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1 Introduction:

In this set of notes systematic methods for locating periodic orbits in the circular
restricted three body problem (CRTBP) are presented which take advantage
of the symmetry of the problem and the method of differential corrections. A
method for numerically computing the stable and unstable manifolds of unsta-
ble periodic orbits is developed as well. These ideas are applied to halo and
Lyapunov orbits.
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2 Symmetry in the CRTBP

It is not immediately clear that the CRTBP has any symmetry. The geometry
of the configuration space is certainly symmetric with respect to rotation about
the x-axis, as the two primaries lie there. Moreover the collinear libration
points are on the x-axis and the equilateral libration points, while not on the
x-axis, are symmetric with respect to it. Indeed, the potential function for the
CRTBP depends only on the distance of a particle from the primaries so that
it is symmetric with respect to the x-axis.

On the other hand, the equations of motion contain anti-symmetric terms
due to the coriolis acceleration in the rotating frame. These terms would seem,
at first to rule out any symmetry in the problem. Nevertheless, the following
can be shown.

Theorem 1 Let x0 = (r0,v0) ∈ R6 be a point in the phase space of the
CRTBP, and φ(x0, [0, T ]) be the trajectory curve obtained by flowing x0 for-
ward by time T . Also, let xf = φ(x0, T ). Then

φ∗(Axf , [0, T ]) ≡ Aφ(xf , [0,−T ])

where

A =




1 0 0 0 0 0
0 −1 0 0 0 0
0 0 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1




solves the CRTBP with φ∗(Axf , 0) = Axf , and φ∗(Axf , T ) = Ax0.

The symmetry described here is not hard to picture. The theorem says that if
the flow φ takes x0 to xf in time T along some path C in the configuration space,
then is takes Axf to Ax0 in the same time, along a path C∗ in configuration
space which is just the reflection C∗ = AC of C across the xz-plane with a time
reversal along C.
Proof: That φ(x0, [0, T ]) is a solution curve means that

d

dt
φ(x0, t) = f(φ(x0, t))

for all t ∈ [0, T ], where f : R6/{−µ}⋃{1 − µ} → R6 is the vector field of the
CRTBP.

To establish the theorem, we have to show that the same is true of the
function defined by

φ∗(Axf , t) ≡ Aφ(xf ,−t)
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for t ∈ [0, T ]. To do this we compute

d

dt
φ∗(Axf , t) =

d

dt
Aφ(xf ,−t)

= A
d

dt
φ(xf ,−t)

But φ(xf ,−t) = φ(x0, T − t) for all t ∈ [0, T ], by the group properties of the
flow. Then

d

dt
φ(xf ,−t) =

d

dt
φ(x0, T − t)

= −f(φ(x0, T − t))

where the minus sign is due to the time reversal. (The proof of this is in the
first note set).

Now consider the effect of the transformation A on the vector field;

f(φ∗(Axf , t)) ≡ f(Aφ(xf ,−t)) (1)

= f(Aφ(x0, T − t))

=




−φ4

φ5

−φ6

φ1 + 2φ5 − 1−µ
r3
1

(φ1 + µ)− µ
r3
2
(φ1(1− µ))

(−φ2)− 2(−φ4)− 1−µ
r3
1

(−φ2)− µ
r3
2
(−φ2)

− 1−µ
r3
1

(φ3)− µ
r3
2
(φ3)




=




−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 0 0 −1 0
0 0 0 0 0 1







φ4

φ5

φ6

φ1 + 2φ5 − 1−µ
r3
1

(φ1 + µ)− µ
r3
2
(φ1(1− µ))

(φ2)− 2(φ4)− 1−µ
r3
1

(φ2)− µ
r3
2
(φ2)

− 1−µ
r3
1

(φ3)− µ
r3
2
(φ3)




= −Af(φ(x0, T − t)) (2)

as

Aφ =




φ1

−φ2

φ3

−φ4

φ5

−φ6



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and both r1 =
√

(φ1 + µ)2 + φ2
2 + φ3

3 and r3 =
√

(φ1 − (1− µ))2 + φ2
2 + φ3

3 are
independent of the sign of φ2.

Putting the pieces of the computation together, one has that

d

dt
φ∗(Axf , t) = A

d

dt
φ(xf ,−t)

= A(−f(φ(x0, T − t)))
= −Af(φ(x0, T − t))
= f(φ∗(Axf , t))

for all t ∈ [0, T ]. But this is exactly what it means to say that φ∗ solves the
CRTBP on [0, T ]. Evaluating the solution at 0 and T gives

φ∗(Axf , 0) = Aφ(xf , 0) = Axf

and

φ∗(Axf , T ) = Aφ(xf , T ) = Ax0

Then φ∗ solves the desired boundary value problem, and the theorem is com-
plete.

¤

2.1 Symmetric Orbits

The previous theorem turns out to be very useful for computing periodic orbits.
Suppose that at time t = 0 a trajectory φ begins at a point x0 ∈ xz, where xz
is the xz-plane. Further suppose that it’s velocity at this time is normal to the
plane; i.e. that it has no velocity in either the x or the z directions. Finally
suppose that at some later time t = τ the trajectory φ returns to the xz-plane,
with normal velocity in the opposite direction of it’s initial velocity.

Then the orbit is T -periodic with T = 2τ . To see this, let x0 ∈ xz be the
initial condition, and xf = φ(x0, τ) ∈ xz. Then define

φ∗(xf , t) = φ(x0, τ + t)

Note that because x0 and xf are in the xz-plane, we have that Ax0 = x0

and Axf = xf . (A fixes this entire plane). Then

φ∗(xf , t) = φ∗(Axf , t)

and by the previous theorem (combined with the existence and uniqueness the-
orem for flows)

φ∗(Axf , t) = Aφ(xf ,−t)
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with φ∗(Axf , 0) = Axf = xf , and φ∗(Axf , τ) = Ax0 = x0. φ∗ is merely
the reflection of φ about the xz-plane (with a time reversal). Further since
φ(x0, τ + t) = φ∗(xf , t) by definition, it follows that

φ(x0, 2τ) = φ∗(xf , τ) = x0

so that φ is indeed a 2τ periodic orbit. Since it’s path in configuration space is
just φ and it’s reflection about the xz-plane, it is a symmetric orbit.

These conditions will be used to compute symmetric periodic orbits later
in the notes. This is done by choosing initial conditions in the xz-plane which
satisfy the symmetry conditions, and then integrating until trajectory returns
to the plane with the opposite orientation. This orbit can be used as the ‘initial
guess’ for a Newton procedure, where the target state is as above; namely that
the orbit returns to the xz-plane with normal velocity.

In such a procedure the x, z, ẏ, and τ parameters can vary with x = 0,
z = 0, ẋ = 0, and ż = 0 as the target. This is developed fully later in the notes.
First we derive a symmetry property of the manodromy matrix which will aid
in the Newton computation, as the necessary differential in the Newton method
depends on the manodromy matrix.

2.2 Symmetry Properties of the Manodromy Matrix

The symmetry theorem for the CRTBP shows that if an orbit satisfies certain
symmetry conditions, then it is periodic. In this case, a symmetric periodic
orbit is determined by it’s half orbit. It is reasonable then, that the manodromy
matrix of the full orbit would depend on the state transition matrix of the half
orbit. In this section we show that;

Theorem 2 Let x0, xf , and τ be as above. Then the manodromy matrix
Φ(0, T ) associated with φ(x0, [0, T ]) is given by

Φ(0, T ) = AJΦ(0, τ)T J−1AΦ(0, τ)

where T = 2τ .

(See Note Set 2 for the definition of Φ and it’s basic properties).

Proof: Φ is the solution of the variational equations, and as such is itself a
flow. Then

Φ(0, T ) = Φ(−τ, 0) ◦ Φ(0, τ)

We begin by choosing a y0 ∈ B(x0, ε) (in the argument that follows it is not
necessary that ε be small, but it may help to picture things this way. This is
because, while the linear mapping Φ(0, τ) can act on any vector in R6, it is only
a good linear approximation of φ(x0, τ) for y0 near x0). Then define

y1 = Φ(0, τ)y0
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Recall that x0 and Φ(0, τ)x0 = xf are on the xz-plane, so B(x0, ε) is a sym-
metric neighborhood. Then y1 lies in a symmetric neighborhood of xf

Now define the reflections

Ay0 ≡ y∗0

and

Ay1 ≡ y∗1

Observe that A is it’s own inverse, so that

Ay∗0 = y0

and

Ay∗1 = y1

as well. Inserting this into the definition of y1 gives

Φ(0, τ)Ay∗0 = Ay∗1

or

y∗1 = AΦ(0, τ)Ay0∗

We claim that

y∗0 = Φ(−τ, 0)y∗1 (3)

To see this note that φ(xf ,−τ) is the inverse of φ(x0, τ). (Compose these
maps to check this). Now, consider the two Taylor expansions of φ(y∗1) about
x∗1. First

φ(y∗1, τ) = x∗1 + Φ(−τ, 0)y∗1 + o(y∗1)
= Ax1 + Φ(−τ, 0)Ay1 + o(Ay1)
= x1 + Φ(−τ, 0)Ay1 + o(Ay1)

Similarly, using the symmetry relation φ(y∗1, τ) = Aφ(y1,−τ) we also have

φ(y∗1, τ) = Aφ(y1,−τ)
= A[x1 + Φ−1(0, τ)y1 + o(y1)]
= Ax1 + AΦ−1(0, τ)y1Ao(y1)
= x1 + AΦ−1(0, τ)y1 + Ao(y1)
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But these are the same expansions, and what’s more since derivatives are unique,
we can match like powers, at least up to the remainders. From this we have

Φ(−τ, 0)Ay1 = AΦ−1(0, τ)y1

Acting on y∗0 gives

Φ(−τ, 0)y∗1 = Φ(−τ, 0)Ay1

= A[Φ−1(0, τ)y1]
= A(y0)
= y∗0

which gives the claim. Having established it the theorem follows from y∗1 =
AΦ(0, τ)Ay0∗ and that

y∗0 = AΦ−1(0, τ)Ay∗1

Using these, we have

Φ(−τ, 0)y∗1 = AΦ−1(0, τ)Ay∗1

or

Φ(−τ, 0) = AΦ−1(0, τ)A

Recalling that in the CRTBP the matrix Φ is symplectic with respect to

J =
(

0 I
−I K

)

where

K =




0 2 0
−2 0 0
0 0 0




it is the case that

Φ−1(0, τ) = JΦ(0, τ)T J−1

Finally

Φ(0, T ) = Φ(−τ, 0) ◦ Φ(0, τ)
= AJΦ(0, τ)T J−1AΦ(0, τ)
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¤

This theorem gives a computationally efficient method for computing the
the manodromy matrix of a symmetric orbit based only on knowledge of it’s
half orbit. This will be useful in the applications to follow, where we develop a
Newton method for finding symmetric half orbits. The theorem says that com-
puting the stability of the resulting full orbit does not require the computation
of the full orbit.

3 Halo Orbits in the CRTBP, and the Method
of Differential Corrections

A halo orbit is a periodic orbit in the CRTBP which is out of plan near L1. The
halo orbits do not exist in the linearization about L1, but are a fully nonlinear
phenomenon.

From the point of view of an observer on earth (or on the secondary body
in the CRTBP) a satellite or projectile in one of these orbits looks as though
it is orbiting the primary, or tracing a halo about the primary. However the
halo orbits are typically quite far from the primary, in the ’neck’ of the jacobi
surface.

Then a halo orbit is an ideal location for studying solar winds, as a satellite
placed there will always have clear line of sight with both the earth and the sun,
yet because of the halo like property, will never pass directly between the earth
and the sun. From the point of view of an observer on the earth this means
the satellite never passes through the disk of the sun, where communications
would be lost. (This is why placing such an observatory at L1 is impractical;
communication with such an observatory would be impossible!). NASA has
made use of these orbits in several missions including the ‘Solar and Heliospheric
Observatory’ (SOHO) mission, and the Genesis mission.

3.1 Computation of a Halo Orbit

The question of how one knows halo orbits exist and how to find them is a
fascinating story. An excellent reference for the theory and design of halo orbits
is [J]. Briefly one considers the dynamics near L1.

The linearized model tells you that L1 has the center×center×sadle stabil-
ity. However, as is well know, the linear model is insufficient for making accurate
studies of the dynamics in the center. For this, normal forms are necessary. (A
normal form is a polynomial approximation of the Hamiltonian).

The unstable dynamics can be decoupled from the center dynamics near the
libration point by computing a normal form for the Hamiltonian of the CRTBP
about L1 to some desired (high) order. The resulting dynamical system is
numerically integrating and a Poincare section is chosen. If the order of the
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normal form is high enough, this will give a good approximation of the dynamics
in the center manifold in a large neighborhood of L1.

Restricting the dynamics of the center manifold of L1, one has a 4 dimen-
sional dynamical system. Fixing an energy level (value for the Jacobi integral)
reduces the dynamics to 3 dimensions. Finally, considering Poincare sections of
the 3 dimensional flow gives a two dimensional dynamical system.

Examining the Poincare sections so obtained suggests that out of plane pe-
riodic orbits exist a substantial distance from the libration point. These orbits
appear as fixed points of the Poincare section. Beginning with the coordinates
of the fixed point of the Poincare section as an initial guess, one can return to
the full CRTBP and use a Newton Method to search for the halo orbit.

Again, all of this is described in great detail in [J]. In this section, what we
will assume is that we have been told that Halo Orbits exist in the CRTBP,
and in fact that one can be found roughly 1, 200, 000km from the earth, in the
direction of the sun. The orbit has ‘radius’ roughly 280, 000km, for a projectile
traveling roughly 0.350km/sec. (Imagine this is rough data from either the
Genesis or SOHO missions). In a later section we will present a method that can
be used to find and compute families of halo orbits about any collinear libration
for any value of µ. But for now lets assume that we have only approximate
physical data as to the location of a specific halo orbit in the Earth/Sun model.

To convert this data to the dimensionless coordinates of the CRTBP we use
the fact that in metric units the distance from the earth to the sun (secondary
to primary) is 1Au = 1.496 ∗ 108km and the time it takes the secondary to
orbit the primary is 365.25days, while in the CRTBP the distance between the
primaries is 1 and the period is 2π. Then

1, 200, 000km× 1Au

1.496 ∗ 108km
≈ 0.00802Au,

280, 000km× 1Au

1.496 ∗ 108km
≈ 0.00187Au

and

0.35
km

sec
× 1Au

1.496 ∗ 108km
× 31557600sec

year
× 1year

2π tu
≈ 0.0118Au/tu

where for the moment we take Au and tu to be the units of the CRTBP (these
are in fact dimensionless, like radians).

Since the 1, 200, 000km is measured from the earth, but the coordinates
of the CRTBP are centered at the center of mass, we use the fact that the
location of the secondary is 1 − µ, where here GMsun = 1.327 ∗ 1011km3/sec2

and GMearth = 4.035 ∗ 105km3/sec2 so that

µ =
GMearth

GMsun + GMearth
≈ 3.05 ∗ 10−6

We will use the symmetries of the CRTBP to target the orbit. We begin
with an initial condition in the xz-plan, with no initial x or z velocity and
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satisfying the conditions above. We target a final state which returns, after
time τ to the xz-plane, arriving with no x or z velocity. If we find such a half
orbit then the symmetry of the CRTBP tells us that integrating from the initial
position, backward in time by τ will bring us to the same final condition. Then
simply integrating from the initial position over a time 2τ will return us to the
initial position, and we would have a periodic orbit.

We formalize this as follows. Our initial guess, in the coordinates of theCRTBP,
is

x0 = 1− µ− 0.00802
y0 = 0
z0 = −0.00187
ẋ0 =
ẏ0 = −0.0118
ż0 = 0

as we are told that the projectile will appear to orbit the sun in a clockwise
fashion when viewed by an observer on the earth.

We will hold the x0 coordinate fixed and search for z∗0 , y∗0 , and τ∗ such that
ẋ∗(τ∗), ż∗(τ∗), and y∗(τ∗) are all zero.

Define f : R3 → R3 by

f(z, ẏ, τ) =




φ4(x0, 0, z, 0, ẏ, 0, τ)
φ6(x0, 0, z, 0, ẏ, 0, τ)
φ2(x0, 0, z, 0, ẏ, 0, τ)




where

φ(x, y, z, ẋ, ẏ, ż, τ) =




φ1(x, y, z, ẋ, ẏ, ż, τ)
φ2(x, y, z, ẋ, ẏ, ż, τ)
φ3(x, y, z, ẋ, ẏ, ż, τ)
φ4(x, y, z, ẋ, ẏ, ż, τ)
φ5(x, y, z, ẋ, ẏ, ż, τ)
φ6(x, y, z, ẋ, ẏ, ż, τ)




with φ : U ⊂ R6 → R6 the flow generated by the CRTBP. Here we are treating
x, y, z, ẋ, ẏ, ż, and τ as independent variables, and define

U = R6\{−µ, 0, 0, 0, 0, 0} ∪ {1− µ, 0, 0, 0, 0, 0}.

To find the initial conditions for the halo orbit it is sufficient to find x∗ =
(z∗0 , ẏ∗0 , τ∗)T satisfying the equation

f(z∗0 , ẏ∗0 , τ∗) =




0
0
0



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A Newton method for this problem is

xn+1 = xn − [Df(xn)]−1f(xn)

with x = (z, ẏ, τ) and x0 = (z0, ẏ0, τ0). Here (z0, ẏ0, τ0) is the initial guess as to
the whereabouts of the halo orbit (coming presumably from experimental data).

The differential is

Df(x) =




∂
∂z φ4

∂
∂ẏ φ4

∂
∂τ φ4

∂
∂z φ6

∂
∂ẏ φ6

∂
∂τ φ6

∂
∂z φ2

∂
∂ẏ φ2

∂
∂τ φ2




=




Φ(4,3) Φ(4,5) g4(x0, 0, z(τ), 0, ẏ(τ), 0)
Φ(6,3) Φ(6,5) g6(x0, 0, z(τ), 0, ẏ(τ), 0)
Φ(2,3) Φ(2,5) g2(x0, 0, z(τ), 0, ẏ(τ), 0




where g : U ⊂ R6 → R6 is the vector field for the CRTBP;

g(x, y, z, ẋ, ẏ, ż) =




g1(x, y, z, ẋ, ẏ, ż)
g2(x, y, z, ẋ, ẏ, ż)
g3(x, y, z, ẋ, ẏ, ż)
g4(x, y, z, ẋ, ẏ, ż)
g5(x, y, z, ẋ, ẏ, ż)
g6(x, y, z, ẋ, ẏ, ż)




=




ẋ
ẏ
ż

2ẏ + DxU
−2ẋ + DyU

DzU




and z(τ) = φ3(x0, 0, z, 0, ẏ, 0, τ), ẏ(τ) = φ5(x0, 0, z, 0, ẏ, 0, τ). With these pieces
in place we hope that if x0 is close enough to the halo orbit, then xn → x∗ as
n →∞.

Also note that τ0 is not given and must be determined. A good starting
estimate τ0 of τ∗ is obtained as follows. Integrate the given initial data. The
resulting trajectory moves in the negative y direction away from the xz-plane,
while z increases. We integrate until the trajectory returns to the plane. The
time at which this occurs is our τ0. The situation is shown in Fig 1.
This can be done with a computer program, or simply with a little experimen-
tation with the initial data. We found that at time t = 1.45, y(t) ≈ 1.9839e− 4
and take τ0 = t.

Then we have all the necessary pieces to begin the Newton method. The
program haloNewton3 implements the method. After 14 iterations we find
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Figure 1: The initial trajectory

z∗0 = −0.00191718187218
ẏ∗0 = −0.01102950210737
τ∗ = 1.52776735363559

which gives the initial conditions

xhalo =




0.99197555537727
0

−0.00191718187218
0

−0.01102950210737
0




and the period T = 2τ∗ = 3.05553470727118. We integrate these initial con-
ditions over this period and the orbit shown in Fig 2 and Fig 3. The results
show that we have indeed found the halo orbit. It is shown in blue while the
trajectory of the initial guess is black.

The difference between the initial and final conditions of the orbit are roughly
2.57e− 13, which gives a measure of the degree to which the numerically com-
puted orbit is actually periodic. Then the problem is solved to thirteen signifi-
cant figures.

The energy of the halo orbit is Chalo = 3.00079710038642. The halo orbit
and the zero velocity curve are shown in Fig 4, (again the initial guess trajectory
is black).
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Figure 2: Top View of the Halo Orbit
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Figure 3: Front View of the Halo Orbit
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Figure 4: The Halo Orbit and it’s Zero Velocity Surface

We can see the the Halo Orbit sits in the neck and goes around L1. The
initial conditions, in physical units, lie no less than a million kilometers from
the earth. But we see that the halo is at least as wide as it is far from the earth.
So the orbit is quite large and it’s period is just a little under a half a year.

Now we consider the stability of the orbit. The programs GCRTBP.m,
stateTransCRTBP.m, and sysSolveCRTBP.m solve the differential equation

Φ̇ = DgΦ Φ(t0, t0) = I

from time t = t0 through t = tf . We use the halo orbit for the reference orbit
and t0 = 0, tf = T to obtain the monodromy matrix Φ(0, T ) for the halo orbit.

The manodromy matrix of a trajectory of a time invariant vector field will
always have one as an eigenvalue. Further, for a generic orbit in a Hamiltonian
system, the monodromy will always have a second eigenvalue of one. Both of
these are due to the non-uniqueness of periodic orbits in Hamiltonian systems.

The first unity eigenvalue has an associated eigenvector which points in the
direction of the flow (so is a tangent vector to the periodic orbit). The non-
uniqueness here is due to the trivial fact that any point on a periodic orbit is a
periodic point for the flow. (At each point on the trajectory we could begin a
periodic orbit. All the curves so obtained are of course identical).

The second unity eigenvalue is due to a less trivial phenomenon. The eigen-
vector corresponding to this eigenvalue points in the direction of change in
energy. To put it another way, every point in a Hamiltonian system has an as-
sociated energy (or first integral. Basically this is just the fact that the Hamil-
tonian is conserved along trajectories. This is an ‘energy like’ quantity, and we
often abuse the language a little and just call it energy). The energy along the
trajectory of that point is of course constant, but this will typically not be the
only orbit with a given energy. Each fixed energy level defines a co-dimension
one submanifold of the phase space so unless the phase space is two dimensional
each such submanifold will contain many orbits. The eigenvector associated to
the second unity eigenvalue is normal to the energy surface of the periodic orbit
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(this is discussed in more detail in the section on the family of halo orbits near
L2).

The remaining eigenvalues are the eigenvalues of the linearization of the
Poincare map associated with the periodic orbit, restricted to the orbits energy
level. Then the remaining eigenvalues describe, up to first order, the dynamics
near the orbit (as the dynamics near the orbit are topologically conjugate to
the dynamics of the Poincare section, and the dynamics of the Poincare section
are locally topologically conjugate to the dynamics of it’s linearization). An
excellent reference is [MH]. This was also described in somewhat more detail in
the last section of the previous set of notes.

Computing the monodromy matrix for the halo orbit gives

Φ(0, T ) ≈ 103




1.132 −0.026 0.191 0.232 0.213 0.026
−1.042 0.025 −0.176 −0.213 −0.196 −0.024
0.127 −0.003 0.022 0.026 0.024 0.003
3.454 −0.080 0.582 0.706 0.649 0.079
−2.133 0.049 −0.359 −0.436 −0.400 −0.048
0.933 −0.021 0.157 0.190 0.175 0.022




This has determinant 0.99999999951225 and eigenvalues

λ1 = 1503.58386741952
λ2 = 1.00000696756
λ3 = 0.96647413634− 0.25676398461i

λ4 = 0.96647413634 + 0.25676398461i

λ5 = 0.99999303249
λ6 = 0.00066507763

The determinant tell us we should not trust more than ten figures. Looking at
the eigenvalues we see that two of the them are approximately unity as expected.
Discarding these, the remaining eigenvalues describe the dynamics near the halo
orbit, restricted to the energy level Chalo.

We have one very large, and one very small eigenvalue. We can in fact check
that

1/λ1 = 1/1503.58386741952 = 0.00066507763 = λ6

so the real eigenvalues are reciprocal. This is as it should be since the flow
preserves phase space volume. The eigenvectors corresponding to the stabele
and unstable eigenvalues direct us to the stable and unstable manifolds of the
orbit. We will come back to this in the next section.

The remaining two eigenvalues λ3 and λ4 lie on the unit circle. These cor-
respond to the center directions of the orbit. Then we expect there are orbits
near the halo which remain near the halo for all time. These orbits are in fact
in the center manifold of L1 as discussed above.
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3.2 The Family of Halo Orbits at L1

A periodic orbit in a Hamiltonian system is called elementary if it’s manodromy
matrix has exactly two unity eigenvalues. For such a periodic orbit we have the
following theorem (see [MH])

Theorem 3 (The Cylinder Theorem) An elementary periodic orbit of a Hamil-
tonian system lies in a smooth cylinder of periodic solutions parameterized by
the Hamiltonian integral.

Ths proof of this uses the poincare map of the periodic orbit. If the orbit is
elementary then this map has exactly one unity eigenvalue and application of
the implicit function theorem gives a one parameter branch of fixed points for
the map, that vary with energy.

Then having found one Halo Orbit and observing that it indeed has exactly
two unity eigenvalues, we can use this as a starting place to move along the
cylinder. We use the initial conditions of the halo orbit from above as a starting
point to find a new halo orbit at a slightly larger value of x (x coordinate closer
to the Earth). If we find another halo orbit here, we iterate the process. In this
way we compute the cylinder from the theorem. The program which caries this
out is “haloFamily.m”.
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Figure 5: decreasing branch of the cylinder of halos

Figure 5 shows an annulus or cylinder of orbits. It is the branch in the
direction of decreasing Jacobi Integral (which we sometimes call the Jacobi
energy, or just energy). The orbits increase in diameter as they get close to
earth. However their periods get shorter and shorter (this information is kept
track of in the program). Then the trajectories nearer the earth move with
greater velocity.

For energies lower than the right edge of the cylinder our Newton method
looses track of the halo orbits, and begins to converge to a completely different
family of orbits. By the cylinder theorem the halo orbits must cease to be
elementary, and take on additional unity eigenvalues. This begs that we plot
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the eigenvalues as a function of distance (energy) along the cylinder. In fact we
plot the moduli of the eigenvalues in 6.
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Figure 6: moduli of the eigenvalues of the halos

Each line is the value of the modulus of one of the eigenvalues, and it appears
all but the blue are near or less than or equal to one throughout. The blue is the
unstable eigenvalue and the plot suggests that it’s magnitude decreases steadily
until it seems to reach one, and then it remains one for a short interval before
behaving erratically and then returning to one.

The horizontal axis of the plot is just a normalized count of which orbit we
are on, and has no physical units. Zero on this plot is the halo orbit, and one is
the end of the computation, at which time the Newton method has converged
to another family. Since the computation found 450 orbits total, one on the
horizontal axis is the 450th orbit. From inspection of the program data we
know that the Newton method looses the halo family near 0.9. So the graph
seems to suggest that the new family is stable.

More interesting is the fact that the unstable direction seems to vanish for a
brief time before the bifurcation. To see if this is really the case, we inspected by
hand, the eigenvalues for orbits 390−400 and indeed find that for what seems to
be an interval of halo orbits, before the breakdown, there are exactly two unity
eigenvalues and four complex eigenvalues on the unit circle. This suggests the
existence of stable halo orbits. Sure enough, one can choose initial conditions
just off one of these halo orbits, and the resulting orbit remains bounded to it
for several periods (possibly longer, we only integrated through 2).

What occurs on the second branch of the cylinder, when we increase the
Jacobi Integral, is at least as interesting. How does the family of halo orbits die
off in this direction? The evolution of the cylinder is shown in 7

It seems that the diameter of the cylinder decreases steadily, balancing the
behavior in the other branch, and looks for a moment like it will simply close
itself off around L1. But the surface begins to warp and flatten itself down into
the xy-plane. Then the halo orbits seem converge toward the Lyapunov family
near L1.
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Figure 7: increasing branch

In fact the initial conditions of the 90th halo orbit are

x0 =




0.99019555537727
0

0.00000000000000
0

−0.00148544716640
0




which is completely in plane. Further if we plot this orbit we see that it is in a
10−3 neighborhood or L1 and looks elliptic. We do not show this picture as it
is essentially the same picture we saw in the previous note set when examining
the linearized dynamics about L1.

But this suggests post hoc, a method which might find halo orbits. Recall
that in order to find our first halo orbit we were given experimental data known
to be close to a halo orbit. Instead we could have begun with an periodic orbit
in the xy-plane from the linearized problem. We showed in the pervious set of
notes that, in a 10−3 neighborhood of L1, these conditions are close to an in
plane periodic Lyapunov orbit. Using this as a starting point we could then
have constructed the cylinder of halo orbits, just as we have done here, only in
reverse.

3.3 Family of Halo Orbits at L2

Let’s test the validity of this procedure at one of the other collinear libration
points, say L2. Beginning with the program ‘linearDynamicsL2.m’(which is a
small modification of ‘problem5L1.m’) and using the methods developed in the
last set of notes, we find that the initial conditions
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x0lin =




1.0102213775543
0.0
0.0
0.0

−0.00085810939290
0.0




give a periodic orbit in the linearized dynamics at L2 with half period τ0 =
1.52727484975025. Again the pictures are not qualitatively different from those
in the previous notes, so we suppress them.

Using x0lin and τ0 as initial guesses in the program ‘haloL2.m’ (which is
essentially the same as the program ‘haloNewton3.m’ that was used to find our
first halo orbit) after six Newton steps the algorithm converges in the first twelve
significant figures to a planar Lyapunov orbit near L2 with initial conditions

x0 =




1.01022137755430
0
0
0

−0.00086783896829
0




and τf = 1.52747206932445. Recall that the program holds the x coordinate
fixed and adjusts the initial z, ẏ, and τ , and note the small differential correction
in these variables.

Now, this orbit can be used as the starting point for the program ‘haloFam-
ilyL2.m’, which is a modification of ‘forwardHaloOrbits.m’ designed to walk us
backward from the initial orbit, toward the Earth. The results of this scheme
are shown in fig 8
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Figure 8: Cylinder of in plane orbits emanating from L2
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The family of orbits so obtained is completely planar. We have found an inter-
esting family of Lyapunov orbits, and we see that as we follow them toward the
earth, they take on more and more of a kidney shape. Certainly this has not
been a waste of time, but we don’t yet have the halos at L2.

Perhaps a modification of the strategy. The algorithm moves only the x
coordinate and has the z, ẏ, τ coordinates free. If we force the procedure out
of plane near one or the larger Lyapunov orbits, will the procedure find a halo?

To this end we make the following modification to the program ‘Newton3.m’.
We begin with a large in plane Lyapunov orbit as the initial guess. Then fix
a small z0 > 0 out of plane and let the Newton method search for x, ẏ, and τ
with z0 fixed. The program which caries out this scheme is ‘haloNewtonL2.m’.

Begging with an in plane Lyapunov orbits as above, we choose somewhat
arbitrarily, a primer orbit with initial conditions

x0 =




1.00675137755428
0
0
0

0.01867323092996
0




and initial half period τ0 = 3.23544384321752/2. This is used as the initial
guess for the program ‘haloNewtonL2.m’ with the minor modification that we
add an out of plane component z0 = 0.0001 as described above.

The results are exactly what we hoped. After 14 Newton iterations the
program finds an out of plane orbit which is periodic to thirteen significant
figures. The initial conditions the Newton scheme converges to are

x∗0 =




1.00842815565444
0

0.0001
0

0.00981039306520
0




with τ∗ = 3.10262658029110, and plotting these shows that we have indeed
found an out of plane periodic orbit near L2.

Now, that we have such a halo orbit near L2 (which in fact has exactly two
unity eigenvalues; we have checked this but don’t give the numbers here) the
cylinder theorem grantees that the orbit is not isolated. There is a cylinder of
halo orbits, and we hope to find it.

x∗0 gives a near plane halo. We hope to use this as a seed for the program
‘haloFamilyL2.m’ which will grow the cylinder and find large amplitude L2

halos.
The results are shown in 9. We see that we have indeed recovered a structure
similar to that in fig 7 except now the orbits grow out if L2, instead of collapsing
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Figure 9: Cylinder of halo orbits emanating from L2

into L1. Moreover we have built the cylinder in reverse; starting with an in
plane orbit and arriving at halo orbits whose location we did not know even
approximately before the computation.

This method is a vast improvement over the method used to compute the
family of halos at L1, where we were basically handed an initial condition close
to some halo orbit. Using this scheme we should be able to find halo orbits near
any of the collinear libration points, and at other values of µ. Or at least we
have an explicit process which could lead to results. We have not proven that
the method always works, and some experimentation was involved in selecting
an Lyapunov orbit to prime the computation. It would be nice to have a sound
method for making this choice.

The state of the art for finding halo orbits is the method of normal forms
described above, developed by Jorba, Simo, Masdemont, Gomez and others,
and developed in [J]. On the other hand, the method of normal forms requires
substantial computation time and complexity. For design purposes, and if one
were in a hurry, the scheme described here might prove effective. (In fact I had
a discussion with Masdemont which confirms that this is what people do).

4 Computing Stable and Unstable Manifolds of
Periodic Orbits Through Linear Analysis

In the previous section we computed halo orbits and their linear stability using
the monodromy matrix to approximate the linearization of the Poincare map
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for the halo orbit. This linear analysis showed that many of the halo orbits have
(one dimensional) stable and unstable directions. Then there are orbits which
converge to the halo orbit in positive time, and orbits which converge to them
in backward time.

Let o(x∗0)
.= oh denote the halo orbit. The set

W s(oh) = {x ∈ U : φ(x, t) → oh as t →∞}
is called the stable manifold of oh. This set is non-empty by the linear analysis
above. Similarly

Wu(oh) = {x ∈ U : φ(x, t) → oh as t → −∞}
is the unstable manifold of oh and again is non-empty. These are global objects
by their definitions. By intersecting with a small enough neighborhood of the
halo orbit we get the local stable and unstable manifolds. It can be shown
that these are in fact smooth manifolds as the name suggests and that they are
tangent to the stable and unstable eigenspaces near the halo orbit. Much more
information about stable and unstable manifolds can be found for example in
[MH], and [R].

For the moment it’s enough to note that the linear analysis of the previous
section, combined with the definition of the stable and unstable manifolds as
the sets of points which flow to oh in either forward or backward time, give us
a practical method by which we can numerically compute these manifolds.

The method is simple, at least in principle. The orbit is one dimensional,
with one unstable (resp. stable) direction. Then the unstable (resp. stable)
manifold is two dimensional, and will be parameterized by two coordinates.
In fact, the unstable (resp. stable) manifold can be shown to be foliated by
unstable (resp. stable) orbits ([R]) hence is topologically (locally) a cylinder
S1 × (R), with angular coordinate parameterized by the halo orbit itself, and
linear coordinate parameterized by time along the unstable (resp) orbit.

For the angular coordinate we simply divide oh up into N points x∗k, 1 ≤
k ≤ N . To each point there corresponds a time τk such that x∗k = x∗(τk),
where here x∗(t) is the halo orbit with initial condition x∗0 found by the Newton
method, i.e;

oh = {x∗(t) : 0 ≤ t < T}
Let ξu0 (resp ξs0) be the eigenvector associated with the unstable (resp

stable) eigenvalue of the monodromy matrix. These vectors are tangent to the
unstable (resp stable) manifold at x∗0

It can in fact be shown that the stability type of the state transition matrix
of any point x∗kon the halo orbit is independent of k and that the eigenvectors
can be computed if the state transition matrix is know at a base point x∗k. They
are just the eigenvectors of the monodromy matrix (which is computed at x∗0)
multiplied by the state transition matrix of the new point x∗k.

The relationship is
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ξuk
= Φ(0, τk)ξu0

and

ξsk
= Φ(0, τk)ξs0

where ξuk
(resp ξsk

) is tangent to the unstable (resp stable) manifold at x∗k.
Then for each x∗k we compute the state transition matrix Φ(0, τk) and from

this obtain the tangent space to the stable and unstable manifolds there, by the
formulae above. Set a tolerance ε. If ε is small enough then

xuk
(0) = x∗k ± εξuk

and

xsk
(0) = x∗k ± εξsk

are points very nearly on the unstable (resp stable) manifolds. We integrate
these initial conditions over some time interval [0, Tf ] obtaining the orbits xsk

(t).
Then t along these orbits is the second coordinate on the manifold. By varying
k and t we obtain a good approximation of the manifolds.

4.1 The Stable and Unstable Manifolds of the L1 Halo
Orbit

The procedure described in the previous sub-section is carried out by the pro-
grams positiveBranch.m, negativeBranch.m, unstablePositiveBranch.m, unsta-
bleNegativeBranch.m, which compute the positive and negative branches of the
stable and unstable manifolds of the halo orbit that was found by the Newton
method in the previous section.

The halo orbit is parameterized by 100 points. Fig 10 gives a look at the
branch of the stable manifold on the Earth side of L1 (manifold is blue). The
earth (which is hard to see as the manifold wraps around it) is a green star, the
halo orbit itself is the black loop, and L1 is the black star. We have plotted
the zero velocity surface associated with the orbit so that it’s position and the
embedding of it’s stable manifold can be seen with reference to the neck.

We took ε = 2∗10−8 and parameterized the unstable orbits by t ∈ [0, 2.25∗T ]
where T is the period of the halo orbit. Because the halo orbit is so large, the
manifold takes up a lot of space in the Earth’s energy cavity.

Fig 11 shows a close up of the same manifold and parameterized over a
shorter time interval. Here you can just see the Earth as a red star in the
middle of the picture (where the embedding stable manifold seem be wrapping
the most). It’s not clear what the exact geometry of the embedding it. However
it is clear that the stable manifold passes very near the earth.

This kind information has can be very useful for mission design. To send
a satellite to the halo orbit, one designs an orbit which goes from a low earth
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Figure 10: Stable Manifold of the Halo Orbit; Secondary Body Branch

Figure 11: Stable Manifold of the Halo Orbit

orbit, to the stable manifold of the halo. Then the satellite will be carried by
the dynamics of the stable manifold to the halo orbit, as the dynamics on the
stable manifold is gradient-like.

Fig 12 shows the other branch of the stable manifold. This is obtained
by taking initial conditions scaled by minus one times the stable eigen vector.
This branch goes away from the secondary body, out toward the (primary) Sun,
which is shown in the middle as a red star. This integration time used was much
longer as this branch of the manifold extends through a much larger portion of
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Figure 12: Stable Manifold of Halo Orbit; Primary Body Branch

phase space.

Figure 13: Stable Manifold of Halo Orbit; Close Up Near L1

The same manifold is shown in 13. This time we take a closer look, inte-
grating over a shorter time, and from a new angle. This view highlights tube
like structure of the invariant manifold.

Now we look again at the global picture but with the unstable manifold
plotted as well. This is Fig 14. We see that opposite L1 near L3 the manifolds
seem to intersect. If they do, as the picture suggests, this would imply the
existence of an orbit which goes to the halo in forward time, and comes from it
in backward time. Such an orbit is called a homoclinic connection.

Such an intersection is a strong indicator of interesting dynamics. If the
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intersection exists and is non-degenerate enough (say transverse intersection
or even just ’topological crossing’) this implies the existence of very complex
‘chaotic’ dynamics ([GR]).

In that paper it is shown that one can find orbits which “shadow” the dy-
namics on the halo orbit (which is an invariant torus in the center manifold of
L1) and then “shadow” the unstable manifold to the intersection with the stable
manifold. Then the stable manifold can be followed back to the halo.

Again, if certain non-degeneracy conditions are satisfied then there is a re-
gion of phase space, near the halo, on which the dynamics are topologically
semi-conjugate to symbolic dynamics. In short this means that there exist
trajectories that shadow the halo as many times as you like, then traverse ho-
moclinic connection, then orbit the halo any other number of times we like.

The presence of symbolic dynamics implies the existence of orbits corre-
sponding to any sequence of ones and zeros, where a one in the sequence means
going around the halo orbit, and a zero means going around the homoclinic
connection. So if you pick the sequence 00110101 . . ., then there exists an or-
bit which goes around the connection twice, then around the halo once, then
alternates around the connection and then the halo, and so on.
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Figure 14: The Primary Side Branches of the Stable (blue) and Unstable (red)
Manifolds

Fig 15 shows the intersection of the stable and unstable manifolds at the halo
orbit. It should be noted that in the phase space the manifolds only intersect
at the halo (at least this close to the halo orbit, if they truly intersect in the
phase space it is probably closer to L3). The manifolds are two dimensional
objects which embed properly into six dimensional space. It is only when we
project them into the three dimensional configuration space that they seem to
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Figure 15: The Primary Side Branches of the Stable (blue) and Unstable (red)
Manifolds: Intersection at the Halo

intersect.
A similar observation is that putting an projectile “on” the stable manifold

involves not just getting the projectile to a certain point in configuration (phys-
ical) space, but also getting it there with the right velocity. The stable and
unstable manifolds are not just subsets of the configuration space, but instead
are subsets of the full tangent or cotangent bundle.

4.2 Other Periodic Orbits

In this section we will look for a couple of other periodic orbits, and imitate the
above analysis on these, in order to illustrate that the utility of the methods
developed in the previous sections are not at all limited to the study of halo
orbits.

4.3 Stable and Unstable Manifolds of the Lyapunov Or-
bits

Consider a Lyapunov orbit about L1 in the Earth/Moon system. By using the
Linear analysis from the previous set of notes and a modification of the Newton
method developed in these notes, we find that the initial conditions
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x0 =




0.83946302646687
0
0
0

−0.02596831282986
0




produce an orbit about L1 which is periodic to 12 significant figures, has period
T = 2.69239959528586, and energy C = 3.18894909055242. The orbit is shown
in fig 16
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Figure 16: A Lyapunov Orbit

Linear stability analysis shows that the orbit has a stable and unstable di-
rection, a two dimensional center, and of course two unity eigenvalues when
considered as an orbit in the spatial problem. In the planar problem the orbit
is purely unstable.

Now we will compute the stable and unstable manifolds of this orbit. Since
the problem is planar this will produce nicer pictures than the pictures of the
stable and unstable manifolds of the halo orbits above (or at least pictures easier
to read).

The procedure is exactly as before. In fact we use the program ‘unstable-
PositiveBranch.m’ which actually computes the stable branch in forward time.
This program was designed to compute the stable manifold of the halo orbit,
but it computes the stable manifold for the Lyapunov orbit just as easily. The
only change that needs to be made is that the data above is entered, instead of
the halo orbit data. The branch of the stable manifold which encloses the Moon
is shown in fig 18, while the unstable branch is in fig
The fact that the stable and unstable manifolds obviously intersect several times
in the configuration space begs the question wether they intersect in the phase
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Figure 17: The Stable Manifold of the Lyapunov Orbit about the Moon
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Figure 18: The Un-Stable Manifold of the Lyapunov Orbit about the Moon

space. If they do, then the Lyapunov orbit has a homoclinic connection and
gives rise to complicated dynamics. This will make the subject of a future set
of notes, but for now we simply cite [J]
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