quantum Contribution to the Long-Ranged Attrac-

tion

According to the classical calculations above, correlation effects give rise

to a “structural” short-ranged and a long-ranged attractive force. Recall that the

long-ranged force vanishes as T → 0, and that the short-ranged force is strongest at

zero temperature but vanishes exponentially with distance. This observation suggests

that for sufficiently large separations correlated attractions at finite temperatures are

stronger than those arising from the zero temperature ground state. However, at low

temperatures zero-point fluctuations of the plasmons should be incorporated and as

demonstrated below they induce an attractive long-ranged interaction, which exhibits

an unusual fractional-power-law decay (∼ d−7/2), in contrast to the zero-temperature

van der Waals interaction (∼ d−4). Hence, in the T → 0 limit, this long-ranged at-

traction from zero-point fluctuations dominates the short-ranged “structural” force

at large separations. Furthermore, we expect that quantum fluctuations persist at

finite temperature, and in this section, we also compute their temperature depen-

dence.

To this end, it may be more convenient to employ a method with which

fluctuation-induced forces are usually calculated[3]. The advantage of the elastic

approach in Sec. 5.2 is that the short-ranged force is captured more transparently.

However, for the long-ranged force, an equivalent formulation in terms of the plasmon

excitations seems more natural in the low temperature regime where quantum effects

are important. Below, we recall the phonon spectrum of the coupled Wigner crys-

tals, identify the plasmon modes, which characterize the density fluctuations of the

system, and compute the attractive force arising from fluctuations using explicitly
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the Bose-Einstein distribution, which appropriately captures quantum effects at very

low temperature and thermal effects at higher temperature, for phonons in general

and plasmons in this particular case.

Within the harmonic approximation to the effective Hamiltonian, the dy-

namical matrix can be diagonalized to yield four modes. Two of them are the shear

modes of the system that do not contribute to the long-ranged force[4]. The domi-

nate modes which lead to the long-ranged attraction are the two plasmon modes of

two coupled 2D Wigner crytals, which have the following dispersion relations:

ω2
1(q) =

8πe2n
mε

∆0(d) +
2πe2n
mε

q ( 1− e−qd ); (5.28)

ω2
2(q) =

2πe2n
mε

q ( 1 + e−qd ), (5.29)

where m is the mass of the charges and ∆0(d) ∼ e−Gd is proportional to the en-

ergy gap (the “mass” term) for the out-of-phase mode. The plasmon modes are

related to the correlated charge-density fluctuations in the two layers. At any finite

temperature, the free energy of the low-lying plasmon excitations is given by the

Bose-Einstein distribution

F(d)/A0 =
h̄
2

∑

i=1,2

∫ d2q
(2π)2

ωi(q) + kBT
∑

i=1,2

∫ d2q
(2π)2

ln
[

1− e−βh̄ωi(q)
]

, (5.30)

where A0 is the area of the plane. Since the energy gap ∆0 is exponentially damped

for large distances, its contribution to the free energy may be neglected in the large

distance limit, where the long-ranged force is expected to be dominant.

The first term in Eq. (5.30) arising from the zero-point fluctuations leads

to an attractive pressure

Π0
LR(d) = − 1

A0

∂ F0(d)
∂ d

= −

√

h̄2e2n
mε

α1

d7/2 , (5.31)

where α1 is a positive numerical constant of order unity, explicitly given by

α1 =
1

4
√

2π

∫ ∞

0
dxx5/2 e−x

{

1√
1− e−x

− 1√
1 + e−x

}

. (5.32)
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Thus, zero-point fluctuations induce a long-range attraction which decays

with a novel power law ∼ d−7/2. This should be contrasted with the usual Casimir-

like force ∼ d−4, which arises from, for example, the acoustic phonon zero-point

fluctuations. We note that this power law stems from the 2 dimensional nature of

charged systems: 2-D plasmons do not have a finite gap, as they do in 3D. For an

order of magnitude estimate, assuming m ∼ 10−25 kg, n ∼ 1/50 Å−2, d ∼ 10 Å, and

ε ∼ 80, we find Π ∼ 10−25 J/Å3. This is close to the magnitude of the short-ranged

force in Eq. (5.24) at zero temperature: ΠSR(d) ∼ 10−24 J/Å3, and thus may be just

as important under suitable conditions.

An additional contribution to the pressure at finite temperature can be

derived from the second term in Eq. (5.30),

βΠLR(d) = − h̄Λ
4πd 7/2

∫ ∞

0
dxx5/2

{

1
exp[η

√

x(1− e−x)]− 1
e−x

√
1− e−x

− 1
exp[η

√

x(1 + e−x)]− 1
e−x

√
1 + e−x

}

, (5.33)

where Λ =
√

2πe2n
mε and η = βh̄Λ/

√
d.

In the limit η � 1, Eq. (5.33) can be systematically expanded in powers

of η−1. The lowest order term is given by ΠLR(d) = −α2
kBT
λLd2 , where λL ≡ aB

lB
2λD

,

aB ≡ εh̄2/(me2) is the effective Bohr radius, α2 ≡ 1
4π

∫∞
0 dx x2

ex−1 = ζ(3)/(2π), and ζ

is the Riemann zeta function. We observe that the low temperature condition η > 1

is equivalent to the short distance limit d < λL. In the opposite limit η � 1 or the

large distance limit d > λL, we expand the exponential in the denominator of Eq.

(5.33) to obtain ΠLR(d) = −α kBT
d3 , where α = ζ(3)/(8π). This result agrees with

the classical calculation in Sec. 5.3.1 as it should. Therefore, we have the following

regimes for correlated attraction from plasmon fluctuations at finite temperature

ΠLR(d) ∼







−kBT/d3, for λL < d,

−kBT/(λLd2), for λL > d.
(5.34)

We note that λL, in contrast to λD, increases with decreasing temperature, indicat-

ing, as one might expect, that quantum fluctuations are important at low tempera-
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tures. Furthermore, since ΠLR(d) → 0 as T → 0, the attractive interaction as T → 0

is governed by zero-point fluctuations as emphasized above. In the strong Coulomb

coupling limit lB/λD ∼ 100, we get λL ∼ 3 Å for ε ∼ 100 and aB ∼ 1/20 Å.

It should be emphasized that the results in this section is independent of

the nature of the ground state. Thus, any system where low temperature modes

of plasmon are important may, in principle, exhibit the behavior predicted in this

section. This means that quantum contributions to the long-ranged attraction are

unlikely to be relevant for macroions. Our motivation here stems from the desire

to understand the charge-fluctuation-induced attraction between coupled layers in

a complete picture. However, our results may have real impact in a greater field

of fluctuation-induced forces in general and for electrons in bilayer semiconductor

systems in particular. Indeed, there exist recent theoretical efforts devoted to this

subject[7].

5.5 Discussion and Conclusion

In this chapter, we have studied analytically the electrostatic attraction be-

tween two planar Wigner crystals in the strong Coulomb coupling limit. We show

that the total attractive pressure can be separated into a long-ranged and short-

ranged component. The long-ranged pressure arises from correlated fluctuations

and the short-ranged pressure from the ground state “structural” correlations. We

also compute the very low temperature behavior of the fluctuation-induced attrac-

tion, where long-wavelength plasmon excitation must be described by Bose-Einstein

statistics. The results are summarized in Fig. 5.3, showing different regimes for the

charge-fluctuation-induced long-ranged attraction, including the high temperature

results in Ref. [1] and the characteristic decay length lSR for the short-ranged force.

For small d, the short-ranged force is always dominant, but the decay length shrinks

with increasing temperature. The crossover from the short-ranged to long-ranged

dominant regimes occurs about d ∼ a. Thus, for large d � a only the long-ranged
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Figure 5.3: A schematic phase diagram summarizing different charge-fluctuation-
induced attraction regimes. The characteristic decay length lSR of the short-ranged
force is also shown.

force is operative, which crosses over from d−7/2 at zero temperature to the finite

temperature distance dependence of d−2 if d < λL and d−3 if d > λL. This provides

a unified description to the electrostatic attraction between two coupled Wigner

crystals.

In addition, our formulation may offer further insights into the nature of

the counterion-mediated attraction at short distances. As discussed in Sec. 5.3.2,

the reason that the short-ranged force in Eq. (5.22) does not vanish is because of

the cosine term in H−, which represents the underlying lattice structures, and our

results indicate that the strength of the short-ranged force decreases exponentially

with temperature. However, at higher temperatures the expression for ΠSR in Eq.

(5.24) is no longer valid, since the harmonic approximation breaks down. Indeed,

the scaling argument leading to Eq. (5.27) suggests that if the full cosine term is
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retained, ΠSR may exhibit nonperturbative behaviors as ξ → 2−.

To discuss qualitatively what happens at higher temperatures, we assume

that ∆G(d) is sufficiently small and the system of interacting Wigner crystals is below

its melting temperature Tm. Then, the charges between the two layers may unlock

via a Kosterlitz-Thouless (KT) type of transition, determined by the relevancy of the

cosine term in H−, at ξ = 2 [16]. (An order of magnitude estimate for the coupling

constant is Γ ∼ 13.) In the locked phase, ξ � 2, the periodic symmetry in H−
is spontaneously broken, and the resulting state is well captured by the harmonic

approximation. On the other hand, when ξ > 2 the fluctuations are so large that

the ground state becomes nondegenerate (gapless), i.e. the layers are decoupled. To

compute ΠSR in the unlocked phase, HS
int given in Eq. (5.10) can be treated as a

perturbation in evaluating the “Debye-Waller” factor in Eq. (5.22). To the lowest

order, we obtain

ΠSR(d) ' −kBT
λ2

Da

(

ξ − 1
ξ − 2

)

e−2G0d . (5.35)

We first note that this expression diverges as ξ → 2+, indicating the breakdown of the

perturbation theory as the temperature is lowered. Furthermore, in contrast to Eq.

(5.24), the range of ΠSR remains constant and the amplitude acquires a temperature

dependence of ∼ 1/T (for large ξ � 2), reminiscent of a high temperature expansion.

However, the above picture may be modified if the charges have melted into

a Coulomb fluid via a dislocation-mediated melting transition[15] before ξ → 2−. If

this is the case, further analysis is necessary to obtain a more complete picture of the

high temperature phase. Although the spatial correlations in a system of coupled

2D Coulomb fluids are expected to be somewhat different from 2D Wigner crystals,

the solid phase results above suggest a qualitative lower limit of Γ ∼ 13 at which

ΠSR crosses over from low temperature in Eq. (5.24) to high temperature behavior

in Eq. (5.35). It may be of interest to note that in Ref. [7], an estimate for the upper

limit of Γ at which the Poisson-Boltzmann equation breaks down is of the order of

Γ ∼ 3. For divalent counterions “condensed” onto a highly charged (opposite) plate
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of surface charge density σ ∼ e/10 Å−2, Γ ∼ 20 at room temperature and the coun-

terions are best described as a 2D correlated Coulomb fluid. However, as long as the

characteristic lateral correlation length is much larger than the spacing between the

two layers, our elastic approach should capture the qualitative behavior of the short-

ranged attraction. A better theory should include melting of coupled 2D Wigner

crystals by introducing excitations of dislocations into the effective Hamiltonian Eq.

(5.11) similar to what is done in Ref. [17]. These considerations may help to estab-

lish an analytical theory of the attraction arising from counterion correlations, not

captured by the Poisson-Boltzmann theory. The present formulation is a first step

in that direction.
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Chapter 6

Conclusion

In this thesis, we have discussed fluctuation and correlation effects in highly-

charged surfaces. These effects are neglected in the mean-field Poisson-Boltzmann

theory, which has been sucessful in explaining phenomena occuring in weakly-charged

systems. However, in recent years, a different paradigm has started to emerge. Vari-

ous experiments and computer simulations suggest that fluctuations and correlations

cannot be neglected in many electrostatic phenomena in the context of colloidal and

biophysical systems. The attraction between like-charged objects provides a striking

example. This thesis has explored the physics of this attraction for a particular ge-

ometry of two plates in two limits: fluctuations about the high-temperature “saddle”

point (mean-field) and correlations arising from the zero-temperature ground-state.

Another interesting manifestation of correlation effects is the condensation of counte-

rions. We have shown that there is a finite fraction of counterions “condensed” onto

the charged plate if its surface charge density exceeds a certain threshold. Thus,

mean-field treatment fails to capture the counterion distribution at high surface

charge density. Of course, many conceptual questions still remain. For example,

melting of coupled Wigner crystals and its implication for the short-ranged attrac-

tion are particular relevant, since in most biological systems, counterions are best

described as a correlated fluid. However, we have demonstrated in this thesis that
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fluctuation and correlation effects are crucial to our understanding of physical phe-

nonmena in which electrostatics plays an central role.



Appendix A

Membrane Curvature Elasticity

In this appendix, we review the essential elements of membrane curvature

free energy. This provides the necessary background to understand electrostatic

contribution to the bending rigidity.

Membranes are composed of self-assembling amphiphilic molecules. They

contain a hydrophilic polar head and a hydrophobic tails. When dissolved in a

aqueous solution like water, they spontaneously organize into different morphologies.

Under suitable conditions, in particular, they form the lamellae phase, consisting

of a stack of alternating amphiphilic bilayers and water regions. In addition, the

polar head of these amphiphilic molecules acts as a surface agent which substantially

lower the surface tension between water and their tails (oil) by adjusting their areal

density. Hence, the elastic properties of these fluid membranes are characterized by

three macroscopic parameters – a bending elastic modulus κb, a Gaussian modulus

κG, and a spontaneous curvature H0, which characterize their curvature deformation.

The deformation free energy per unit area, expressed in terms of the mean curvature

(see Fig. A.1)

H =
1
2

(

1
R1

+
1

R2

)

, (A.1)
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R

R

1

2

Figure A.1: Curvature on a 2D surface. The length scales R1 and R2 denote the
radii of curvature.

and Gaussian curvature

K =
1

R1R2
, (A.2)

given by the Helfrich free energy may be written as:

fcur =
κb

2
(H − H0)2 + κG K. (A.3)

This form for the curvature free energy per unit area is the most general

expansion in curvatures H and K up to quadratic order, consistent with the sym-

metry of the problem. Within an additive constant, the free energy of a sphere with

radius R, a cylinder with radius R, and a sinusoidal undulating membrane H0 = 0

with wavenumber q and a amplitude h are given by

fsp =
2κb + κG

R2 − 2κbH0

R
, (A.4)

fcyl =
κb

2R2 −
κb H0

R
, (A.5)

fun =
1
4
κb q4 h2. (A.6)
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Therefore, the parameters κbH0 and κb + κG may be extracted by expanding the

electrostatic free energy up to second order in 1/R for spherical and cylindrical

geometries and κb can be directly obtained by expanding terms up to q4 h2 for an

undulating membrane.


