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1 Introduction: Non-Inertial Frames and the Cir-
cular Restricted Three Body Problem

These notes introduce a reduction of general three Body dynamics which is often
quite useful in applications and which is an active area of dynamical systems
research in it’s own right. The system models the motion of a small projectile
in the field of two much larger primaries, whose relative motion is known. The
equations of motion as well as the only know integral of motion for this reduction
are derived. The system has five equilibrium points. The location of these are
found and stability is investigated. The dynamics near these points is explored
in both the linear and nonlinear cases. In addition we present some simulation
results which highlight the rich global dynamics of the problem.

In the next section, the equations of motion for the Circular Restricted
Three Body Problem (CRTBP) are derived. The differential equations will
be derived in the most ‘by hand’ fashion imaginable, without the use of any
machinery from the theory of Hamiltonian systems. The motivation for this
is that even though a sophisticated theory of coordinate transformations exists
for Hamiltonian systems, this theory is developed out of interest in applications
and not for love of abstraction for abstraction for abstractions sake.

The motivation for the theory of canonical transformations comes precisely
from problems in fluid and celestial mechanics such as the one considered here,
and working the problem without leaning on any transformation theory suggests
much of the development of the theory and highlights it’s utility.

It’s also valuable to see how the problem can be done with only ideas from
elementary calculus and linear algebra. The derivation given here is the one you
might do at your desk if you were sitting down to think about the problem for
the first time (unless you are a Hamiltonian dynamists). The whole subject of
transformation theory is enriched by working a few such examples. Similarly,
the theory is unintelligible to someone who has never tried to work without it.

Often one begins with a problem in inertial (or “physical”) coordinates hav-
ing some natural symmetries which the inertial frame does not exploit. It is
hoped that by changing coordinates to a more symmetrical frame the problem
will be simplified. The motion of say, a spherical pendulum may be easier to
understand when the equations of motion are expressed on the tangent bundle
of a sphere rather than in R6 which is in some ways an un-natural frame for this
problem. For example, the set of all possible configurations of the pendulum
is a bounded set of measure zero in R3, so that somehow, R3 is an inefficient
configuration space for this problem.

Further the change of reference may bring out connections to other problems,
as the spherical pendulum in the nonlinear frame will be found to have the same
equations of motion as a bead rolling without slipping in a spherical bowl.

Another such a problem is the CRTBP from celestial mechanics. To de-
scribe this system begin with two bodies m1 and m2 in circular orbits about
their center of mass. A third body m3 is introduced, whose mass is considered
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to be negligible compared to the first two. Then it’s presence does not disturbs
the circular motion of the primary bodies.

This last statement will be made more precise later, but the physical intuition
is that the situation is similar to that of a satellite in the gradational field of
the earth and moon (whose orbits are almost circular) or an astroid in the field
of Jupiter and the Sun. The model is idealized, but can make a fine starting
point toward understanding more complicated configurations, such as a satellite
in the Earth-Moon system perturbed by the Sun, or in the Earth-Moon System
if the eccentricities of the primaries becomes important.

1.1 Derivation of the Equations of Motion for the Circular
Restricted Three Body Problem

Begin by considering the equations of motion for the three body problem in an
arbitrary inertial reference. We will use variables r1, r2, and r3 ∈ R3 for the
positions of the three bodies, with masses m1,m2, m3 respectively. With no loss
of generality, suppose that m1 ≥ m2 ≥ m3.

In the absence of any further simplifying assumptions the equations of mo-
tion are

r̈1 = G

(
m2

|r12|3 r12 +
m3

|r13|3 r13

)
(1)

r̈2 = G

(
m2

|r21|3 r21 +
m3

|r23|3 r23

)
(2)

r̈3 = G

(
m1

|r31|3 r31 +
m2

|r32|3 r32

)
(3)

Where as always rij = rj − ri is the vector pointing from the tip of the vector
ri to the tip of the vector rj .

We are interested in a special situation. We suppose that the bodies at r1,
and r2 are in circular motion about their center of mass. Call these the primary
and secondary masses, also refereed to as the primaries.

We have established (in the first set of notes) that we can change coordinates
so that the center of mass is at the origin and has zero velocity. Another linear
change of variables brings the plane in which the primaries orbit to the xy-plane.
These transformations do not change the equations of motion, they only change
the initial conditions.

Now suppose that the third body is very small compared to both primaries.
If it is small enough then it’s effect on the primaries will be almost negligible,
and we will assume that they stay in circular orbits about their center of mass.
What we want to study is motion of the third body in the field generated by
the primaries.

Note that the scalar m3 appears only in equations (1) and (2). If we let
m3 go to zero, then these equations reduce to the equations of the two body
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problem. Since we are assuming that the primaries evolve on circular orbits, we
take r1(t), ṙ1(t) and r2(t), ṙ2(t) to be know.

Observe now that the equation of motion for the third body does not contain
the scalar m3 at all. This equation is unaffected when when we let m3 go
to zero, and it’s still possible to make sense out the the dynamical system
obtained by taking the limit as m3 goes to zero. We simply consider the third
body’s evolution to be governed by non-autonomous second order nonlinear
vector differential equation

r̈3 = G

(
m1

|r31|3 r31 +
m2

|r32|3 r32

)
(4)

= G

(
m1

|r1(t)− r3|3 [r1(t)− r3] +
m2

|r2(t)− r3|3 [r2(t)− r3]
)

(5)

where r1(t) and r2(t) are known functions of time.
As it stands this equation is little better than the one we started with. A

nonautonomous system of second order scalar ODE’s is only marginally less
headache than the original system of nine second order differential ODE’s we
began with. Especially as the original system was autonomous.

Even if we were to begin numerically experimenting with this system, we find
the behavior often strange and lurching. Later we will show some trajectories of
this system in these coordinates. The primary effect of these will be to highlight
how much is actually gained by the coordinate change we are about to preform.

We will change to a rotating coordinate frame. This will have the advantage
of fixing the position of the primaries and results in autonomous equations of
motion. This in turn will allow fixed points in the dynamics. The down side is
that the resulting frame is non-inertial. We will see that the trade off is worth
it, and that it is possible to gain great insight into the dynamics of the system
by this trick.

Lets assume that at time zero the primaries are on the x axis, this m1 to the
left of the origin (center of mass) at −x1 and m2 on the right at x2, and that
they rotate in a counterclockwise manor. Again, this can be done by a linear
change of variables; a rotation and possibly a reflection, which change our initial
conditions but not the form of the equations.

Now we will make a nonlinear change of variables which will change out equa-
tions (but incidentally leaves the initial conditions alone, as the transformation
will be the identity at time zero). Define Rω : R3 × R→ R3 by

Rω(t) =




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1




and let the matrix act on vectors in R3 by matrix multiplication (so at each
time the mapping is linear, in fact it’s simply rotation by an angle −ωt).

The transformation is ivertable with inverse
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R−1
ω (t) =




cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1




(it’s a simple exercise to check that multiplying these two matrices together, in
any order, yields the identity). But what is the effect of this transformation?

Imagine the untransformed system at time zero. The primaries are on the
x-axis at −x1 and x2 with initial velocities pointing straight down and straight
up respectively. Letting time begin to pass, the two bodies travel in counter-
clockwise circular orbits around the origin. At time π/2ω they have moved 90◦

from their initial positions.
Applying Rω(π/2ω) to both r2(π/2ω) and r1(π/2ω) has the result of rotating

each clockwise by 90◦, putting each back on the x axis at their original positions.
And there is of course nothing nothing special about the time π/2ω. We choose
it to make the angles easy to visualize, but the same comments work for any
time at all. Then Rω has the effect of fixing the primaries to the x-axis, and is
the transformation we seek.

Define the new variable p ∈ R3 by

p =




x
y
z


 = Rω(t)




r1
3

r2
3

r3
3


 = Rω(t)r3

where r1
3, r

2
3, r

3
3 are the components of r3. In the new coordinates, the positions

of the primaries are fixed. We now derive the equations of motion for the third
body in these coordinates.

Again, we avoid the use canonical transformation theory and even fairly
elementary results from physics about acceleration in rotation frames in favor
of the most low tech method we can think of; we simply plug in and compute.

The inertial equation of motion for the third body is second order, so we
note that r3 = Rω(t)−1p and compute

ṙ3 =
d

dt
[R−1

ω (t)p]

= Ṙ−1
ω (t)p + R−1

ω (t)ṗ

and from this

r̈3 =
d

dt

(
Ṙ−1

ω (t)p + R−1
ω (t)ṗ

)

= R̈−1
ω (t)p + 2Ṙ−1

ω (t)ṗ + R−1
ω (t)p̈

Note that this is the left hand side of the equations of motion for the third body.
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To deal with the right hand side, note that Rω(t) and it’s inverse are both
rotations, and hence preserve areas, and lengths. We can see this explicitly by
computing

|rij |2 = rT
ijrij

= [rj − ri]T [rj − ri]
= [Rω(t)−1pj −Rω(t)−1pi]T [Rω(t)−1pj −Rω(t)−1pi]
= [Rω(t)−1(pj − pi)]T [Rω(t)−1(pj − pi)]
= [pj − pi]T [Rω(t)−1]T Rω(t)−1[pj − pi]
= [pj − pi]T Rω(t)Rω(t)−1[pj − pi]
= [pj − pi]T [pj − pi]
= pT

ijpij

= |pij |2

so that |rij | = |pij |. Here we have used the fact that Rω(t)T = Rω(t)−1 (this is
obvious just by checking the definitions).

Then, making the substation r3 = Rω(t)−1p in the right hand side of the
equations of motion gives

G

(
m1

|r31|3 r31 +
m2

|r32|3 r32

)
= G

(
m1

|p31|3 Rω(t)−1p31 +
m2

|p32|3 Rω(t)−1r32

)

= GRω(t)−1

(
m1

|p31|3 p31 +
m2

|p32|3 p32

)

Equating the transformed right and left hand sides gives

R̈−1
ω (t)p + 2Ṙ−1

ω (t)ṗ + R−1
ω (t)p̈ = GRω(t)−1

(
m1

|p31|3 p31 +
m2

|p32|3 p32

)

Here we are using q31 and q32 to denote q1−q and q2−q where we recall note
that q1 is the coordinate vector of the primary body, and q2 is the coordinate
vector of the secondary body, both in the rotating coordinates. Multiplying
both sides by Rω(t) this is

Rω(t)R̈−1
ω (t)p + 2Rω(t)Ṙ−1

ω (t)ṗ + Rω(t)R−1
ω (t)p̈ = G

(
m1

|p31|3 p31 +
m2

|p32|3 p32

)

or

p̈ = −Rω(t)R̈−1
ω (t)p− 2Rω(t)Ṙ−1

ω (t)ṗ + G

(
m1

|p31|3 p31 +
m2

|p32|3 p32

)

This is now a second order vector differential equation for the evolution of
the third body in the rotating coordinate system. But it’s nonautonomous and
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at this point hard to consider an improvement over the initial equations. Then
we consider the matrix product terms a little more carefully.

Again, we simply compute

Rω(t)R̈−1
ω (t) =




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1


 d2

dt2




cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1




=




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1


 d

dt


−ω




sin(ωt) cos(ωt) 0
− cos(ωt) sin(ωt) 0

0 0 1







= −ω2




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1







cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1




= −ω2Rω(t)Rω(t)−1

= −ω2I3×3

Similarly

Rω(t)Ṙ−1
ω (t) =




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1


 d

dt




cos(ωt) − sin(ωt) 0
sin(ωt) cos(ωt) 0

0 0 1




= −ω




cos(ωt) sin(ωt) 0
− sin(ωt) cos(ωt) 0

0 0 1







sin(ωt) cos(ωt) 0
− cos(ωt) sin(ωt) 0

0 0 1




= −ω




cos(ωt) sin(ωt)− cos(ωt) sin(ωt) cos2(ωt) + sin2(ωt) 0
− cos(ωt) sin(ωt) + cos(ωt) sin(ωt) − cos2(ωt)− sin2(ωt) 0

0 0 0




= −ω




0 1 0
−1 0 0
0 0 0




=




0 −ω 0
ω 0 0
0 0 0




At this point we should pause and admire our luck. Both of the matrix product
terms reduce to constants. Since these were the nonautonomous terms in our
ODE’s the transformed equations will be autonomous. To write these equation
in the most pleasing form expand the notation

p31 = p1 − p3 =



−x1

0
0


−




x
y
z


 = −




x1 + x
y
z




and
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p32 = p2 − p3 =




x2

0
0


−




x
y
z


 = −




x− x2

y
z




Then plugging all of this new information into the equations of motion yields

p̈ = ω2I3×3p + 2




0 ω 0
−ω 0 0
0 0 0


 ṗ−G

(
m1

|p31|3 p31 +
m2

|p32|3 p32

)

Or, upon writing the entire system in scalar form




ẍ
ÿ
z̈


 =




ω2x + 2ωẏ −G
(

m1
r3
1

(x + x1) + m2
r3
2

(x− x2)
)

ω2y − 2ωẋ−G
(

m1
r3
1

y + m2
r3
2

y
)

−G
(

m1
r3
1

z + m2
r3
2

z
)




where we define

r1 =
√

(x + x1)2 + y2 + z2

and

r2 =
√

(x− x2)2 + y2 + z2

The dynamical system defined by this system of equations will be referred to as
the circular restricted three body problem in physical units.

1.2 Dimensionless Coordinates

Another set of reductions can be made if we make yet another coordinate change
to dimensionless coordinates. Recall from our earlier discussion of two body
dynamics that two bodies move in circular orbits if and only if the gravitational
force balances the centrifugal acceleration. Then taking the plane of motion to
be the xy-plane, we have

ω =

√
G(m1 + m2)

r3
12

(6)

where r12 is the distance between the two bodies. We have also take the center
of mass to be fixed at the origin, with the heaver mass always on it’s left a
distance of x1 and the lighter mass to it’s right a distance of x2 (these distances
are constant as the motion is circular). If we make these into coordinates along
the line between the masses, through the origin then the coordinates are −x1

and x2 as in the previous section.
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In these coordinates, conservation of linear momentum gives us the single
equation

−m1x1 + m2x2 = 0

which we solve to obtain

x1 =
m2

m1
x2

The distance between the primaries is r12 = x2 − (−x1) = x2 + x1.
Then x2 = r12 − x1 and we have

x1 =
m2

m1
(r12 − x1)

(
1 +

m2

m1

)
x1 =

m2

m1
r12

x1 =
m2/m1

1 + m2/m1
r12

x1 =
m2

m1 + m2
r12

A similar bit of algebra gives

x2 =
(

1− m2

m1 + m2

)
r12

We define the parameter

µ =
m2

m1 + m2

and note that since m1 ≥ m2, 0 < µ ≤ 1/2 as m2 is at most equal to m1, in
which case µ = 1/2.

Now define a unit of distance (du) to be such that the primaries are a distance
one apart;

r12 = 1du

Next define mass units (mu) so that the total mass of the system is one;

m1 + m2 = 1mu

We further define the time units to be such that the frequency of the system is
2π. In other words we want the primaries to make one revolution in 2π time
units. This will force ω = 1rad/tu.

Then, in these units we have
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1rad/tu = ω =

√
G(m1 + m2)

r3
12

=

√
G(1mu)
(1du)3

From here it is clear that the numerical value of G is one in these units.
Finally, note that since, by definition µ = m2

m1+m2
and in these units m1 +

m2 = 1 we have that m2 = µ.
Using the same relation, solve instead for m1;

µ =
m2

m1 + m2

µ(m1 + m2) = m2

m1 =
m2

µ
−m2

= m2(
1
µ
− 1)

= m2
1− µ

µ

= µ
1− µ

µ
= 1− µ

Then in these special units both the locations, and masses of the primaries are
expressed in terms of the parameter µ. To recapitulate, the primary body has
mass m1 = 1 − µ and is located at −x1 = −µ in the rotating frame, while the
secondary body has mass m2 = µ and is located at x2 = 1 − µ in the rotating
frame. Furthermore G = ω = 1.

Then is these “dimensional” units, the equations of motion are




ẍ
ÿ
z̈


 =




x + 2ẏ − 1−µ
r3
1

[x + µ]− µ
r3
2
[x− (1− µ)]

y − 2ẋ− 1−µ
r3
1

y − µ
r3
2
y

− 1−µ
r3
1

z − µ
r3
2
z




with

r1 =
√

(x + µ)2 + y2 + z2

and

r2 =
√

(x− (1− µ))2 + y2 + z2

The dynamical system defined by these equations is the dimensionless cir-
cular restricted three body problem, and is what we will refer to from now on
as the CRTBP.
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Define the function

U(x, y, z) =
1
2
(x2 + y2) +

1− µ

r1
+

µ

r2

Then it’s easy to check that




ẍ
ÿ
z̈


 =




2ẏ + ∂
∂xU

−2ẋ + ∂
∂y U

∂
∂z U




Up till now we have written the system as a set of second order equations. But it
is often useful to express the equations of motion as a vector field. This is easily
done using the variable p = (x, y, z), and q = ṗ = (ẋ, ẏ, ż) = (vx, vy, vz) =
(u, v, w). Then the vector field is

[
ṗ
q̇

]
=




ẋ
ẏ
ż
u̇
v̇
ẇ




=




u
v
w

2ẏ + ∂
∂xU

−2ẋ + ∂
∂y U

∂
∂z U




= f(p,q)

where this last equality is meant to define the vector field f : R6 → R6. If we let
x ∈ R6 be x = (p,q)T then ẋ = f(x) is convenient shorthand for the CRTBP
vector field.

1.3 The Jacobi Energy: Integral of Motion

The CRTBP has one know integral of motion. The following derivation is the
one most often given as it is quite elementary (even if it gives little insight. More
illuminating derivations come can be given using more of the general theory of
Hamiltonian systems). Begin with the scalar combination of dynamical variables
ẍẋ + ÿẏ + z̈ż. Then observe that this is

ẍẋ + ÿẏ + z̈ż = ẋ(2ẏ + Ux) + ẏ(−2ẋ + Uy) + ż(Uz)
= ẋUx + ẏUy + żUz
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= DtU(p(t))

=
d

dt
U

Then we nonchalantly observe that

d

dt

1
2
(ẋ2 + ẏ2 + ż2) = ẍẋ + ÿẏ + z̈ż

so that

d

dt

1
2
(ẋ2 + ẏ2 + ż2) =

d

dt
U

Then

1
2
(ẋ2 + ẏ2 + ż2) = U(x, y, z)− C/2

where C is an arbitrary constant, and the minus sign and the factor of two are
just a convention. Then it is the case that

2U(x, y, z)− (ẋ2 + ẏ2 + ż2) = C

or

x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
− (ẋ2 + ẏ2 + ż2) = C

This constant, or conserved, quantity is called the Jacobi Integral. Since it is a
conserved quantity we often refer to it as the ‘energy’ or ‘Jacobi energy’.

Note that (ẋ2 + ẏ2 + ż2) = |q|2 is the square of velocity. Then if we fix an
energy level, and an initial position (x0, y0, z0) the magnitude of the velocity is
determined, and remains constant throught the trajectory.

On the other hand, if we proscribe that the velocity be zero at a given energy,
this will determine a set of initial conditions. These conditions implicitly solve
the equation

x2 + y2 + 2
1− µ

r1
+ 2

µ

r2
− C = 0

The solution set of this equation will be a two dimensional surface in the config-
uration space (the surface is not necessarily compact or connected) which can
give much information about the possible dynamics at a given energy level.

This is due to the following; a trajectory which arrives at the zero velocity
surface arrives, as the name suggests, with no velocity. Then, since it must stop
there, it cannot go through or past it. So the zero velocity surface (or energy
surface as we will sometimes call it) restricts the possible dynamics by telling
you that some regions of phase space are unreachable at the given energy level.
We will explore this idea in greater detail in a later section.
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1.4 Existence and Location of the Libration Points

We want to compute the location of the collinear and equilateral libration points
for this system. These are the roots of the equation f(x) = 0. Then at any such
point u = v = w = 0 (of course).

Consider first the collinear points. For these we have y = z = 0 and the
vector equations reduces to

x− (1− µ)(x + µ)
|x + µ|3 − µ(x− 1 + µ)

|x− (1− µ)|3 = 0

The collinear libration points lie on the x-axis, along with the masses, which are
located at −µ and 1−µ. Then these points are linearly ordered, and we have to
consider the three cases x < −µ < 1−µ, −µ < x < 1−µ, and −µ < 1−µ < x.
In the first case we will denote the equilibrium by x = L3, the second case
x = L1 and the third case x = L3 (the reason for these names will be explained
in a moment).

In the first case we have

|L + µ| = −(L + µ) and |L− (1− µ)| = −(L− (1− µ)) (7)

as L < −µ, and L < 1− µ imply that L + µ < 0 and L− (1− µ) < 0. Then 7
becomes

L− (1− µ)(L + µ)
(−1)(L + µ)3

− µ(L− 1 + µ)
(−1)(L− (1− µ))3

= 0

or

L(L + µ)2(L− (1− µ))2 + (1− µ)(L− (1− µ))2 + µ(L + µ)2

(L + µ)2(L− (1− µ))2
= 0

The left hand side is zero if and only if L is a root of the numerator. Expanding
this gives the condition

L5 + aL4 + bL3 + cL2 + dL + e = 0

where

a = 2(2µ− 1)
b = (1− µ)2 − 4µ(1− µ) + µ2

c = 2µ(1− µ)(1− 2µ) + 1
d = µ2(1− µ)2 + 2(µ2 − (1− µ)2)
e = (1− µ)3 + µ3

The polynomial is fifth order in L and there is no hope of an analytic solution.
If we are working with the Earth-Moon system, µ is know and we can solve the
equation numerically.

13



We have done just this, using MatLab’s root finding capabilities (the pro-
gram is ‘hw4prob3’ in the appendix). We find that the equation has a single
real root

L3 ≈ −1.00511551160689

We have confirmed that this is indeed approximately an equilibrium point by
simulating the system from the initial state x = (−1.00511551160689, 0, 0, 0, 0, 0)
we find that the trajectory is within 10−12 of the rest point after 50 months.
(The period of the primaries is normalized to to 2π, but we know this to be
one month. The simulation was run until tf = 50 ∗ 6.282 which is roughly 50
months).

Similar consideration of the remaining two cases show that L1, and L2 satisfy

L5 + aL4 + bL3 + cL2 + dL + e = 0

with

a = 2(2µ− 1)
b = (1− µ)2 − 4µ(1− µ) + µ2

c = 2µ(1− µ)(1− 2µ) + 1
d = µ2(1− µ)2 + 2(µ2 + (1− µ)2)
e = (1− µ)3 − µ3

and

a = 2(2µ− 1)
b = (1− µ)2 − 4µ(1− µ) + µ2

c = 2µ(1− µ)(1− 2µ)− 1
d = µ2(1− µ)2 + 2(µ2 − (1− µ)2)
e = −(1− µ)3 − µ3

respectively. Numerical solutions for these equations are found to be

L1 ≈ 0.83629259089993

L2 ≈ 1.15616816590553

Simulations of these states verify that these points are rest points as well.
The locations of the equilateral triangle libration points are much easier to

compute, since they must lie at the vertex of an equilateral triangle whose base
is the line between the two primaries. Since this line has length one, the distance
from the primaries to either L4 or L5 must be one.

14



Since the base lies on the x-axis and the sides have length one we see that
the height of the third vertex must be y = ±√3/2. The x coordinate of either
libration point must bisect the adjacent side. Since this side has length one,
this coordinate must be x = −µ + 1/2.

Using the µ value for the Earth-Moon system gives

L4 ≈ (0.48772252900000, 0.86602540378444)

and

L5 ≈ (0.48772252900000,−0.86602540378444)

We will see in the next section the these points are stable equilibria for the
Earth-Moon system so simulation. Fig( 1) shows the locations of the libration
points found here.
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Figure 1: The Five Libration Points for the Earth-Moon System

2 Linearization of the CRTBP at the Libration
Points

Recall again the equations of motion for the CRTBP;




ẋ
ẏ
ż
ẍ
ÿ
z̈




=




ẋ
ẏ
ż
u̇
v̇
ẇ




=




u
v
w

x + 2ẏ − (1− µ) x+µ
((x+µ)2+y2+z2)3/2 − µ x−(1−µ)

((x−(1−µ))2+y2+z2)3/2

y − 2ẋ− (1− µ) y
((x+µ)2+y2+z2)3/2 − µ y

((x−(1−µ))2+y2+z2)3/2

−(1− µ) y
((x+µ)2+y2+z2)3/2 − µ y

((x−(1−µ))2+y2+z2)3/2



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=




u
v
w

2ẏ + DxU
−2ẋ + DyU

DzU




where x, y, z ∈ R3, u = ẋ , v = ẏ, w = ż and

U(x, y, z) =
x2 + y2

2
1− µ√

(x + µ)2 + y2+2
+

µ√
(x− (1− µ))2 + y2 + z2

(That the partials of U are indeed the terms in the equations of motion claimed
here will be shown below.)

If we let x ∈ R6 be the state vector x = (x, y, z, u, v, w) and f : R6 → R6 be

f(x) =




u
v
w

2ẏ + DxU
−2ẋ + DyU

DzU




then the libration points L1, L2, L3, L4, and L5 are the zeros of f. The lineariza-
tion about any of these points is

ẋ = DLix

where DLi is the derivative of f evaluated at the libration point Li. To compute
this derivative let

r1 =
√

(x + µ))2 + y2 + z2

r2 =
√

(x− (1− µ))2 + y2 + z2

Then we collect the following facts into a convenient lemma

Lemma 1 Let xi be the ith component of x = (x, y, z, u.v.w). Then

∂

∂xi
rj =





(x + µ)/r1 i = j = 1
(x− (1− µ))/r2 i = 1, j = 2

xi/rj i = 2, 3, j = 1, 2
0 i = 4, 5, 6, j = 1, 2

(8)

∂

∂xi

1
rj

=





−x+µ
r3
1

i = j = 1

−x−(1−µ)
r3
2

i = 1, j = 2
−xi

r3
j

i = 2, 3, j = 1, 2

0 i = 4, 5, 6, j = 1, 2

(9)

16



∂

∂xi

1
r3
j

=





−3x+µ
r5
1

i = j = 1

−3x−(1−µ)
r5
2

i = 1, j = 2
−3xi

r5
j

i = 2, 3, j = 1, 2

0 i = 4, 5, 6, j = 1, 2

(10)

Proof These are all simple computations. When i = 4, 5, 6 the results are
obvious as the rj are functions of x1, x2, x3 only. Now compute for example

∂

∂x1
r1 =

∂

∂x

√
(x + µ)2 + y2 + z2

=
∂

∂x
((x + µ)2 + y2 + z2)1/2

=
1
2
((x + µ)2 + y2 + z2)−1/2 ∂

∂x
((x + µ)2 + y2 + z2)

=
1
2

1
((x + µ)2 + y2 + z2)1/2

∂

∂x
(x + µ)2

=
1
2

1
((x + µ)2 + y2 + z2)1/2

2(x + µ)

=
x + µ

((x + µ)2 + y2 + z2)1/2

=
x + µ

r1

Nearly identical computations establish the rest of the cases for the first part of
the lemma. For the second part we use the first and compute

∂

∂x1

1
r1

=
∂

∂x
r−1
1

= −r−2
1

∂

∂x
r1

= − 1
r2
1

x + µ

r1

= −x + µ

r3
1

and similarly for the other cases. The last part of the lemma is computed the
same way;

∂

∂x1

1
r3
1

=
∂

∂x
r−3
1

= −3r−4
1

∂

∂x
r1
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= −3
1
r4
1

x + µ

r1

= −3
x + µ

r5
1

¤

Using the previous lemma we can compute the partial derivatives of the com-
ponents of the vector field f . The most involved part of this is the computation
of the second partial derivatives of the potential function U, which we examine
now;

∂2

∂x2
U =

∂

∂x

∂

∂x

[
x2 + y2

2
1− µ

r1
+

µ

r2

]

=
∂

∂x

[
x + (1− µ)

∂

∂x

1
r1

+ µ
∂

∂x

1
r2

]

=
∂

∂x

[
x− (1− µ)

x + µ

r3
1

− µ
x− (1− µ)

r3
2

]

= 1− (1− µ)
∂

∂x

x + µ

r3
1

− µ
∂

∂x

x− (1− µ)
r3
2

= 1− (1− µ)
[

1
r3
1

+ (x + µ)
∂

∂x

1
r3
1

]
− µ

[
1
r3
2

+ (x− (1− µ))
∂

∂x

1
r3
2

]

= 1− (1− µ)
[

1
r3
1

− 3(x + µ)
x + µ

r5
1

]
− µ

[
1
r3
2

− 3(x− (1− µ))
x− (1− µ)

r5
2

]

= 1− (1− µ)
[

1
r3
1

− 3
(x + µ)2

r5
1

]
− µ

[
1
r3
2

− 3
(x− (1− µ))2

r5
2

]

A nearly identical calculation gives that

∂2

∂y2
U =

∂

∂y

[
y − (1− µ)

y

r3
1

− µ
y

r3
2

]

= 1− (1− µ)
[

1
r3
1

− 3
y2

r5
1

]
− µ

[
1
r3
2

− 3
y2

r5
2

]

and likewise that

∂2

∂z2
U =

∂

∂z

[
−(1− µ)

z

r3
1

− µ
z

r3
2

]

= −(1− µ)
[

1
r3
1

− 3
z2

r5
1

]
− µ

[
1
r3
2

− 3
z2

r5
2

]
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At bare minimum these computations establish the fact claimed earlier; namely
that the nonlinear terms in the vector field are given by the first partials of U .
To compute the differential of f we will need the cross terms as well. These
are ∂2

∂x∂y U , ∂2

∂y∂xU , ∂2

∂y∂z U , ∂2

∂z∂y U , ∂2

∂x∂z U , and ∂2

∂z∂xU . But equality of mixed
partials reduces this to only three terms. We compute

∂2

∂x∂y
U =

∂

∂x

∂

∂y
U

=
∂

∂x

∂

∂y

[
x2 + y2

2
1− µ

r1
+

µ

r2

]

=
∂

∂x

[
y − (1− µ)

y

r3
1

− µ
y

r3
2

]

= −(1− µ)
∂

∂x

y

r3
1

− µ
∂

∂x

y

r3
2

= −(1− µ)y
∂

∂x

1
r3
1

− µy
∂

∂x

1
r3
1

= 3(1− µ)y
x + µ

r5
1

+ 3µy
x− (1− µ)

r5
2

Similarly

∂2

∂x∂z
U = 3(1− µ)z

x + µ

r5
1

+ 3µz
x− (1− µ)

r5
2

and

∂2

∂y∂z
U = 3(1− µ)y

z

r5
1

+ 3µy
z

r5
2

Now we want to evaluate all nine of these terms at the collinear libration
points L1, L2, L3. For these points it is the case that z = y = 0. Then at Li,
i = 1, 2, 3 we have

r1 =
√

(Li + µ)2 + 02 + 02 =
√

(Li + µ)2 = Li + µ

r1 =
√

(Li − (1− µ))2 + 02 + 02 =
√

(Li − (1− µ))2 = Li − (1− µ)

Then, evaluating the above expressions at Li and a little algebra gives

∂2

∂x2
U |Li = 1 + 2α
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∂2

∂y2
U |Li

= 1− α

∂2

∂z2
U |Li

= −α

where

α =
1− µ

|Li + µ|3 +
µ

|Li − (1− µ)|3

and that all the mixed partials are zero, as y = z = 0.
We are ready to compute the differential. Write

f(x) =




f1

f2

f3

f4

f5

f6




=




u
v
w

x + 2ẏ + DxU
y − 2ẋ + DyU

DzU




so that the differential is

Dxf =
(

∂

∂xj
fi

)

ij

=
(

A B
D2

xU C

)

The sub-matrix A is the 6 × 6 matrix of partial derivatives of f1 = u, f2 =
v, f3 = w with respect to the variables x, y, z. Since these are all zero, A is a
matrix of zeros. Likewise the 6×6 matrix B is the identity, as its entries are the
partial derivatives of the same terms, but now with respect to themselves. Then
only the self partials are non-zero. In fact they are of course unity as ∂xi/∂xi

is always one.
C is the 6×6 matrix of partials of f4, f5, and f6 with respect to the velocity

variables (u, v, w). f3 depends only on x, y, z so the last row of C is zero. f1

contains a v = ẏ term while f2 has a term containing u = ẋ. These dependencies
are however linear, so C is a constant matrix.

Lastly, the bottom left 6 × 6 is the Hessian derivative of U . The terms
of the differential have been computed throughout the section. Explicitly, the
differential Dxf which governs the linear flow near the collinear libration points
is

Dxf =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

1 + 2α 0 0 0 2 0
0 1− α 0 −2 0 0
0 0 −α 0 0 0




(11)
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as we have now computed.
At the equilateral triangle libration points the above is changed only slightly.

At these points we have r1 = r2 = 1. The x and y coordinates of these equilibria
are x = −µ + 1/2 and y = ±√3/2 Using this data yields, for Li, i = 4, 5;

∂2

∂x2
U |Li = 3/4

∂2

∂y2
U |Li = 9/4

∂2

∂z2
U |Li = −1

∂2

∂x∂y
U |Li

∂2

∂y∂x
U |Li =

3
√

3
4

(1− 2µ)

and

∂2

∂x∂z
U |Li =

∂2

∂z∂x
U |Li =

∂2

∂y∂z
U |Li =

∂2

∂z∂y
U |Li = 0

so that the linearized dynamics at the equilateral triangle libration points is

Dxf =




0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3/4 3
√

3
4 (1− 2µ) 0 0 2 0

3
√

3
4 (1− 2µ) 9/4 0 −2 0 0

0 0 −1 0 0 0




With these matrices we can integrate the linearized vector field near any
of the equilibria. The results give information about the dynamics near these
points.

2.1 Stability of the Collinear Libration Points

The linearization of the vector field near the equilibria allows us to do more
than just integrate the linear equations. Stability analysis of the linear system
can tell us a great deal about the possible dynamics near these points. As an
example we consider again the system matrix (13).

To determine the stability of the linear system we must find the eigenvectors
and eigenvalues of Dxf . Recall that λ is an eigenvalue if and only if

det(Dxf − λI) = 0 (12)

21



A long calculation leads to the characteristic equation

λ6 + 2λ4 + (1 + 3α− 3α2)λ2 + α(1 + α− 2α2) = 0

Making the substitution s = λ2 reduces this to

s3 + 2s2 + (1 + 3α− 3α2)s + α(1 + α− 2α2) = 0

The resulting third order polynomial can be solved explicitly by, for example
by the method of del Ferro [Nah], or by any computer algebra package. In any
event, one finds that the roots are

s1 = −α

s2 =
1
2

√
−4 + 2α2 + 2(9α2 − 8α)

s3 =
1
2

√
−4 + 2α2 − 2(9α2 − 8α)

and the six eigenvalues are λk1,2 = ±(sk)1/2, k = 1, 2, 3.
Consider the pair

λ1,2 = ±√−α = ±
√
− 1− µ

(Li + µ)3
− µ

(Li − (1− µ))3

If α < 0 then λ1,2 are real, with one positive and one negative. Then the
corresponding eigenmodes have one exponentially decaying, and one exponen-
tially growing term. The resulting solution is then unstable (in the sense of
Lyapunov). Then the pressing question is, under what condition is α ≥ 0?

We are interested in the sign of

α =
1− µ

(Li + µ)3
+

µ

(Li − (1− µ))3
=

(1− µ)((Li − (1− µ))3) + µ((Li + µ)3)
(Li + µ)3(Li − (1− µ))3

This is zero if and only if the numerator is.

2.2 Numerical Study of the Linear Stability of the Libra-
tion Points of the Planar Earth-Moon System

In Section 2 we computed the linearized vector fields about each of the libration
points. Using those results and the coordinates of the libration points deter-
mined in the previous subsection, we can compute all the entries to the system
matrix of the linear system. Here we consider only planar dynamics, so the
matrices become

Dxf =




0 0 1 0
0 0 0 1

1 + 2α 0 0 2
0 1− α −2 0


 (13)
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for the collinear points and,

Dxf =




0 0 1 0
0 0 0 1

3/4 3
√

3
4 (1− 2µ) 0 2

3
√

3
4 (1− 2µ) 9/4 −2 0




for the equilateral points
Consider the linear problem at L1. Using µ for the Earth-Moon system and

plugging the coordinates for L1 into the system matrix gives a constant, whose
eigenvalues are

λ1 = −2.93362180133514
λ2 = 2.93362180133514
λ3 = 0− 2.33537262850121i

λ4 = 0 + 2.33537262850121i

which is the classical “center × saddle” behavior we expect at L1. The linear
analysis tells us that L1 has a one dimensional stable direction (manifold), and
one dimensional unstable direction (manifold), and a two dimensional center
(manifold). Then we expect to find that a generic solution near L1 exhibits
saddle behavior; limiting to L1 in neither forward or backward time.

However the existence of stable, unstable, and center manifolds tells us that
we should be able to find special solutions which either converge to, emanate
from, or periodically orbit L1.

Moreover, note that for every stable direction there is an unstable direction,
and that the contraction rate of the first is exactly the expansion rate of the
second. This keeps with our intuition that the system (which is Hamiltonian)
preserves phase space volume.

Repeating this analysis at L2 and L3 gives

λ1 = −2.15752304760904
λ2 = 2.15752304760904
λ3 = 0− 1.86197217347509i

λ4 = 0 + 1.86197217347509i

and

λ1 = 0− 1.89143870748167i

λ2 = 0 + 1.89143870748167i

λ3 = 0.75487708109713
λ4 = −0.75487708109713
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respectively. We see that L2 and L3 have the same stability types as L1. Of
the three systems, L1 has the strongest expansion and contraction rates, while
L3 has the least. L1 has the highest linearized frequency and L3 the lowest.

About L4 and L5 the eigenvalues of the linearized system are

λ1 = −0.95396766945875i

λ2 = 0.95396766945875i

λ3 = −0.29990946238396i

λ4 = 0.29990946238396i

and we have “center × center” dynamics for the linear system. Here there are no
stable, and unstable manifolds. Instead there are two distinct linear frequencies.
All the motion beginning near enough to L4 or L5 stays near them. We expect to
see many bounded orbits, and possibly be able to find periodic ones, near these
points, (although it’s harder to say for sure. The relationship between the linear
dynamics on a center, and the nonlinear dynamics in the center manifold can
be dubious. In fact it can be advantageous and even necessary to consider the
normal form near such a non-hyperbolic fixed point in order to get a topological
conjugacy. Here we are only trying to get rough ideas about what is going
on, and we will see that in fact we get very good information from this linear
analysis.)

Already then the linear flow near the libration points has increased our
understanding of the dynamics of the problem

3 Zero Velocity Surfaces in the Earth-Moon Sys-
tem

The next two subsections examine the zero velocity curves and surfaces in the
planar and spatial CRTBP respectively. These curves and surfaces are obtained
by choosing an energy level, setting the velocity terms in the Jacobi Integral
to zero, and plotting the implicitly defined curve or surface so defined. The
physicial/dynamical significance of the resulting varieties is as follows; once an
energy level is fixed, the magnitude of the velocity at any point is uniquely
determined.

If an orbit begins from a give point with this velocity, then should it reach
the Jacobi Surface it’s velocity must be zero when it arrives. Then it cannot pass
through the surface. In this way, the Jacobi surfaces determine the allowable
regions of motion for fixed energies in the CRTBP. These allowable regions are
called Hill’s Regions.

3.1 The Zero Velocity Curves in the Planar Problem

We can compute the Jacobi constants at each libration point now as well. Since
a trajectory at any libration point is a fixed point, such a trajectory is a zero
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velocity point. Then we expect each libration point to lie on the Jacobi surface
(zero velocity curve) at it’s own Jacobi energy.

We compute

J(L1) = C1 = 3.18950841737352
J(L2) = C2 = 3.17315916582532
J(L3) = C3 = 3.01227396009323
J(L4) = C4 = 2.98787326529416
J(L5) = C5 = 2.98787326529416

and plot the associated zero energy curves.
Consider first Fig( 2). This is the zero velocity curve for an energy 1.1C1

just above the energy of L1
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Figure 2: Zero velocity curve at 1.1 C1

At this energy level the allowable orbits live in three disconnected domains.
A body orbiting the Earth cannot find it’s way to the Moon, and vice a versa.
A body far from the center of mass can never arrive at the earth or the moon.
Note also that for orbits in the connected component of the Earth or the Moon,
only bounded motions are possible.

Now we consider the zero velocity curve at C = 1.001C1, an energy larger
than the energy of L1, but now only marginally. This is shown in Fig( 3).

At this energy the Earth and Moon still live in disconnected components,
however the Moons component is growing and the barrier between the Earth
and Moon is shrinking. The black circle on the left is L1. We can see that it
still lies in the inaccessible region, but only just barely.

The next plot, Fig( 4) shows the zero velocity curve at the energy level of
L1.

The plot suggests (and it is in fact the case) that the barrier between the
Earth and the Moon is just opening at the energy C1. This is the reason for
the name L1. It is the first point where the Jacobi surface begins to “tear”.
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Figure 3: Zero velocity curve at 1.001 C1
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Figure 4: Zero velocity curve at C1

Actually at this energy the two domains are still disconnected at this energy,
as no orbit can go through the fixed point at L1. But any lessening of the energy
will allow passage as we see in the next plot.

In Fig( 5 we see that the barrier between the Earth and the Moon has now
reseeded, and there is a “neck” near L1 through which a trajectory might pass.
In fact the linearized dynamics at L1 show it to be a fixed point of “center ×
saddle” type, and while most orbits will be ejected from this neck, the presence
of the center manifold in the nonlinear problem suggests that we may be able
to find periodic orbits in the neck, which orbit L1. We can also see in this figure
that a dimple is forming in the Jacobi surface near L2.

Then we shift our attention away from L1 and consider L2. As it’s name
suggests and Fig() shows, the Jacobi surface will open again at the point (L2, 0)
precisely when the energy drops strictly below C2.

Here we see a wide neck at L1, the L2 has become a fixed point, and that
L3, L4, and L5 are still completely unaccessible. When the energy drops below
C2 we expect a second neck to open, allowing orbits near the Moon to move
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Figure 5: Zero velocity curve at C1 + 0.1(C2 − C1)
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Figure 6: Zero velocity curve at C2

away from the center of mass. Now there exists at least the possibility that
some orbit beginning near the earth may escape the system all together. (At
the same time, such an orbit may not exist. We only note the new possibility.
The proof or disproof of such an orbit would certainly be an interesting result.)

In Fig( 7) we see the energy surface for an energy smaller than C2, and
indeed a second neck has opened. Proceeding downward we have in Fig( 8)
the energy surface at C3. As we should now have come to expect, there is yet
another neck developing.

For energies less than C3, motion is possible between the Earth and the
Moon, out away from the center of mass, and there are two possible ways to
renter the vicinity of the earth. From a topological point of view the opening
at L3 is no minor occurrence. Lets observe that prior to the appearance if
this last neck, the space of allowable trajectories was either simply connected,
or disconnected with simply connected components. (This is not completely
true in the planar problem due to the singularities at the Earth and the Moon.
However these singularities are still point singularities in the spatial CRTBP
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Figure 7: Zero velocity curve at C2 + 0.1(C3 − C2)
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Figure 8: Zero velocity curve at C3

and it may be possible to perturb around them. In any event the claim holds
in the spatial problem.)

For energies above C3 the only obstructions to an orbit being contractible
in the plane are the singularities at the Earth and the Moon, but these are
point obstructions. Once the neck at L3 opens, a new possibility exists. If an
orbit began near the earth, passed thought the neck at L2 went around the
Jacobi surface and returned to its initial state through the neck at L3 (so that
the orbit is periodic) then such an orbit would not form a contractible loop.
Further contractibility could not be restored by a small perturbation into the
spatial problem. This possibility is clearly seen in Fig( 9)

When the energy is decreased further the upper and lower components will
continue to shrink, until they finally disappear at C4 = C5. Now there are no
forbidden regions as can be seen from Fig( 10).

As another topological aside,consider how the homology of the (interior) of
the Jacobi surface has changed. Initially it’s interior was connected and there
were (up to homology) two non-contractible one cycles. When the neck at L1
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Figure 9: Zero velocity curve at C3 + 0.1(C4 − C3)
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Figure 10: Zero velocity curve (or lack thereof)at C4

formed, one of these cycles was destroyed (the one associated with the connected
component of the Moon) but the other survived. When the neck at L2 opened
the second generator was destroyed as well, but the interior was still connected.
The appearance of the neck at L3 disconnects the interior, adding a generator to
the zeroth homology. Finally when the energy reaches C4 the surface completely
disappears, taking all homology with it. Then the homology of the surface is
related to the allowable orbits, and thus to the global dynamics of the system.

3.2 The Zero Velocity Surfaces in the Spatial Problem

Similar analysis can be done in the spatial CRTBP. Then each libration point
will have two more eigenvalues and eigenvectors corresponding to the extra
spatial dimensions. In fact all five libration points gain another complex con-
jugate pair of eigenvalues, and therefore two more eigenvectors in their center
eigenspaces.

The zero velocity curves become surfaces in the full problem, and we examine
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these surfaces here. As above we begin with the energy held just above the L1

energy. The zero velocity surface is shown in Fig 11.

Figure 11: Zero velocity surface for energy above L1

The surface is an non-compact, disconnected, smooth 2-manifold. This con-
trasts the planar case where the zero velocity curves (which are 1-manifolds) are
always compact. It is often remarked that while the manifold is not a surface of
revolution it’s compact components can be roughly visualized by rotating the
zero velocity curves from the planar problem about the x-axis.

At this energy level the Earth and Moon are each contained a sphere. An
particle which orbits one can never reach the other, nor does it have any op-
portunity to become unbounded. These orbits are separated from the from the
unbounded component of the phase space by an unbounded hyperbolic sheet,
outside of which we have no guarantee that orbits must remain bounded. (It’s
an interesting question as to wether all orbits in this problem remain bounded
at various energy levels. One expects that parabolic and hyperbolic orbits from
the two body problem may continue into the CRTBP but we do not address
this here. We are only trying parse the global information provided by the zero
velocity surface).

Lowering the energy level to between that of L1 and L2 gives the image in
Fig 12, where we have taken a closer view of the vicinity of L1 as this is where
the action is.
For energy levels below that of L1 a neck opens up in the spatial problem just
as in the planar problem, and it will now be possible for particles to travel back
and forth between the vicinity of the Earth and the Moon. The phase space is
still separated into bounded and unbounded regions by the hyperbolic surface,
and the surface can at least proscribe rough dynamical possibilities of orbits
near the Earth and Moon.
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Figure 12: Zero velocity surface for energy between L1 and L2

This brings up an interesting point, which applies here as well as to the
planar problem. Often in dynamical systems theory one begins by assuming
that the phase space is a connected manifold, or at least a connected topological
space. But here is a practical problem where this is not the case. The phase
space is disconnected, but nevertheless the dynamics in one component is in
some sense effected by the presence of the other. It’s possible for a particle
to orbit the Earth/Moon system from the outside of the hyperbolic surface, in
the unbounded component of the phase space. Such a particle is effected by
the presence of the Earth and the Moon, even though it can neve reach these
points.

Of course one can think of the dynamics in the unbounded component in
terms of just the vector field there, forgetting that the field is due to the presence
of masses in another component. It’s an interesting state of affairs nonetheless.

As we lower the energy below the level at L2 we see in Fig 13 that a second
neck opens at L2, forming a connection between the sphere about the Moon
and the unbounded component of the phase space.

Figure 13: Zero velocity surface for energy a little below L2
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Indeed, now the phase space is connected and the surface can no longer tell
us wether any orbits are bounded. An orbit near the Earth might pass to the
vicinity of the Moon through the L1 neck and from there after going through
the neck at L2 might escape the vicinity of the Earth Moon System entirely,
perhaps even escaping to infinity. Orbits which come from infinity and fall into
orbit around either the Earth or the Moon are possible as well.

As in the planar problem, lowering the energy below that of L3 brings about
a dramatic change in the phase space, as seen in Fig 14.

Figure 14: Zero velocity surface for energy a little below L3

A third neck opens at L3 changing again the global connectedness properties of
the phase space. Also note that the necks at L1 and L2 have opened up into
one large neck about the Moon, and the sphere around the Moon has flattened
out entirely. This might suggest periodic and pseudo-periodic orbits about the
Moon will be less common (at least for larger amplitudes), that capture near
the Moon will be even more delicate, and that it will be easier for a particle
orbiting the Earth to escape the Earth/Moon system.

For energies such as this, between L3 and L4, the phase space is not simply
connected. This was discussed in detail with regards to the planar problem, but
here we see a nontrivial cycle in the planar problem cannot be trivialized by
going into the spatial problem. The nontrivial homology of the planar problem
caries over into the spatial problem unchanged; it is not a peculiarity of the
planar problem.

An nice illustration of this is shown in 15
Here the green star is the Moon and the red star is the Earth. The black circles
near the Moon are L1 and L2 and we can see the neck (now looking aptly like a
saddle) around the Moon clearly. On the other side of the Earth the last black
circle is L3 and the white gap is it’s neck. The fact that we can see through
these two necks gives hope that we could find an orbit which passed through.
If an orbit could go all the way through, could there be periodic which do so?
Such a periodic orbit would not be contractible (would in fact be a generator of
the second homology group of the phase space).
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Figure 15: Through both necks; the Earth, Moon and the collinear libration
points in one view

Finally we come to the case of energies below that at L4. Here the spatial
case differs somewhat from the planar. Recall that in the planar system the
zero velocity curve vanished all together at the 4 energy level, and does not
exist for energies below it. It can, however be seen in Fig 16 that while the
energy surface recoils from the xy plane, it does not vanish altogether (this
being said the obstruction to connectedness is gone).

Figure 16: Zero velocity surface for energies below

Again the green is the Moon and the red is the Earth. This view is from the
opposite side from the view in Fig 15. Now we are close to L3, with the Moon
and the other two collinear libration points on the far side of the Earth. The
triangular libration points are the black circles on the left and right of the figure.

It’s clear that the zero velocity surface is playing a smaller and smaller role
in the dynamics of the system as the energy lowers (initial velocity increases).
At this point it only tells us that orbits about the Earth cannot have too large
an amplitude in the z direction, and that orbits which come into the vicinity of

33



the Earth from outside the Earth/Moon system must do so via orbits which are
close to in-plane as they approach.

At high enough energy levels even this restriction will become negligible.
This is as it should be though, as a fast enough trajectory (fast relative to the
frequency of the orbit of the second primary about the first, or either primary
about their center of mass) will pass by the Earth/Moon system without being
deflected very much at all (unless it passes very near one of the primaries). In
other words the distance of the surface from the primaries tells us a little about
the effect the primaries have on orbits which begin far away yet pass near the
Earth/Moon system at some point.

4 Numerical Experiments and Global Dynamics

The last section examined in some detail the possible local dynamics at the
libration points by considering the linearized vector field there. We also con-
sidered certain obstructions to the global dynamics due to the Jacobi surface
at varying energy levels. These considerations allow us to say that certain tra-
jectories were and were not possible, but we have yet to see any actual orbits.
This state of affairs will be remedied presently. This section will be primarily
graphical. The main purpose is to present a “zoo” of orbits that actually do
occur in the CRTBP, in order to complement our extensive list of things that
cannot happen.

4.1 Orbits at Energies Between L1 and L2

In the first series of examples we set the Jacobi constant at C = 3.18, so that
the neck at L1 is open, but the necks at L2 and L3 are closed. Then motion
between the Earth and Moon is not ruled out, but any orbit beginning in near
either of the primaries must remain in the compact component of the phase
space (the component containing the center of mass).

Our first orbits are rather tame. Figures ( 17) and ( 18) show, in rotating
coordinates, two orbits which begin near the Earth or Moon, respectively, and
seem to stay in orbit around them.

The initial positions for these orbits are

x0 = −0.75
y0 = 0.0
z0 = 0.0
u0 = 0.0
v0 = 1.0
w0 = 0.0

and
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Figure 17: An orbit which stays bound to Earth
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Figure 18: An orbit which stays bound to the Moon

x0 = −0.75
y0 = 0.0
z0 = 0.0
u0 = 0.0
v0 = 1.0
w0 = 0.0;

The first trajectory orbits in the counter clockwise direction, contrary to the
orbit of the Moon. The second orbit orbits the Moon and is also counter clock-
wise, but in this case the motion is retrograde, which has a stabilizing effect and
causes a much more regular motion. Each orbit was integrated to tf = 48, or
approximately four years.
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The orbits are shown in inertial coordinates in Figures ( 19) and ( 20).
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Figure 19: Earth orbit in inertial frame
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Figure 20: Orbit of the Moon in inertial frame

In both inertial plots the green line is the orbit of the moon and the earth makes
a very small circle about the center of mass in the middle of the picture.

A closeup of the lunar orbit is shown in Fig( 21)
The orbit is planar, and the particle does not collide with the Moon, so we

see that the trajectory is passing ahead and behind the Moon, over and over
again.

4.2 A Ballistic Capture Orbit

Next we present an orbit which is significantly more complicated. The energy
level is still held at C = 3.18, but now we want an orbit that begins near the
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Figure 21: closeup of the lunar orbit

earth, passes through the neck at L1, orbits the Moon several times, and then
returns into an Earth orbit. In fact the orbit we present will complete this cycle
no less than 6 times.

To find the desired orbit we begin with initial conditions

x0 = 0.83
y0 = 0.0
z0 = 0.0
u0 = 0.5
v0 = 1.0
w0 = 0.0;

near L1. The trajectories there are very sensitive to initial conditions and it is
hoped that by playing with the initial data a an orbit with the desired trajectory
could be found. Once an orbit is found which goes from the Earth side of L1

to the Moons, the orbit is integrated backwards to get it to the vicinity of the
Earth. Taking this as a new initial condition and integrating forward forward
gives an orbit which starts near the Earth and goes around the Moon.

If the system is integrated this way for a short time (forward and backward
with ff = 15 in both cases) we get the pictures in Figures ( 22) and ( 23)
In these figures we see that the trajectory begins on the Earth side of L1, passes
a few times around the earth and then heads through the neck and into orbit
around the moon, as desired.

The difference between the inertial and non-inertial frame is stark. The orbit
seems messy and jarring in the inertial frame, while ordered and symmetrical in
the rotation coordinates. Furthermore, it’s hard to imagine how one would find
such an orbit in the inertial frame, while in the rotating frame it is not difficult.

If we integrate the system longer an even more interesting picture develops.
In Figures 24 and 25 the same orbit is integrated forward and backward until
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Figure 22: transfer orbit in rotating frame
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Figure 23: transfer orbit in inertial frame

tf = 280, or for a total or 560 time units. The resulting orbit again seems very
structured in the rotating frame, and much less so (at least near the Moon) in
the inertial frame.
But the really interesting property of this orbit is highlighted if we examine the
up of the neck near L1 as shown in Fig( 26). Here we see many crossings through
the neck. Consider the obvious statement that the projectile is always on one
side of the neck or the other, and that the neck at L3 is closed. Then each line
counts a transfer between the Earth and the Moon and once the projectile has
passed from the Earth to the Moon, it remains on the moon side until the next
crossing through the neck.

All this is obvious but the point is that associated to each crossing from the
Earth to the Moon, either there is a crossing back to the Earth, or the projectile
stays by the Moon. Then by counting the number or neck crossings, we get a
count of how many transfers have been made; i.e. one transfer for each pair.

Carefully examining the plot shows that there are 13 crossings, and hence
6 transfers. The longer this trajectory was integrated, the more crossings were
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Figure 24: long integration of the transfer orbit: rotational frame
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Figure 25: long integration of the transfer orbit: inertial frame

found. It seems possible, and even likely, that this trajectory will oscillate
between the Earth and Moon forever.

4.3 A ‘There and Back Again’ Orbit

Now decrease the energy to C = 3.17 so that the neck at L2 opens, and it
is possible to escape the the vicinity of the of the Earth-Moon system. Note
however that escape is only possible through a small window; the neck at L2.
Here we want to find an orbit which begins near the Earth, goes through the
L1 neck into orbit around the Moon, leaves the L2 neck and orbits the entire
Earth-Moon system several times (or at least once) from outside the system
and then returns to the neck at L2, orbiting first the Moon again, and then
returning to the vicinity of the earth.

To find such an orbit we consider the most demanding requirement first; to
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Figure 26: transfer orbit in inertial frame

leave the energy surface, wind nontrivially around the center of mass (origin)
and then return. As with the previous problem we begin by looking at orbits
which begin near L2. Again, the system should be more sensitive here, since we
are on a saddle, and we have a much better chance of finding this behavior here
than we would have if we simply began with initial conditions near the Earth.

By taking an initial condition just to the right, and slightly below L2 = we
can find orbits that leave the vicinity, orbit the system for a while, come back
in and seem to “strike” the energy surface, bouncing off it again. By tweaking
the initial conditions and integrating for longer and longer blocks of time we
can actually get the projectile to “bounce” of the energy surface several times.
(Zooming in it’s clear that the particle does not strike the zero energy surface,
but comes almost to a stop complete stop and then falls behind the still rotating
system, but the imagery helps more than it hurts).

By further varying the parameters it is seen that the locations of the “im-
pacts” with the zero velocity curve can be moved. By adjusting the initial state
yet more we are able to get the projectile to strike right at the L2 neck, and
since there is an opening here, it goes right back in.

Now that an initial condition which starts near L2, leaves, orbits the system
and comes back has been found, the initial condition can be integrated back-
wards, and hopefully it goes back into the neck. This is why we started looking
near, but just below and to the right of the second libration point; it is hoped
that most orbits that end up there came from inside the neck. Indeed with a
little luck this is what happens and we find the desired orbit.

The initial condition obtained after integrating backward by 20 time units
is

x0 = 0.30910452642073
y0 = 0.07738174525518
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z0 = 0.0
u0 = −0.72560796964234
v0 = 1.55464233412773
w0 = 0.0;

which is indeed on the Earth side of L1. Now we integrate this forward, confident
that the trajectory so obtained will exhibit the desired behavior. In all the
description below, the claim that an orbit has tf = τ , means that it is integrated
from the above state to time zero (when it is just past L2) and then from time
zero to time τ , making the total duration of the orbit τ + 20 time units.

Figure 27 shows the trajectory integrated to time tf = 15. The projectile
begins at the state above (to the right and slightly above the earth) and orbits
the Earth roughly ten times before a near flyby of L1 and on to the Moon.
It swings around the Moon twice before leaving the primaries through the L2

neck. (This brings us up to time zero, at which time the projectile is very close
to but just below and to the right of L2 as described above).
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Figure 27: Itinerary: begins at earth, leaves through L2 gap

The projectile leaves the system and we must change scales to continue to
follow it. In inertial coordinates we see the trajectory shown in Fig 28.

Now the orbit looks very regular near earth, almost periodic, until it jumps
tangentially off the ellipse to the Moon. After this follows an irregular, stagger-
ing trajectory around the Moon before a violent “bounce” off the orbit of the
Moon which ejects the projectile from the system.

The projectile remains ejected for some time persists for some time. The exit
was at roughly time zero. A look at the system in the rotational coordinates
at time tf = 77 Fig 29 Shows that the projectile has orbited the system from,
mostly from a distance, though once “striking” the zero velocity curve on its
lower right side.
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Figure 28: Itinerary: beginning of trip, inertial frame
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Figure 29: Itinerary: at time tf = 77 is still outside

A closer look at this same picture shows that the projectile is returning to
the neighborhood of the L2 neck Fig 30.

Next, the two figures Fig 31 and Fig 32 show the projectile passing back
through the neck above L2 , preforming a double flyby of the Moon, and heading
toward L1

The next plot shows the trajectory having passed L1 and returned to the
vicinity of Earth (Fig( 33)).

The last two plots show the entire trip plotted in inertial coordinates.
Note in these last three plots again how regular the inertial trajectory looks

when it seems to be orbiting the Earth. Both it’s near earth orbits and it’s
distant orbits seem to be almost elliptical, near periodic orbits. But when the
influence of the moon becomes strong enough to pull the projectile away from
these earth orbiting ellipses and onto the Moons path, the inertial orbit seems
highly irregular, lurching , and crooked. On the other hand it is exactly when
the projectile is under the Moons influence that its motion seems the most
regular in the rotational frame.
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Figure 30: Closer Look: projectile coming home
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Figure 31: Through the door at L2
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Figure 32: Approaching L1 and heading to Earth

It is also worth noting that it would have been much more difficult to find
these orbits in inertial coordinates. There is simply not enough geometric struc-
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Figure 33: The completed itinerary
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Figure 34: The completed itinerary; inertial frame

ture to tell you where to get started. Yet in the rotational system one can, sim-
ply by trial and error, locate orbits with a great variety of prescribed behavior,
and by simple inspection rule out the existence many other orbits with certain
properties.

Hopefully these examples give an impression of the rich orbit structure here.
Combining our earlier negative analysis with the ‘zoo’ of orbits, gives significant
insight into the possible dynamics in this problem. The next section builds on
linear analysis at the libration points to increase our understanding of the local
dynamics there, and to obtain some additional global information.
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Figure 35: The completed itinerary; inertial frame close up

5 Numerical Study of the Linear and Nonlinear
Dynamics Near L4 and L1 in the Earth-Moon
System

In earlier sections the equations of motion for the linear dynamics about the
libration points were developed. In this section we use these dynamics to find
orbits with desirable properties in the linear system, and then by appropri-
ate change of coordinates see if there are orbits with similar properties in the
nonlinear system.

5.1 Linear Flow Near a Fixed Point

We recall from linear systems theory ([HS], [MH]) that a matrix can always be
brought into the Jordan Canonical form where it is diagonalized by it’s eigenval-
ues and generalized eigenvalues. For the systems matrix of the linearization of
the CRTBP at any of the libration points the matrix will in fact have distinct
eigenvalues so we assume this.

Then given the system

ẋ = Ax

With initial conditions x0. We can write

ẋ = TDT−1x

where T is the matrix of eigenvectors and D is the diagonalized matrix of eigen-
values.
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Consider the ivertable linear transformation T−1x = y. The matrix T−1 is
constant so we have that

ẏ = (T−1x)′ = T−1ẋ

so that

ẋ = TDT−1x

ẋ = TDy

T−1ẋ = Dy

ẏ = Dy

with initial conditions y0 = T−1x0. This last system is diagonalized, and hence
decoupled and we can write down the flow directly. This is

y(t) = eDty0 =




eλ1t . . . 0
...

. . .
...

0 . . . eλn


y0

where this form of the exponential is only valid as we have assumed the system
is diagonalized. Transforming this flow back to the original coordinates gives

x(t) = TeDtT−1x0

Another useful trick that can aid in the global analysis of a linear system is
to ignore the initial condition x0, and consider the system matrix D. This
is diagonalized, and so it’s dynamical behavior is easily parsed. Briefly, the
eigenvalues with Re(λ) < 0 give rise to stable solutions, Re(λ) > 0 unstable
solutions and Re(λ) = 0 oscillatory solutions.

Then in the y system we can easily choose solutions with some desired
behavior by choosing y0 to mute certain modes and amplify others. Once the
right linear combination of initial conditions gives the desired behavior we can
transform these initial conditions to the original domain, and the transformed
solution will have the same properties (probably embedded differently).

5.2 Linearized Dynamics at L4

Consider the linearized dynamics about L4 in the earth Moon system. We will
use the coordinates x = (x, y, u, v) for the physical variables in the linear system,
x′ for the physical variables in the nonlinear system, and y = (y1, y2, y3, y4) for
the variables of the diagonalized system. If we simulate the linear and nonlinear
systems from the same physical state, we have to remember that the origin in the
linear system corresponds to the point (L1, 0, 0, 0) in the nonlinear system. Then
the x coordinates should be thought of as displacements from the equilibrium,
and the x′ coordinates are the physical variables for the circular restricted three
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body problem. To start the nonlinear system and the linearized system from
the “same” physical point we use x0 as initial conditions for the linear system
and x′0 = (L1, 0, 0, 0) + x0 for the initial conditions in the nonlinear equations.

This notation runs the risk of being slightly confusing, but keeps with the
notion established above. We just note that y without a 1, 2, 3 or 4 subscript
is the second component of x, while yi will always be a component of y when
i = 1, 2, 3, 4.

We know the eigenvalues of the linearized system at L4 are

λ1 = −0.95396766945875i

λ2 = 0.95396766945875i

λ3 = −0.29990946238396i

λ4 = 0.29990946238396i

so there are two frequencies and all solutions are linear combinations of harmonic
motion. Consider the behavior of the the linear and nonlinear systems begun
with initial conditions (displacement from equilibrium) x0 = (0.001, 0.001, 0.0, 0.0)T .
The resulting trajectories are shown in Fig( 37). Here the linear system inte-
grated with the initial condition x0 while the nonlinear system is integrated with
the condition x′0 = L4 + x0. The two trajectories are plotted in the same figure
with the linear in red and the nonlinear in blue (of course the linear trajectory
has to be shifted to be centered at L4 in order for the plots to match up).
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Figure 36: Linear and Nonlinear orbits; same initial conditions

This orbit is integrated for roughly ten years and we see that the linear and
nonlinear orbits agree both qualitatively and qualitatively throughout the inte-
gration.

Now suppose instead of specifying an initial condition for the system we
want to find an orbit near near L4 with some prescribed behavior, say an orbit
with only one frequency. Well, for the diagonalized system this is easy. We
will choose the slow mode with frequencies ω = 0.29990946238396 and want an
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amplitude of A = 0.005, so as to stay close to the region where the linearized and
the original dynamics are strongly correlated (we hope; the results will validate
this).

So, since we want to kill the fast mode we begin with an initial y0 of the
form (0, 0, y3, y4) where the non-zero entries may be complex. In fact, if we
want real solutions in the x coordinates we should either do another coordinate
change, or take y3 and y4 to be complex conjugates. Then (partly to show that
using complex y is completely acceptable) we choose

y3(0) = 0.0025(1 + i)

and

y4(0) = 0.0025(1− i)

which is roughly the desired magnitude and will give harmonic motion with
only the slow frequency. Transform these initial conditions to the original do-
main, i.e the x variables. The transformation is

x0 = Ty0

which gives

x0 = −0.00410832055367
y0 = 0.00327788247585
u0 = 0.00123212420855
v0 = −0.00035138543034

We simulate these initial conditions in both the linear and nonlinear systems
for ten periods. The results are fig( 37) and fig( 38).

From these we see that we certainly found a single mode oscillation in the
Linear model. In the nonlinear problem, the same initial conditions seem to
lead to quasi periodic motion, still bounded near L4 and qualitatively similar
to the linear solution.

5.3 Linearized Dynamics at L1

The linearized dynamics at L1 (or any of the collinear libration points for that
matter) have a stable and an unstable direction, and a four dimensional center
(two dimensional in the planar problem). Then the long term dynamics near
L1 will be qualitatively quite different form those seen above near L4.

Specifically, The center eigenspace is tangent to the center manifold of the
nonlinear problem but the two spaces intersect only at the equilibria. We expect
the linearized dynamics to approximate the nonlinear in a small neighborhood
of the equilibrium and, in fact, for a small enough neighborhood and short time,

48



0.48 0.485 0.49 0.495
0.862

0.863

0.864

0.865

0.866

0.867

0.868

0.869

0.87

0.871

Figure 37: Linear and Nonlinear orbits; one mode of oscillation
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Figure 38: Linear and Nonlinear orbits; Closeup

the approximation may be quite good. Nevertheless, since the tangent space and
the center manifold will (probably) not completely coincide in any neighborhood
of the equilibrium, a nonzero vector in the center eigenspace which evolves under
the nonlinear dynamics will have some (probably small) component in either the
stable or unstable direction.

If this component is small then the nonlinear behavior will mimic the linear
behavior for a long time. (The time may be approximated by comparing the
expansive and contractive time constants to the magnitude of the component
in the unstable or stable directions, but this involves actually knowing how
the center manifold embeds near the equilibria). Eventually however the small
stable or unstable component will come to dominate the behavior, as they are
associated with exponential growth, or contraction. We repeat the numerical
experiment from the previous section at L1 in order to see clearly these effects.

As in the case at L4 we begin by considering a small displacement from
the equilibrium x0 = (0.001, 0.001, 0.0, 0.0)T in the linear system and x′0 =
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(L1, 0, 0, 0)+ (0.001, 0.001, 0.0, 0.0)T in the nonlinear system. The results of the
integration are shown in 39.
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Figure 39: Linear and Nonlinear orbits; Closeup

The figure gives a close up on the neighborhood of L1. The blue orbit is the
nonlinear trajectory. The linear is green, while the zero velocity curve for the
initial conditions is shown in red, and the black star is L1. We can see that
the two trajectories begin at the same point, and begin to move off in the same
direction. This state of affairs persists only for a short time however, as by the
edge of the figure the trajectories are beginning to diverge.

If we allow the simulation to continue for several periods (say four) of the
linear system, then we see that globally, the dynamics of the linear and nonlinear
systems loose all correlation, in marked contrast to the situation at L4. Fig 40
illustrates this.
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Figure 40: Linear and Nonlinear orbits; Global View
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Again, we see that the trajectories agree for some time near the beginning
of the experiment, but then diverge completely. Here the difference between
linear and nonlinear behavior is stark. Before making further comment on this,
we transform the initial conditions for the linear system into the diagonalized
coordinates. Doing this we get y0 = T−1x0;

y1(0) = 0.00168962454824
y2(0) = 0.00237644988143
y3(0) = −0.00090794385517− 0.00119655578224i

y4(0) = −0.00090794385517 + 0.00119655578224i

Recall that the eigenvalues at L1 are

λ1 = 2.93362180133508
λ2 = −2.93362180133508
λ3 = 2.33537262850117i

λ4 = −2.33537262850117i

so the linear initial condition has nonzero component in the linear unstable
direction. Then it’s global behavior must be unbounded.

Contrast this with the behavior of the nonlinear orbit. For this energy level
the neck at L2 and hence L3 are closed. Then without reservation, we can
sat the nonlinear trajectory is bounded. We see that the global behavior of
the linear trajectory tells us nothing about the global behavior of the nonlinear
system, which highlights the local nature of the linear analysis.

Suppose now that we try to minimize the component in the unstable di-
rection of the nonlinear trajectory. To do this choose initial conditions which
correspond to harmonic motion of the linear system in a ball of radius 10−6

about the fixed point, and compar the resulting behavior in the nonlinear sys-
tem in the same neighborhood. The center space of the linear system must be
tangent to the center manifold of the nonlinear system at the fixed point. But,
as of yet we do not have estimates of the size of the neighborhood on which this
“best linear approximation” remains valid.

Since we want to stimulate only the harmonic mode of the linear system,
take the initial condition;

y1(0) = 0
y2(0) = 0
y3(0) = 10−4(0.5 + 0.5i)0
y4(0) = 10−4(0.5− 0.5i)

in the diagonalized system. Transforming these conditions back to the physical
coordinates gives
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x0 = 0.0
y0 = −10−40.37917672785887
u0 = −10−40.24680494811508
v0 = 0.0

which we integrate in both the linear and nonlinear models. The results are in
Fig 41.
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Figure 41: Linear and Nonlinear orbits; Linear Harmonic Case

Again the blue is the nonlinear orbit and the green is the linear. Clearly we
have taken a small enough neighborhood that the local, short time agreement
between the linear and nonlinear systems is good. The green orbit for the linear
dynamics has been chosen to be periodic. The blue nonlinear trajectory, with
the same initial conditions begins tangent to the linear curve and furthermore
follows the linear orbit for almost one full period.

However, it will again be stressed that this agreement is completely local.
The global picture is shown in 42 and highlights this difference.
To see the long term behavior of the nonlinear trajectory we must choose a
spatial scale which makes the linear orbit invisible. Further while the linear
orbit exhibited harmonic motion (it was an ellipse), it is clear that this is not
so of the nonlinear trajectory which is in all likelihood not even periodic.

Nevertheless the linear analysis at L1 can be made to yield global results.
The nonlinear orbit does come close to closing in on itself, which suggests that
there may be a periodic orbit nearby (we may be able to close this orbit).

In fact we can find one beginning at (0.001, 0) in the configuration space, an
order of magnitude farther from L1 than we were in the last examples.

First we’d like to begin with an initial condition which has x0 = 0.001, y1 = 0
and gives harmonic motion in the linear model. This is the same position which
gave the results in Figs 39 and 40, and we begin with them only to show that
you can.
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Figure 42: Linear and Nonlinear orbits; global picture

In the diagonalized model we want to mute the stable and unstable modes. If
we choose complex conjugate intimal conditions which are purely imaginary in
the y system, then we obtain initial conditions in the x linear system which are
harmonic and such that y0 = 0. As we saw above, purely imaginary complex
conjugate initial conditions in the diagonalized system transform to physical
initial conditions with zero x0 component. Similarly, real complex conjugate
initial conditions in the diagonalized system transform to physical initial condi-
tions with y0 = 0. Choosing such a vector and normalizing so that x0 = 0.001
we have that the condition

y1(0) = 0.0
y2(0) = 0.0
y3(0) = 0.00473121111697
y4(0) = 0.00473121111697

in the diagonalized domain and

x0 = 0.001
y0 = 0
u0 = 0
v0 = −0.00837915421626

for the physical coordinates. These conditions have been chosen to mute the
stable and unstable eigenvectors and must give harmonic motion in the linear
system. Clearly they satisfy the x0 = 0.001, y0 = 0. Integrating them gives the
picture in Fig 43.
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Figure 43: The new orbit sitting in the L1 neck

This time the linear orbit is of the same scale as the opening at L1. Again the
nonlinear orbit agrees with the linear orbit for a short time, but then falls into
the earths influence.

However we hope that by adjusting the initial velocity (which has only z
component) we will be able to find a periodic orbit in the nonlinear model with
the same position coordinates, sitting in the L1 neck.

Note that in Fig 43 when the nonlinear trajectory leaves the linear orbit,
it diverges to the left. A little experimentation shows that a small increase in
the initial velocity (say adding 0.0001 to v0) causes the nonlinear trajectory to
diverge to the right, where it goes into orbit around the moon.

This switching is good news. If it’s possible to find some orbits which fall
to the left, and some that fall to the right, we hope that somewhere in between
this behavior bifurcates, and at the critical velocity falls neither to the left nor
the right. An orbit which neither falls to the left nor the right would be periodic
(or at least quasi periodic) and remain bound to the neighborhood of L1.

Adjusting the initial velocity by hand, raising it a little if the trajectory
diverges to the left, lowering it if it diverges to the right, gets the nonlinear
orbit to stay on the linear orbit for longer and longer. After a few minutes we
settle on the velocity adjustment ∆v0 = 0.000061001168147576358748755. Here
all figures but the last are significant, in the sense that adjusting any digit down
will cause the orbit to diverge to the left rather than the right, and raising any
digit will result in the trajectory diverging on the right as shown. (Of course
at this many figures one suspects that the results are routine dependant). The
resulting trajectory is shown in Fig 44

The simulation has run for roughly four periods of the linear frequency. Note
that the linear orbit follows agrees with the nonlinear orbit very well for at least
three and a half cycles, and begins to diverge just before coming back to meet
itself for the forth time. For perspective, one period is roughly 2.33 time units,
while 2π time units is a (lunar) month in this system. Then our projectile has
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Figure 44: Unstable Periodic Orbit Near L1

orbited L1 for roughly two months; a nontrivial mission in people time.
The difference between the original initial conditions, and the conditions

leading to the ‘periodic’ orbit are on the order of 10−2. So the periodic orbit is
not too far from the initial conditions.

Of course, truth be told, we certainly have not proven there is a periodic
orbit at L1 in the nonlinear system. These results merely suggest the existence
of one. The exercise shows that we seem to be able to get the nonlinear orbit
to stay near L1 (and the linear orbit) for longer and longer times by adjusting
the initial conditions. Nevertheless after tuning the perturbation to 26 decimal
places we can still only manage four periods of agreement. Contrast this to the
experiment at L1 where, in the absence of an unstable manifold, the linear and
nonlinear orbits remain near one another indefinitely.

This also highlights the limitations of such course numerics, and indicates
the need for more sophisticated methods. Ones which could in fact prove what
seems so intuitively clear; that there is in fact a periodic orbit here in the
nonlinear system.

Then working with the linear model has finally yielded a least a global con-
jecture; that there are periodic orbits about L1 near the harmonic orbits in
the linear model. More than that, we have a method for actually computing
them. In fact wether they exist or not, this experiment seems to show that for
all practical purposes (where only finite times can matter) we can design mis-
sions which orbit the collinear libration points for months, and have significant
amplitude. (The orbit shown here has almost maximal amplitude, in the sense
that it is almost the full size of the L1 neck).

Remark: The reader familiar with this problem is aware that the orbit which
sits in the neck is a Lyapunov orbit, and does indeed continue from the linear
problem to the nonlinear one.
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6 Poincare Maps

Another tool we want to present in the context of the circular restricted three
body problem is Poincare Maps. Poincare maps can give a much more global
picture of the dynamics of a system than the linear analysis presented above, and
are certainly a much more systematic tool than the “messing around” method
of earlier sections.

To construct a Poincare Map one often begins with a fixed point x0, or
a periodic orbit P , and a codimension one surface Σ which should be taken
transverse to the flow (assume that Σ is smooth. In fact, near P we can simply
take Σ to be a plane normal to P ). In a Hamiltonian system restricting to an
constant energy level allows a further reduction of the dimension.

For x1,x2 ∈ Σ define a new mapping f : Σ → Σ by f(x1) = x2 if
φ(x1, τ(x1)) = x2 where τ : Σ → R+ is defined to be the “first return time” of
the of the trajectory φ(x, t) to the surface Σ. Explicitly

τ(x) = inf
T>0

φ(x, T ) ∈ Σ

If the origin of the mapping is taken to be O ≡ P
⋂

Σ then τ(O) is defined as
P is periodic. Then an implicit function argument shows that τ is well defined,
and as smooth as the flow, on some neighborhood of the orbit.

As will be discussed more in the next set of notes, the monodromy matrix
for P has two unity eigenvalues; one in the direction of the flow, and one in the
direction of change in energy. If we disregard these, the remaining eigenvalues
are the eigenvalues of the differential of fc, which is the Poincare map, restricted
to the energy level c associated with P . Then the monodromy matrix describes
how orbits near P behave.

Poincare maps are a fundamental tool in the dynamical systems toolkit for
analyzing flows. Judicious choice of Poincare map reduces the dimension of
the system by at least one. Furthermore it can be shown that the flow is
topologically semi-conjugate to any of it’s Poincare maps. Then the discrete
dynamical system generated by the Poincare map gives a lower bound on the
complexity of the dynamics of the flow. Period points in the poincare map
expose periodic orbits in the flow. Similarly for mixing, or chaotic behavior, or
ergodicity, or any dynamical property one wishes to consider.

What’s more the local constructions described above can often be extended
numerically to produce Poincare maps on larger domains. These can give sig-
nificant insight into the orbit structure of a dynamical system as we will see.

6.1 Maps in the CRTBP

The phase space of the planar CRTBP is 4 dimensional, and certainly difficult
to visualize. It is not only convenient but quite natural to restrict the energy to
a particular value and consider the resulting dynamics on the energy manifold.

An autonomous Hamiltonian system always has an integral, and trajecto-
ries at different energy levels cannot interact; unless the system is somehow
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perturbed trajectories do not change energy levels. Then it makes sense to con-
sider the dynamics in different energy surfaces as different dynamical systems.
When considered in these terms a Hamiltonian vector field does not give rise to
one dynamical system, but to a sheaf of them.

In any event it is quite reasonable to examine the planar CRTBP at fixed
energy levels, in which case it is a three dimensional continuous time dynamical
system. However, since the resulting system still preserves phase volume (on
the energy surface) we don’t expect attractors or repellers (in fact these cannot
exist). Then the flow in this three dimensional space will be quite recurrent,
and the orbit structure may still be very difficult to visualize.

Restricting further to a Poincare map in a fixed energy manifold gives a
two dimensional discrete time dynamical system, and our eyes can aid us in
the analysis of the dynamics. In the spatial problem the same strategy leads
to a four dimensional Poincare map, so it’s less clear how to proceed in the full
problem. Nevertheless we will find that some of what we learn about the planar
dynamics will be valuable when the spatial problem is taken up in the next set
of notes.

The computer program ‘CRTBPmap2.m’ builds the Poincare map for the
the CRTBP. We take µ for the Earth/Moon system and integrate 3000 initial
conditions along the x axis between −µ+0.005 and L1 +0.01. All initial condi-
tions begin with no initial x velocity and a positive y velocity whose magnitude
determined by the energy level, which is set at C = CL1 − 0.5(CL1 −CL2). The
initial conditions are integrated for 50 time units and interpolated to 150, 000
points per orbit.

The first 25 data points per orbit are ignored, and the rest are searched for
crossings of the xz-plane, with positive y derivative. A point is considered to be
on the xz-plane when |y| < 0.0001. When such a point is found, the program
skips 25 data points and continues the search.

At the crossing of the xz plane, the x, ẋ and φ coordinates are saved, where
φ is angle between the velocity vector and the x axis modulo 2π. In fig 45 the
map is shown with 33, 778 points plotted.

The result is a global Poincare section for the CRTBP. The x axis ranges
over from −µ to L2 (the Earth is the red star near zero, and the green star
on the far right is the earth). Remember that only the x variable is a physical
coordinate and that the vertical axis is the x component of velocity. The scale
of the Poincare map shown here is the scale of the system.

Anyone who has ever looked at Poincare maps for ‘chaotic’ dynamical sys-
tems with strange attractors, such as the Lorenz or Rosseler systems, will note
that this is qualitatively a very different picture. In those systems the phase
space dissipation pulls all trajectories to the attractor (which can only exist in
a dissipative system). To build a Poincare map in a dissipative system one can
often get away with integrating only one trajectory but for a very long time. In a
system with an attractor which supports ergodic dynamics a generic trajectory
is dense on the attractor and hence tells the whole story.

Not so here. There seem to be ergodic components, but they are separated
from each other by other kinds of behavior. In any event, it is not the case that
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Figure 45: Global Poincare Section; x versus ẋ

a generic orbit will, if integrated long enough produce the picture we see here.
In the CRTBP it is necessary to take a much larger sample of the phase space.

Lets put this discussion aside for a moment and return to the purpose of
this experiment, which is to gain a better understanding of the dynamics of the
CRTBP. Has the mapping given us any new information? Lets pick some inter-
esting looking points on the map, and see what kinds of orbits they correspond
to.

A most striking feature seems to be the activity near the x axis at about x =
0.6. By zooming in on this nexus we estimate the initial conditions in the center
to be x = 0.50455, and ẋ = 0. From this information we can recover the entire
initial state in phase space, as the energy is prescribed at C = 3.17315916582532.
Then the magnitude of the velocity is determined by the Jacobi integral, and we
have |v| = 0.97697707489055. But the Poincare map was defined for crossings
with ẏ > 0. Then the full initial condition is roughly
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x0 =




0.50455
0.0
0.0
0.0

0.97697
0.0




Integrating these conditions forward gives the orbit in fig 46.
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Figure 46: Orbit generated by center of ‘nexus’

In the rotating frame, this is a periodic orbit around the earth. It orbits in a
counterclockwise fashion. This picture was generated by integrating the con-
ditions for 25 time units. That the trajectory remains on this curve suggests
strongly that the orbit is stable. Especially as we simply ‘eye-balled’ the initial
conditions from the Poincare map; no Newton steps were done here to guarantee
periodicity.

Then it’s a little more clear what is going on in this ‘nexus’ now. There is
a fixed point of the Poincare map in the center on the nexus. The fixed point
is a stable center (purely imaginary eigenvalues). The ‘tendrils’ we see in fig
45 emanating from the fixed point are due to a strobing effect, and not due to
trajectories escaping from the fixed point. If we wee to integrate each trajectory
longer these would fill out into invariant circles. As it is, we are only catching
roughly 10 points per circle and then moving to another orbit. This is causing
the strobing.

To test this hypothesis, we zoom in on an initial condition on one of these
invariant circles. Integration it forward should give a trajectory which is dense
in a 2-torus. The initial condition we choose is
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x0 =




0.50455
0.0
0.0
0.0

0.97697
0.0




which is far removed from the fixed point itself, but well within the nexus.
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Figure 47: Orbit generated by center of ‘nexus’

This leads to the orbit in fig 47. The figure suggests that we have found
the correct interpretation of the Poincare map. The orbit certainly seems to
fill more space than a periodic orbit, while remaining bounded roughly between
two circles in the configuration space (and we guess that it stays on a torus in
the phase space). The conditions were integrated for 200 time units which lends
credence to conjecture that the orbit is in the center of the fixed point.

Now that we have a better understanding of how to read the Poincare map,
lets have a closer look at the region around the nexus. This is shown in fig 48

Now we see that there are what seem to be other fixed (periodic?) points of
the Poincare map about the first one, each with it’s own center. Choosing the
one almost directly about the first fixed point we find the coordinates

x0 =




0.491
0.0
0.0

0.545
0.863419

0.0




Here the x and ẋ coordinates are read off the Poincare map. The magnitude of
the velocity is determined by the energy which gives the ẏ component by the
Pythagorean theorem.
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Figure 48: Poincare section close up
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Figure 49: Another periodic orbit from the Poincare map

Again, the orbit is stable, and we could use coordinates on the invariant
circles of the Poincare map near the fixed point to find orbits which are dense
on the boundary of a tubular neighborhood of this orbit.

Looking back at the original Poincare map (fig 45) we see another periodic
orbit in the top left hand corner. If we work out the initial conditions for this
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orbit we obtain the stable periodic orbit shown in fig 50.
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Figure 50: More periodic orbits

It seems clear that we could play this game all day. With finer Poincare
maps perhaps there is no end to the number of distinct periodic orbits we could
find. In fact, if we use our imaginations a little, it looks as though this Poincare
map has the features of the ‘solenoid’ mapping of Smale. (Stretching and folding
a torus into itself infinitely many times).

Can we get more from the map? So far we have picked orbits where the
Poincare map seems close to integrable, in the sense that it should have action
angle coordinates near the fixed points. (The spiraling of the tendrils near the
fixed points is consistent with the mapping being a twist map near the fixed
points). Can we get interesting non-periodic orbits from the map?

If the CRTBP is not completely integrable, then we expect that away from
the fixed points, we may be able to find ‘chaotic islands’ where the systems
dynamics is mixing, and extremely sensitive to initial conditions. These regions
would look more like white noise in the Poincare map.

There do seem to be such regions in our mapping. Consider fig 48 again.
There are clearly fixed points near x = 0.5 and x = 0.25 both on the x-axis,
and both seem to have local centers. But closer to 0.34 the behavior looks like
it could be ‘noisier’.

Such an orbit is shown in fig 51. We see that the orbit wanders. It begins
as thought it is near an invariant torus of a periodic orbit of the earth. Then
it strays off thought the L1 neck and seems to shadow another invariant torus
near the moon. This kind of transport is suggestive of Chaos.

A time series for this orbit is shown in fig 52, and while graphical evidence
in never enough to conclude the existence of chaos, this is as noisy a waveform
as one could hope to see. Especially interesting is the wobble on the top of the
crest between roughly t = 90 and t = 100, which is due to the ballistic capture
of the projectile by the moon.

Is the orbit sensitive to small perturbations in the initial conditions? To see,
we perturb the conditions in the fifth decimal place and integrate again. The

62



−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 51: chaotic trajectory?
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Figure 52: Time versus the x component of the capture trajectory

results are in fig 53.
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Figure 53: Sensitive to initial conditions
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This is the calling card of sensitivity to initial conditions. The orbits begin by
shadowing one another perfectly from time t = 0 to t = 15, begin to move apart
at t = 20, and are uncorrelated by time t = 70. We can see that at t = 90 when
the first particle is captured by the Moon, the perturbed trajectory remains
near the Earth.

The divergence of trajectories from one another is related to the concept
of Lyapunov exponents. It’s interesting then to note that in some regions of
the phase space, say near the fixed points and periodic orbits of the Poincare
map, the Lyapunov exponents can be neutral, and nearby initial conditions
can remain correlated for arbitrarily long times. While in other parts of the
phase space, say in the chaotic islands, the Lyapunov exponents can drive initial
conditions apart quickly.

Again, this is in contrast to what one usually sees in dissipative systems
where the phase space is often initially contracted to the attractor, where the
expansive Lyapunov exponents take over, driving trajectories apart. In other
words, a more uniform treatment of the initial conditions is common. This non-
uniformity in the phase space is part of what makes Hamiltonian systems so
rich.

At any rate, we have definitely seen how the Poincare maps can inform our
understanding of the global dynamics of the problem. Unfortunately (fortu-
nately?) our eyes are not as helpful in higher dimensions, and other methods
must be devised in order to get information from the Poincare sections.
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