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1 Introduction

In this set of notes the State Transition Matrix for the N -body problem is
developed. This matrix is the derivative of the flow generated by the N -body
vector field with respect to initial conditions. It, and it’s inverse can be used in
concert with the Newton Method in order to find/design orbits which begin at
specified states and end in some specific configuration, such as a periodic orbit.

We develop the differential equation which the State Transition Matrix sat-
isfies, as well as the numerical methods necessary to solve it. The practical
application of the matrix is discussed at length, especially it’s connection with
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Newton Methods, which can be used to solve all kinds of boundary value prob-
lems. We then give several worked examples illustrating the use of these meth-
ods, including a method which allows one to compute Choreography orbits.

2 State Transition Matrix for the N Body

A state of the N bodies is a vector x ∈ R
6N where

x =





























r1
r2
...

rN
v1

v2

...
vN





























and each r1, . . . ,vN ∈ R
3.

The equations of motion for the N body system can be written as

ẋ = f(x)

with f : R
6N → R

6N given by

f(x) =





























v1

v2

...
vN

g1(r1, . . . , rN)
g2(r1, . . . , rN)

...
gN (r1, . . . , rN)





























and

gi(r1, . . . , rN) =
N

∑

j = 1
j 6= i

Gmj

|rij |3
rij

The flow generated by this differential equation is a function φ : R × U ⊂
R × R

6N → R
6N such that

1. φ(0,x) = x for all x ∈ U .

2. φ(t + s,x) = φ(t, φ(s,x)) for all t, s ∈ R.
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3. d
dtφ(t,x)|t=τ = f(φ(τ,x)) for all x ∈ U and τ ∈ R

Here U is the set on which the N body problem has globally defined solutions,
i.e. R

6N minus the set of initial conditions which lead to collisions or which
escape to infinity in finite time.

Condition 1, and 2 express that the flow is a one parameter group acting on
U , while 3 says simply that the curve φ(t,x0) is the solution trajectory of the
equation ẋ = f(x) with initial condition x0 ∈ U .

If f is a C1 function then the flow φ is itself differentiable (Hersch and
Smale), and the differential Dφ is

Dφ = (Dt φ, Dxφ) =

(

∂φ

∂t
, Dxφ

)

Both of these partial derivatives can be computed along a given reference tra-
jectory. If x0 ∈ U is given then property 3 of the flow shows that ∂φ

∂t = dφ
dt =

f(φ(t,x0) along the reference solution φ(t,x0).
On the other hand if x0 ∈ U and t0, τ ∈ R are fixed, let x∗(τ) = φ(τ,x0),

and Φ(τ, t0) = Dx0
φ(τ,x0), where t0 is the time at which x∗(t0) = x0 Then one

has by the chain rule and the equality of mixed partials, that

Φ̇ =
d

dt
Φ(t, t0)|t=τ

=
d

dt
[Dx0

φ(t,x0)]t=τ

= Dx0

[

d

dt
φ(t,x0)|t=τ

]

= Dx0
f(x∗(τ))

=
[

Dx∗(τ)f(x ∗ (τ))
]

◦ [Dx0
φ(τ,x0)]

= Dxf(x)|x=x∗(τ) ◦ Φ(τ, t0)

Furthermore, evaluating the flow at τ = t0 gives

Φ(t0, t0) = Dx0
φ(t0,x0) = Dx0

I = I

Then defining F = Dxf(x) one has that Φ satisfies the linear nonautonomous
matrix differential equation

Φ̇(t, t0) = F ◦ Φ(t, t0) Φ(t0, t0) = I

F is called the state propagation matrix. We compute F for the N body
problem;

F = Dx f(x)
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= Dx





















v1

...
vN

g1(r1, . . . , rN )
...

gN(r1, . . . , rN )





















=





























Dr1
v1 . . . DrN

v1 Dv1
v1 . . . DvN

v1

Dr1
v2 . . . DrN

v2 Dv1
v2 . . . DvN

v2

...
. . .

. . .
...

Dr1
vN . . . DrN

vN Dv1
vN . . . DvN

vN

Dr1
g1(r) . . . DrN

g1(r) Dv1
g1(r) . . . DvN

g1(r)
Dr1

g2(r) . . . DrN
g2(r) Dv1

g2(r) . . . DvN
g2(r)

...
. . .

. . .
...

Dr1
gN(r) . . . DrN

gN (r) Dv1
gN (r) . . . DvN

gN (r)





























=

[

03N×3N I3N×3N

G 03N×3N

]

Here r = r1, . . . , rN so we see that G is a 3N × 3N matrix function of r1(t),
. . . rN (t). The explicit form of G is the subject of the next section.

2.1 Derivation of G

From the previous computation it is clear that

G =











Dr1
g1(r) . . . DrN

g1(r)
Dr1

g2(r) . . . DrN
g2(r)

...
. . .

...
Dr1

gN (r) . . . DrN
gN(r)











(1)

The computation of these derivatives is aided by the following.

Lemma 1

Drk
|rij |

−3 =







3 1
|rij |5

rT
ij k = i

−3 1
|rij |5

rT
ij k = j

0 k 6= i, j

where all vectors are thought of as column vectors, hence a vector transposed is

a row vector.

Proof First, by the chain rule
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Drk
|rij |

−3 = Drk

[

(rT
ij rij)

1/2
]−3

(2)

= Drk

(

rT
ij rij

)−3/2
(3)

= −
3

2

(

rT
ij rij

)−5/2
Drk

(

rT
ij rij

)

(4)

and the termDrk

(

rT
ij rij

)

depends on the values if i, j and k. Now, i and j will
never be equal, so there are three cases; k = i but k 6= j, k = j but k 6= i, and
k 6= i, j.

In case k = i

Drk

(

rT
ij rij

)

= Dri

(

rT
ij rij

)

= Dri



(r1
j − r1

i , r2
j − r2

i , r3
j − r3

i )





r1
j − r1

i

r2
j − r2

i

r3
j − r3

i









= Dri

(

(r1
j − r1

i )2 + (r2
j − r2

i )2 + (r3
j − r3

i )2
)

=





Dr1

i

(

(r1
j − r1

i )2 + (r2
j − r2

i )2 + (r3
j − r3

i )2
)

Dr2

i

(

(r1
j − r1

i )2 + (r2
j − r2

i )2 + (r3
j − r3

i )2
)

Dr3

i

(

(r1
j − r1

i )2 + (r2
j − r2

i )2 + (r3
j − r3

i )2
)





T

=







Dr1

i

(

r1
j − r1

i

)2

Dr2

i

(

r2
j − r2

i

)2

Dr3

i

(

r3
j − r3

i

)2







T

=





2
(

r1
j − r1

i

)

Dr1

i

(

r1
j − r1

i

)

2
(

r2
j − r2

i

)

Dr2

i

(

r2
j − r2

i

)

2
(

r3
j − r3

i

)

Dr3

i

(

r3
j − r3

i

)





T

=





−2
(

r1
j − r1

i

)

−2
(

r2
j − r2

i

)

−2
(

r3
j − r3

i

)





T

= −2rT
ij

Substituting this into (4) gives

Drk
|rij |

−3 = −
3

2

(

rT
ij rij

)−5/2
Dri

(

rT
ij rij

)

= −
3

2

(

rT
ij rij

)−5/2
− 2rT

ij

= 3
(

rT
ij rij

)−5/2
rT

ij

= 3
1

|rij |5
rT

ij
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Similarly, if k = j then the first six steps of the computation are identical
and one has

Drk

(

rT
ij rij

)

= Drj

(

rT
ij rij

)

=







2
(

r1
j − r1

i

)

Dr1

j

(

r1
j − r1

i

)

2
(

r2
j − r2

i

)

Dr2

j

(

r2
j − r2

i

)

2
(

r3
j − r3

i

)

Dr3

j

(

r3
j − r3

i

)







T

=





2
(

r1
j − r1

i

)

2
(

r2
j − r2

i

)

2
(

r3
j − r3

i

)





T

= 2 rT
ij

Substituting the previous line into (4) we have

Drk
|rij |

−3 = −
3

2

(

rT
ij rij

)−5/2
Drj

(

rT
ij rij

)

= −
3

2

(

rT
ij rij

)−5/2
2rT

ij

= −3
(

rT
ij rij

)−5/2
rT

ij

= −3
1

|rij |5
rT

ij

Finally if k 6= i, j then Drk

(

rT
ij rij

)

= 0 as rij is independent of rk. Then
in this case (4) is zero. Putting the three cases together gives the lemma.

The lemma aids in the speedy computation of the elements of G. As in the
previous section let r = r1, . . . , rN . Then

Drk
gi(r) = Drk

G

N
∑

j = 1
j 6= i

mj

|rij |3
rik (5)

= G

N
∑

j = 1
j 6= i

mj

(

Drk
|rij |

−3rik

)

(6)

(Here G is the gravitational constant). I this expression we have to deal with
the terms Drk

|rij |
−3rij in the indexed sum. Examining (1) shows that the two

possible cases k = i and k 6= i both occur.
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If k 6= i then k = j for exactly one of the summands, so that all but one of
the terms is zero and we have

G
N

∑

j = 1
j 6= i

mj

(

Drk
|rij |

−3rij

)

= Gmk Drk
|rik|

−3rik

= Gmk

[

(

Drk
|rik|

−3
)T

rT
ik +

1

|rik|3
Drk

rik

]

= Gmk

[

(

−3
1

|rik|5
rT

ik

)T

rT
ik +

1

|rik|3
Drk

(rk − ri)

]

= Gmk

[

−3
1

|rik|5
rikr

T
ik +

1

|rik|3
I3×3

]

where we have used both the lemma and a vector product rule for derivatives,
and it should be recalled that rikr

T
ik is a column vector times a row vector.

Explicitly, it is the 3 × 3 matrix

rikr
T
ik = (rk − ri)(rk − ri)

T

=





r1
k − r1

i

r2
k − r2

i

r3
k − r3

i



 (r1
k − r1

i , r2
k − r2

i , r3
k − r3

i )

=





(r1
k − r1

i ) ∗ (r1
k − r1

i ) (r2
k − r2

i ) ∗ (r1
k − r1

i ) (r3
k − r3

i ) ∗ (r1
k − r1

i )
(r1

k − r1
i ) ∗ (r2

k − r2
i ) (r2

k − r2
i ) ∗ (r2

k − r2
i ) (r3

k − r3
i ) ∗ (r2

k − r2
i )

(r1
k − r1

i ) ∗ (r3
k − r3

i ) (r2
k − r2

i ) ∗ (r3
k − r3

i ) (r3
k − r3

i ) ∗ (r3
k − r3

i )





On the other hand if k = i then none of the summands vanish as each
depends on i, and we have

G
N

∑

j = 1
j 6= i

mj

(

Drk
|rij |

−3rij

)

= G
N

∑

j = 1
j 6= i

mj

(

Dri
|rij |

−3rij

)
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= G

N
∑

j = 1
j 6= i

mj

[

(

Dri
|rij |

−3
)T

rT
ij +

1

|rij |3
Dri

rij

]

= G

N
∑

j = 1
j 6= i

mj

[

(

3
1

|rij |5
rT

ij

)T

rT
ij +

1

|rij |3
Drj

(rj − ri)

]

= G

N
∑

j = 1
j 6= i

mj

[

3
1

|rij |5
rijr

T
ij −

1

|rij |3
I3×3

]

Then the 3 × 3 submatrices of G are

(G)ik =















G
∑N

j = 1
j 6= i

mj

[

3 1
|rij |5

rijr
T
ij −

1
|rij |3

I3×3

]

k = i

Gmk

[

−3 1
|rik|5

rikr
T
ik + 1

|rik|3
I3×3

]

k 6= i

(7)

where i and k each range from 1 to N . This gives G in a form that is easy to
code.

2.2 Equal Masses and Symplectic Transition Matrices

The matrix Φ(t, t0) is the derivative of the flow φ(t,x). Then, locally, it is the
best linear approximation of the flow. So, qualitatively if |x0−x| is small enough
we can expect |Φ(t, t0)x − φ(t,x)| to be small. In fact

ẏ = Φ(t, t0)y (8)

is the linearized vector field near a reference solution of the fully nonlinear
problem, and for small y0 = x0 − x the solution trajectory y(t) of (8) with
y(t0) = y0 is a good approximation at each time to the difference φ(t,x0) −
φ(t,x). In fact the degree to which this approximation is valid is a good measure
of sensitivity of φ(t,x0) to initial conditions. For this reason (8) is called the
variational equation.

A matrix A is said to be symplectic with respect to a second matrix B if and
only if AT BA = B. It is shown in [Meyer and Hall] that an even dimensional
matrix A is symplectic with respect to J, where

J =

[

0 I

−I 0

]
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if and only if the system

ż = Az

is a linear Hamiltonian dynamical system, i.e. if there is a quadratic form
H : R

2N → R
2N so that

ż = JDzH

Therefore system (8) is a linear Hamiltonian system if and only if Φ(t, t0) is
symplectic (with respect to J) in which case the linear flow preserves phase space
volume. (Note that the phase space of φ is even dimensional as φ is generated
by a Hamiltonian vector field. Then Φ is an even dimensional matrix). In this
case Φ(t, t0) is particularly easy to invert;

[Φ(t, t0)]
−1 = −JΦ(t, t0)J

The inverse of Φ is the best linear approximation of φ−1 by the inverse function
theorem. Then it is desirable to know when Φ is symplectic, if only to have the
above formula for the inverse. We turn to necessary and sufficient conditions
for this now.

First, Φ is symplectic with respect to J if and only if ΦTJΦ = J. Differen-
tiating this with respect to time gives

d

dt
[ΦTJΦ] = Φ̇TJΦ + ΦT JΦ̇

= [FΦ]T JΦ + ΦT JFΦ

= ΦT FT JΦ + ΦT JFΦ

= ΦT [FT J + JF ]Φ

= 0

and since Φ(t0, t0) = I 6= 0 we have that Φ(t, t0) 6= 0 for all t (as we are assuming
that the dynamical system is globally defined). Then Φ is symplectic if and only
if

FTJ + JF = 0

or

FTJ = −JF

Using that for the N body problem

F = Dxf =

[

03N×3N I3N×3N

G 03N×3N

]

we compute
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FTJ =

[

03N×3N I3N×3N

G 03N×3N

]T [

03N×3N I3N×3N

−I3N×3N 03N×3N

]

=

[

03N×3N GT

I3N×3N 03N×3N

] [

03N×3N I3N×3N

−I3N×3N 03N×3N

]

=

[

−I3N×3NGT 03N×3N

03N×3N I3N×3N I3N×3N

]

=

[

−GT 03N×3N

03N×3N I3N×3N

]

and

−JF = −

[

03N×3N I3N×3N

−I3N×3N 03N×3N

] [

03N×3N I3N×3N

G 03N×3N

]

=

[

03N×3N −I3N×3N

I3N×3N 03N×3N

] [

03N×3N G

I3N×3N 03N×3N

]

=

[

−I3N×3NG 03N×3N

03N×3N I3N×3NI3N×3N

]

=

[

−G 03N×3N

03N×3N I3N×3N

]

Then we have that FT J = −JF and hence Φ is symplectic if and only if G =
GT , so if G is symmetric.
Recall from the previous section that

G =











Dr1
g1(r) . . . DrN

g1(r)
Dr1

g2(r) . . . DrN
g2(r)

...
. . .

...
Dr1

gN (r) . . . DrN
gN(r)











with

Drk
gi(r) =















G
∑N

j = 1
j 6= i

mj

[

3 1
|rij |5

rijr
T
ij −

1
|rij |3

I3×3

]

k = i

Gmk

[

−3 1
|rik|5

rikr
T
ik + 1

|rik|3
I3×3

]

k 6= i

The question of when this is symmetric will be aided by the following.

Lemma 2

Dri
gk =

mi

mk
Drk

gi
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Proof If i = k then the statement is trivial as

Dri
gk = Dri

gi =
mi

mi
Dri

gi =
mi

mk
Drk

gi

Suppose then that i 6= k. Then since |rik| = |rki| and rikr
T
ik = rkir

T
ki we have

that

Drk
gi(r) = Gmk

[

−3
1

|rik|5
rikr

T
ik +

1

|rik|3
I3×3

]

= Gmk

[

−3
1

|rki|5
rkir

T
ki +

1

|rki|3
I3×3

]

= Gmk
mi

mi

[

−3
1

|rki|5
rkir

T
ki +

1

|rki|3
I3×3

]

=
mk

mi
Gmi

[

−3
1

|rki|5
rkir

T
ki +

1

|rki|3
I3×3

]

=
mk

mi
Dri

gk(r)

Then, in fact

G =















Dr1
g1 Dr2

g1 . . . DrN−1
g1 DrN

g1

Dr1
g2 Dr2

g2 . . . DrN−1
g2 DrN

g2

...
...

. . .
...

...
Dr1

gN−1 Dr2
gN−1 . . . DrN−1

gN−1 DrN
gN−1

Dr1
gN Dr2

gN . . . DrN−1
gN DrN

gN















=















Dr1
g1 Dr2

g1 . . . DrN−1
g1 DrN

g1
m1

m2

Dr2
g1 Dr2

g2 . . . DrN−1
g2 DrN

g2

...
...

. . .
...

...
m1

mN−1

DrN−1
g1

m2

mN−1

DrN−1
g2 . . . DrN−1

gN−1 DrN
gN−1

m1

mN
DrN

g1
m2

mN
DrN

g2 . . . mN−1

mN
DrN

gN−1 DrN
gN















Then clearly G is symmetric if and only if m1 = m2 = . . . = mN .
Note however that even if G is not symmetric, the lemma still implies that

the lower triangular entries differ from the upper triangular entries only by
constant multiples. If this information is used in the computer implementation
the expense of computing G is greatly reduced. (Instead of computing N2 3×3
matrices, only N +(N − 1)+ . . .+3+2+1 = (N2 −N)/2 matrices are needed.
Even these contain many repeated terms so that the number of computations
can be further reduced. See code in the appendix).
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3 Computer Implementation of the First Varia-

tion Equation and Computation of the State

Transition Matrix

The state transition matrix can be computed numerically by integrating the
differential equation

Φ̇(t, t0) = F ◦ Φ(t, t0) Φ(t0, t0) = I

This is a nonautonomous linear first order 6N×6N matrix differential equation.
Since most numerical integration routines prefer input in the form of a system
of first order scalar equations it’s convenient to write the system in the form
ẋ = f(t,x).

Begin by letting K = 6N , writing

Φ(t, t0) =







a11 · · · a1K

...
. . .

...
aK1 · · · aKK







and defining a state vector x ∈ R
36N2

x =



























a11

...
a1K

...
aK1

...
aKK



























With this notation consider the expression F ◦ Φ(t, t0). This becomes

F ◦ Φ(t, t0) = Dxf(x) ◦ Φ(t, t0)

=

[

0 I

G 0

]

Φ(t, t0)

=

[

0 I

G 0

]







a11 · · · a1K

...
. . .

...
aK1 · · · aKK







12



=

























a(K/2+1)1 · · · a(K/2+1)K

a(K/2+2) 1 · · · a(K/2+2) K

...
. . . · · ·

aK1 · · · aKK

G







a11

...
a(K/2)1






· · · G







a1K

...
a(K/2)K































where each of the column vectors in the bottom half of the matrix can be
computed using the know expressions for G. Denote the ith such column by Gi.
Note that since G is a K/2× K/2 matrix, the vector Gi has K/2 components.
Then

Gi = G







a1i

...
a(K/2)i







=











Dr1
g1(r) . . . DrN

g1(r)
Dr1

g2(r) . . . DrN
g2(r)

...
. . .

...
Dr1

gN (r) . . . DrN
gN(r)

















a1i

...
a(K/2)i







=







Dr1
g1(r) a1i + . . . + DrN

g1(r) a(K/2)i

...
. . .

...
Dr1

gN (r) a1i + . . . + DrN
gN(r) a(K/2)i







where it is recalled that expressions for the Drk
gi terms are known explicitly.

Then the scalar system of ODEs for the state transition matrix is

ẋ =





























































ȧ11

...
ȧ1K

...
ȧ(K/2)1

...
ȧ(K/2)K

ȧ(K/2+1) 1

...
ȧ(K/2+1) K

...
ȧK1

...
ȧKK





























































36N2

=





























































aK/2 1

...
aK/2 K

...
aK 1

...
aK K

(G1)1
...

(G1)K/2

...
(G1)K/2

...
(GK/2)K/2





























































36N2
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where

(Gi)j = Dr1
gj(r) a1i + . . . + DrN

gj(r) a(K/2)i

is the jth component of the ith column vector Gi, i = 1, 2, . . . , K = 6N , j =
1, 2, . . . , K/2 = 3N , and the initial condition is

x0 = x(0) =

















































a11(0)
a12(0)

...
a1K(0)
a21(0)
a22(0)

...
a2K(0)

...
aK1(0)

...
aKK(0)

















































=

















































1
0
...
0
0
1
...
0
...
0
...
1

















































While this system is scalar and first order it is not autonomous as the func-
tions

gj(r) = gj(r1(t), . . . , rN (t))

clearly depend on time. The usual way to obtain an autonomous vector field
from this system would be to append the scalar equation ṫ = 1 and integrate
the resulting 36N2 + 1 equations.

However the present case is complicated by the fact that the functions
r1(t), . . . , rN (t) are not explicitly known, but are themselves components of a so-
lution trajectory of the N body problem with initial conditions r1(0), . . . , rN (0)
and v1(0), . . . ,vN (0). One could numerically compute r1(t), . . . , rN (t) and, us-
ing the resulting data, treat these as known function. If an adaptive step size
integration routine were then used to integrate the state transition equations it
would be necessary to interpolate this data repeatedly.

r1(t), . . . , rN (t) are in fact the position components of the reference solution
mentioned above. The differential equations for the state transition matrix de-
pend critically on this reference solution. Then another option is to incorporate
this reference solution into an expanded system of equations.

To this end the N body equations of motion are appended to the state
transition matrix equations. One obtains a new state vector y ∈ R

36N2+6N and
the system of equations
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ẏ =



































ȧ11

...
ȧKK

ṙ1

...
ṙN

v̇1

...
v̇N



































36N2+6N

=



































aK/2 1

...
(GK/2)K/2

v1

...
vN

g1

...
g3



































36N2+N6

with initial conditions

y0 = y(0) =





















a11(0)
...

aKK(0)
(r1)0

...
(vN )0





















=





















1
...
1

r1(0)
...

vN (0)





















This is an autonomous system of first order differential equations which any
standard integration routine can compute. An example of such a program is
given in the appendix.

4 Method of Differential Corrections

The method of differential corrections is a powerfull application of Newton’s
Method that employes the State Transition Matrix to solve various kinds of
boundary value problems. The first subsection contains some motivation for
the method, as well as it’s specific form. The following section gives an example
of it’s use in solving a specific boundary value or targeting problem.

4.1 Newton’s Method and the Differential of the Flow

Fix x∗
0 ∈ U and let x∗(t) = φ(t,x∗

0) be the orbit which passes through x∗
0 at

time 0. x∗ will be called a reference solution. Suppose that at a fixed time t = τ
the reference trajectory passes near a target point xf ∈ U . Specifically, that for
some ε > 0, |xf − x∗(τ)| < ε.

There are many practical situations where we may want to solve the following
targeting problem; find an initial condition x0 near x∗

0 and time T near τ so
that φ(T,x0) = xf , or so that at least |φ(T,x0) − xf | < δ for some prescribed
tolerance δ > 0.
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A first intuitive step in this direction can be made by utilizing the fact that
the state transition matrix Φ(t, t0) is the differential of the flow φ(t,x) with
respect to the variable x. Assume additionally that the state transition matrix
is invertable on and near the reference solution, or at least in the open ball
B(x∗(τ), ε). (It is enough to assume Φ(t, t0) is invertable only at x∗(τ) if ε is
small enough).

Then, since φ(t, ·) is differentiable, by the inverse function theorem we have
that φ−1(t, ·) is defined and differentiable on B(x∗(τ), ε), and that

Dyφ(t,y)−1 = [Dxφ(t,x)]−1

where y ∈ B(x∗(τ), ε) and x = φ−1(t,y). Define the vector δxf ∈ R
6N by

δxf = xf − x∗(τ)

We have that δxf ∈ B(0, ε), as |xf − x∗(τ)| < ε.
Dxφ−1(t,x∗(τ)) is the best linear approximation of φ−1 at x∗(τ) and ε is

small. Then

φ−1(t,x∗(τ) + δxf ) ≈ x∗
0 + [Dxφ−1(t,x∗(τ))]δxf (9)

= x∗
0 + [Dxφ(t,x∗(τ))]−1δxf (10)

= x∗
0 + [Φ(t, t0)]

−1δxf (11)

Define δx0 = [Φ(t, t0)]
−1δxf and note that

φ−1(t,x∗(τ) + δxf ) = φ−1(t,xf ) (12)

= x0 (13)

Where (12) and (13) are equal by definition of the targeting problem; x0 is an
initial state such that φ(τ,x0) = xf . Applying φ(τ, ·) to (12) and (13) gives
exactly this.

Combining (9), (11), (13) and the definition of δx0 gives

x0 ≈ x∗
0 + δx0

Now if we let x∗
1 = x∗

0 + δx0 then we expect that

|φ(τ,x∗
1) − xf | < |φ(τ,x∗

0) − xf |

This inequality has not been proved. But this is the intuition; that x∗
1 is a good

approximation of x0, so for small enough ε it should be a better approximation
than the initial guess x∗

0. By iterating this argument we might hope to produce
a sequence of better and better approximations to the target x0, and might
hope even that the sequence converges.
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Newton’s Method is a powerfull refinement of these ideas. Briefly, suppose
we want to solve the equation f(x) = 0 with f a differentiable map between
Banach Spaces. Given an initial estimate x∗

0 of the solution x0 with |f(x∗
0)| < ε

small, the sequence

xn+1 = xn − [Dxf(xn)]−1f(xn) x0 = x∗
0

converges to a solution x0. A theorem of Kantorovich gives sufficient conditions
under which quadratic convergence is guaranteed as well estimates of the size
of the set on which the method converges (how good the initial guess must be).
Good references are [Arbogast and Bonna] and [Cheney].

Here the point is that the targeting problem can be reformulated as follows.
Define f : U → R

6N by

f(x) = φ(τ,x) − xf

so that solving the targeting problem is equivalent to finding x0 so that

f(x0) = 0

The Newton method is applicable if [Dxf ]−1 exists (as a bounded linear oper-
ator). But assuming again that the conditions of the inverse function theorem
are satisfied this is

[Dxf ]−1 = [Dxφ(τ,x) − xf ]−1

= [Dxφ(τ,x) − 0]−1

= [Φ(t, t0)]
−1

and a Newton algorithm can be implemented as

xn+1 = xn − [Φ(τ, t0)|xn
]−1f(xn)

= xn − [Φ(τ, t0)|xn
]−1[φ(τ,xn) − xf ] x1 = x∗

0

The procedure described here is sometimes called the method of differential
corrections or differential correction procedure.

4.2 Example; Targeting an Equilateral Triangle Configu-

ration

In this example three bodies of unit mass in the plane have initial positions and
velocities
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x∗
0 =

[

r∗0
v∗

0

]

=









































r1
1

r2
1

r1
2

r2
2

r1
3

r2
3

v1
1

v2
1

v1
2

v2
2

v1
3

v2
3









































=









































5.434
5.290
4.531
5.231
5.033
4.478
−0.594
−1.924
−0.402
−0.186
−2.003
−0.888








































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x axis

y 
ax

is

Figure 1: Initial Trajectory of Braid

which cause them to move in the braidlike orbit shown in figure (1) between
time t0 = 0 and tf = 5. We compute Φ(t, 0) with this braided orbit as x∗(t).
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Computing

[Φ(t, 0)]−1 + J[Φ(t, 0)]TJ and |Φ(t, 0)|

at 25 equally spaced time points ti i = 1, 2, . . . , 25 between t = 0 and t = 10
and then taking the norm of the result yields

|[Φ(ti, 0)]−1 + J[Φ(ti, 0)]TJ| = 104





























































































0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000000
0.00000000000001
0.00000000000006
0.00000000000082
0.00000000000482
0.00000000011889
0.00000000047168
0.00000013910169
0.00000005198954
0.00000004077770
0.00000004886208
0.00000007512184
0.00000065826429
0.05350860773379
0.01195472846734
0.01669321943851
0.00943207572917
0.11736446468390
4.24183632901699
0.54824345987465





























































































and
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|Φ(ti, 0)| =





























































































1.00000000000000
0.99999999999998
0.99999999999999
0.99999999999993
0.99999999999997
0.99999999999980
1.00000000000137
0.99999999999811
1.00000000000181
0.99999999996121
1.00000000068733
0.99999999916063
0.99999996370961
0.99999998285752
0.99999997363241
0.99999996396527
0.99999996234473
1.00000007331777
0.99990474761275
0.99985938906079
0.99990047237883
0.99993582786588
0.99960621991467
1.00311403198487
1.00157520272770





























































































(14)

which numerically verifies the properties

[Φ(t, 0)]−1 = −J[Φ(t, 0)]TJ

and

|Φ(t, 0)| = 1

for times well past t = 5. We note that the determinant property is preserved
through the third decimal place through the experiment. Similarly if we single
out the first twelve ti then
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|[Φ(ti, 0)]−1 + J[Φ(ti, 0)]TJ| = 10−5









































0.00000000114905
0.00000002360885
0.00000004617165
0.00000020291226
0.00000037912633
0.00000186135364
0.00000851617346
0.00005942789144
0.00082081707653
0.00481989605307
0.11889086929684
0.47167611124010









































and the two methods of determining the inverse agree to more than five figures.
Note that t12 = 4.8.

We are now ready to give an example of the use of these tools. Consider
the following targeting problem. An orbit is sought which begins from the
same initial positions, but whose positions at time tf = 5 lie on the vertices of
the equilateral triangle comprised of the points (0.0, 0.577), (−0.5,−0.288), and
(0.5,−0.288). We target

xf =

















r1
1(tf )

r2
1(tf )

r1
2(tf )

r2
2(tf )

r1
3(tf )

r2
3(tf )

















=

















0.0
0.577
−0.5
−0.288

0.5
−0.288

















with final velocities unconstrained.
To formulate the differential correction procedure we write

φ(t,x∗
0) = φ(t, r∗0,v∗

0)

=

[

φr(t, r
∗
0,v

∗
0)

φv(t, r∗0,v
∗
0)

]

=

[

r∗(t)
v∗(t)

]

Holding r∗0 and tf fixed define f : R
6 → R

6 by

f(v) = φr(tf , r∗0,v) − rf

and note that this gives position at time tf as a function of initial velocity, with
initial position fixed. Further a v0 such that f(v0) = 0 solves the targeting
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problem. However it it clear that we can have no hope of specifying the final
velocities, (to do that we would need more freedoms, such as varying the initial
positions).

The differentail correction procedure dictated by Newtons method is

vn+1 = vn − [Dvf(vn)]−1f(vn)

= vn − [Dv(φr(tf , r∗0,v) − rf )]−1[φr(tf , r∗0,v) − rf ]

= vn − [Φ(1:6,7:12)(tf , 0)]−1[r∗vn
(tf ) − rf ]

with v1 = v∗
0. Here the notation Φ(1:6,7:12)(tf , 0) is the first 6 rows and the last

6 columns of Φ(tf , 0), and r∗vn
(tf ) is the position at time tf of trajectory with

initial position (r∗0,vn).
To see that the differential term is correct note that

Φ(t, t0) = Dxφ(t,x) (15)

= Dx

[

φr(t,x)
φv(t,x)

]

(16)

=

[

Drφr(t, r,v) Dvφr(t, r,v)
Drφv(t, r,v) Dvφv(t, r,v)

]

(17)

Thus comparing the left hand side of (14) to (16) verifies the claim.
A MATLAB implementation of this procedure is given in the appendix.

After 6 iterations we have

error = |f(v6)| = 2.3026e− 09

and we consider the sequence converged. The initial velocity v0 which will flow
to the target state is

v0 =

















v1
1(0)

v2
1(0)

v1
2(0)

v2
2(0)

v1
3(0)

v2
3(0)

















=

















−0.5946
−1.9244
−0.4022
−0.1867
−2.0032
−0.8889

















the two figures show the new trajectory and a close up of the triangle configu-
ration of the masses at tf = 5.

Finally the difference between the initial estimate v∗
0 and the target velocity

v0 is
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Figure 2: The Corrected Trajectory

v0 − v∗
0 = 10−3

















0.6065
0.3864
0.1548
0.7263
0.2387
0.8874

















which shows this initial estimate was, in fact quite good.

5 A Choreography Orbit

A final example will demonstrate the flexibility of the differential correction
procedure. The initial conditions
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Figure 3: Equilateral Triangle Configuration

[

r∗0
v∗

0

]

=









































r1
1

r2
1

r1
2

r2
2

r1
3

r2
3

v1
1

v2
1

v1
2

v2
2

v1
3

v2
3









































=









































−0.7
0.36
1.1

−0.07
−0.4
−0.3
0.99
0.078
0.1
0.47
−1.1
−0.53









































give the very interesting trajectories shown in the next two figures. Note that
each body seems to trace a different figure eight pattern. We would like to target
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an initial state x0 such that the bodies follow eachother around the same figure
eight pattern. Such an orbit is called a choreography and were first discovered
only in the last 10 − 12 years ??.
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Figure 4: The Trajectories of the Initial Estimate

Such a trajectory would necessarily be periodic, with say period T . Further
it the bodies follow one another around the curve then it seems reasonable that
after one third of a period a body’s position and velocity coincide with the initial
position and velocity of the body leading it.

This can be expressed more precisely by requiring that r1(T/3) = r2(0),
r2(T/3) = r3(0), r3(T/3) = r1(0), v1(T/3) = v2(0), v2(T/3) = v3(0), and
v3(T/3) = v1(0).

Initial positions and velocities satisfying these conditions are sought. How-
ever we have no way of guessing the period of the figure 8 orbit, so the targeting
procedure must find T as well ( all the constraints above depend on T ).

Further consideration reveals that there are other constraints the figure eight
should satisfy. Bodies on such an orbit would certainly have trajectories which
are bounded for all time. We also choose to constrain the orbit so that the figure
does not drift, nor leave the plane. To meet this requirement the positons of
the center of mass should be fixed for all time. Setting the initial position of the
center arbitrarily at (0, 0, 0) gives rcm = 0 and requiring vcm = 0 guaranteed
that the center does not move.

The condition that the orbit lie in the xy plane combined with the require-
ment that it not rotate adds the constraint hz(t) = 0.

Then the state vector x ∈ R
13 defined by
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Figure 5: Time zero to initial tau: Ends Close but Not Matching

x =





r

v

τ





where τ = T/3 gives 13 scalar unknowns. However the constraints listed above
give 17 scalar relations, so the system is surly overconstrained. (Note that in our
notation this is the state space for the Newton Iteration, which is a dynamical
system in it’s own right, and not the state space of the original flow).

After a little experimentation one begins to suspect that these constraints
are not independent. In fact if body one follows body two, body two follows
body three, and in addition the bodies lie on a closed smooth curve in the plane,
then surly body three must follow body one.

It would be nice to prove this, but for now we take it for granted, and
remove the constraint r3(T/3) = r1(0). (Uniqueness of solutions surly provides
a quick proof). Similarly we guess that only two of the velocity constraints are
independent and propose that the function f : R

13 → R
13 be defined by

f(x) = f(r,v, τ) =





















r1(T/3) − r2(0)
r2(T/3) − r3(0)
v1(T/3) − v2(0)
v2(T/3) − v3(0)

rcm

vcm

hz(t)




















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and note that if f(x) = 0 then the constraints are satisfied.

5.1 The Derivative of the Constraint Function

To implement the correction procedure we must compute the derivative of f .
This will be a 13 × 13 matrix. Let M = m1 + m2 + m3 and write

f(x) = f(r,v, τ) =





















f1(r,v, τ)
f2(r,v, τ)
f3(r,v, τ)
f4(r,v, τ)
f5(r,v, τ)
f6(r,v, τ)
f7(r,v, τ)





















where




















f1(r,v, τ)
f2(r,v, τ)
f3(r,v, τ)
f4(r,v, τ)
f5(r,v, τ)
f6(r,v, τ)
f7(r,v, τ)





















=





















r1(τ) − r2(0)
r2(τ) − r3(0)
v1(τ) − v2(0)
v2(τ) − v3(0)

1
M [m1r1(0) + m2r2(0) + m3r3(0)]
1
M [m1v1(0) + m2v2(0) + m3v3(0)]

∑3
i=1[r

1
i (0)v2

i (0) − r2
i (0)v1

i (0)]





















Then

Df =







Dr1
f1 · · · Dv3

f1
∂
∂τ f1

...
. . .

...
...

Dr1
f7 · · · Dv3

f7
∂
∂τ f7







Then there are 49 separate terms to compute. There are however many similar
terms. We will show several explicitly and leave the remaining to the readers
imagination.

Consider the partials with respect to time. Only f1, . . . , f4 depend on τ . In
each case the needed partial comes down to either

∂

∂τ
ri(τ) =

∂

∂τ
φri

(τ,x0)

or

∂

∂τ
vi(τ) =

∂

∂τ
φvi

(τ,x0)

But by property (3) of flows we have that these are ṙi(τ) = vi(τ) and v̇i(τ) =
gi(τ)

It is the top left 8×12 matrix where terms which are related to Φ(τ, 0) show
up. We will call this matrix UΦ The computation of these goes like
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Dri
fj(r0,v0) = Dri

rj(τ) = Dri
φrj

(τ, r0,v0)

and we recall that this last term is a sub matrix of Φ(τ, 0). Working through
all the terms with τ dependence gives that

UΦ =









[Φ(τ, 0)](1:4,1:12) −

[

0 I 0 0 0 0

0 0 I 0 0 0

]

[Φ(τ, 0)](7:10,1:12) −

[

0 0 0 0 I 0

0 0 0 0 0 I

]









Here the −I terms come differentiating a term like rj(τ)− rj+1(0) with respect
to rj+1(0) as it is only in this case that the negative term has non zero derivative.

The terms remaining lie in the lower 5 × 13 matrix have no τ dependence.
We are left to compute Dri

rcm(0), Dvi
rcm(0), Dri

vcm(0), Dvi
vcm(0), Dri

hz(0),
and Dvi

hz(0), and these are trivial. To get the flavor compute for example

Dri
rcm(0) = Dri

mi

M
ri(0) =

mi

M
I

and

Drj

3
∑

i=1

mi[r
1
i (0)v2

i (0) − r2
i (0)v1

i (0)] = Drj
mj [r

1
j (0)v2

j (0) − r2
j (0)v1

j (0)]

= mj

[

Dr1

j
[r1

j (0)v2
j (0) − r2

j (0)v1
j (0)]

Dr2

j
[r1

j (0)v2
j (0) − r2

j (0)v1
j (0)]

]T

= mj

[

v2
j (0)

−v1
i (0)

]T

Each of the 49 of the computations is similar to one we have done, and we can
write down the entire differential. To save space denote the bottom left 1 × 12
matrix by
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B =













































m1

[

v2
1(0)

−v1
1(0)

]

m2

[

v2
2(0)

−v1
2(0)

]

m3

[

v2
3(0)

−v1
3(0)

]

m1

[

−r2
1(0)

r1
1(0)

]

m2

[

−r2
2(0)

r1
2(0)

]

m3

[

−r2
3(0)

r1
3(0)

]













































T





















v1(τ)
UΦ(τ, 0) v2(τ)

g1(τ)
g2(τ)

m1

M I m2

M I m3

M I 0 0 0 0

0 0 0 m1

M I m2

M I m3

M I 0

B 0





















Now that we have the differential we can procede with the Newton Mathod
exactly as before.

5.2 A Choreography Orbit

After running the differential correction procedure for 7 iterations the norm of
the difference between the x7 and xf is

εerror = |x7 − xf | = 6.777 ∗ 10−13

and we consider the sequence to have converged. The corrected initial conditions
so obtained are
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x0 =













































0.9686
0.2802
1.3081
0.0939
−0.3395
−0.3741
0.7964
0.2701
0.0644
0.4377
−0.8607
−0.7078
2.8585













































where the last entry is τ7 = 2.8585. Then the period of the choreography is
roughly T = 8.5755, a little higher than the period of the known orbit.
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Figure 6: Corrected Orbits: A figure eight choreography

Integrating the N body problem with the first 12 components of x0 as the
new initial conditions gives the trajectories shown in the figures (’Matched
Boundary Conditions’ and ’Corrected Orbits’), which both seem to show pe-
riodic trajectories with the bodies following one another around the a figure
eight.

Once a periodic orbit is discovered the State Transition Matrix evaluated
at any point on the orbit yields valuable geometric information. For example
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Figure 7: Matched Boundary Conditions

Robinsons Theorem 8.3 in chapter 5 guaranteed that the characteristic multi-
pliers (eigenvalues of Φ that remain after ignoring the first (two) eigenvalues
which are identically 1) are the eigenvalues of the derivative of the Poincare
map evaluated at the periodic point, and restricted to the energy level of the
orbit.

The forward dynamics of the periodic orbit are well understood be virtue of
it being a periodic orbit. Since we are in a Hamiltonian system and examining
a periodic orbit, the dynamics transverse to the energy surface are understood
as well.

The theorem says that the remaining eigenvalues determine the dynamics
near the periodic orbit in the directions transverse to the orbit and the energy
surface. So eigenvalues with modulus less than one imply the existence of a
local stable manifold for the orbit (similarly for eigenvalues larger than one and
existence of an unstable manifold). Eigenvalues with modulus one (after ignor-
ing the first one) imply the the existence of a local center manifold, where orbits
are neither attracted to nor repelled by the periodic orbit. On this manifold we
expect that recurrent dynamics may occur.

Computing the eigenvalues gives
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Figure 8: Close up of the boundary matching

Ξ =









































−0.29759659585730+ 0.95469171261407i
−0.29759659585730− 0.95469171261407i
0.99859996433171+ 0.05289717607570i
0.99859996433171− 0.05289717607570i
0.99999855937938+ 0.00169742136742i
0.99999855937938− 0.00169742136742i
0.99999997027068+ 0.00024384093922i
0.99999997027068− 0.00024384093922i

0.99999960785773
1.00000039214230

0.99999999999995+ 0.00000041249357i
0.99999999999995− 0.00000041249357i









































with moduli
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|Ξ| =









































1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000









































The eigenvalues and their moduli tell the story of the dynamics near the orbit.
We can clearly make out the two unity eigenvalues associated with the forward
direction of flow, and the direction of movement transverse to the energy surface.

Then we note that all other eigenvalues are complex with modulus one. Then
there is no stable or unstable manifold for this orbit, and all the dynamics is
center manifold dynamics. Then the orbit is stable in the since of Lyapunov.
Small perturbation of the orbit should remain near the choreography, and remain
there for very long times (if nearby trajectories escape they must escape via
center dynamics, which will not include exponential divergence in time).

A more dynamical systems prospective on this information is that, as men-
tioned above, the characteristic eigenvalues (the eigenvalues left when we disre-
gard the two unity eigenvectors) of the manodromy matrix (the state transition
matrix for a full period of a periodic orbit) are the eigenvectors of the lineariza-
tion of the Poincare map near the orbit, restricted to the energy of the orbit.
This map is a ten dimensional linear mapping, but neverthe less we know ex-
actly what it must look like, at least near the orbit. The orbit would appear
as an elliptic fixed point, with no hyperbolic directions at all. Then for the
nonlinear map, orbits may diffuse (via Arnold diffusion) but only slowly.

We can also examine some of the critical observables associated with the N
body problem for the orbit, and perhaps gain more insight into it’s properties,
or at least obtain independent conformation of some of what we have already
obtained by other methods. The energy plot does not differ in any preceptable
way from constant. In fact the plot of ∆E shows that the energy drifts on the
order of 10−15 thoughout the integration. The suggests that the integration
results can be trusted to roughly twelve or thirteen signifigant figures.

The plots of the moment of inertia I, as well as the plots of its first and
second derivatives show the quantities oscillating in what looks like a slightly
modulated sinusoidal fashion. The second derivative changes sign (not once but
many times). This is good as it agrees with the eigenvalue data, which suggest
that the orbit is Lyaponov Stable.
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Figure 9: Energy

Finally, we remark that refinements of the methods used in these notes have
been used by Kapela and Zgliczyski to give rigorous computer assisted proofs
of the existence of choreography orbits [KZ].

A MatLab Code

The function ’stateTrans’ is handed an initial time, an final time, an initial
condition vector for the N body problem, the gravitational constant and three
masses. The code works as written for three bodies in the plane.

’stateTrans.m’ calls ’sysSolve.m’ which in turn calls ’computeG.m’. None of
the functions runs without the others.

function A=stateTrans(t0, tf, x,G,m1,m2,m3)

%Compute the state transition matrix at time tf for the

%path x(t) with x(t0)=x0

tspan=[t0,tf]; %time span over which to run the integration

%--------------------------------------------------------------------------

%The state transition matrix is determined by a 12X12 matrix ODE

%This gives rise first to a system of 144 ODEs. However the matrix

%ODE is nonautonomous and depends on a particular solution (trajectory)

%of the N-Body problem. This trajectory is itself the solution of a system
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Figure 10: Drift in Energy

%of 12 ODEs. The two systems are solved simultaneously, giving an

%autonomous system of 156 ODEs.

%--------------------------------------------------------------------------

%set up the initial condition, y0 for the 156 component system

y0=0;

%since the initial condition for the 12X12 matrix system is the 12X12

%identity matrix the initial condition vector is very sparse. The first

%144 components are 0s and 1s, and the last 12 are the initial conditions

%from the N-Body problem.

%Initialize a 12X12 identity matrix

I=eye(12);

%put the entries, row by row, into y0.

for i=1:12

for j=1:12;

y(12*(i-1)+j)=I(i,j);

end

end

%the inital conditions for the particular orbit of the N-body problem have
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%been passed in as ’x’. This to the end of y.

y(145:156)=x’;

%Convert to a column vector and pass the initial conditions to the

%integrator

y0=y’; %inital condition

options=odeset(’RelTol’,1e-14,’AbsTol’,1e-22); %set tolerences

[t,Y]=ode113(’sysSolve’,tspan,y0,options,[],G,m1,m2,m3); %integrate the system

%[t,Y] is a huge matrix. It is made up of a row for each time and 156

%columns. But the desired data is the state transition matrix at the final

%time. Then the first 144 entries of the last row of Y must be put into a

%12X12 matrix which will be passed back to the caller

%find out the row number of tf

b=size(Y); %returns the number of rows and columns as a row vector

m=b(1,1); %so ’m’ is the number of rows

c=Y(m,1:144); %so ’c’ is a vector containing the first 144 entries of the last row of Y

%now c has to be made into a 12X12 matrix

d=0;

for i=1:12

for j=1:12

d(i,j)=c(12*(i-1)+j);
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end

end

%d is the state transition matrix at the final time and is passed back to

%the caller

A=d;

The program ’sysSolve.m’ encodes the vector field for the state transition
equations.

function ydot=sysSolve(t,y,options,flag,G,m1,m2,m3)

%This file contains the right hand side for the system which defines the

%state transition matrix for the three body problem in the plane. So ydot

%is a vector with 156 components

%-------------------------------------------------------------------------

%The structure of the system is

%

37



0 1 2 3 4 5 6 7 8 9
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

% A’=Df*A, x’=f(x)

%

%Where A,Df, are 12X12 matrices and A’ is the derivative of A.

%Df is the derivative of the N-body vector field f and has the form

%

% | 0 I |

% Df = | |

% | G 0 |

%

%where all submatrices are 6X6 and G has depends only on the position

%vectors of the bodies (all be it in a complicated way), and x’=f(x)

% is the 3-body problem in the plane. All of this is combined onto one

%system of 156 1st order ODEs. The right hand side for the system is coded

%in the remainder of the file

%------------------------------------------------------------------------

%FIRST

%The matrix G is computed

%This matrix depends on the positions of the N-body problem.

%These positions are contained in the 6 entries y(145:150).

%put the positions aside

x(1:6)=y(145:150);
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%Now compute the matrix G. Since ’G’ already denotes the gravatational

%constant call the matrix G ’GMatrix’.

%This is done by calling ’computeG.m’

GMatrix=computeG(x,G, m1, m2, m3);

%SECOND

%The right hand side for the state transition system is computed

%To do this construct a matrices ’A’ ’I’ and ’O’, where ’A’ contains the

%variables and ’O’ is a 6X6 matrix of zeros and ’I’ is the 6X6 identity.

O=zeros(6);

I=eye(6);

%Now the complete Jacobian of f is assembled

Df=0;

Df=[O,I;

GMatrix,O];

%Make A

for i=1:12

for j=1:12

A(i,j)=y(12*(i-1)+j);

end

end

%Then compute the 12X12 matrix Df*A, is named DfA.

DfA=0;

DfA=Df*A;

%This has to be put into vector format. We temporaly place the results in

%the 144-vector ’a’. Later this will be the first 144 components of ydot.

a=0;

for i=1:12

for j=1:12

a(12*(i-1)+j)=DfA(i,j);

end

end

%THIRD

%The last 12 entries are the vector field for the 3-Body problem,

%restricted to the plane. These are stored in ’c’.

%-------------------------------------------------------------------------

%--------The following code is essentialy the code from------------------

%-------’Nbody.m’ copied here and adjusted for 2 dimensions----------------
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%-------------------------------------------------------------------------

N=3; %Number of bodies

M=m1+m2+m3; %Total mass

Mass=[m1 m2 m3]; %Vector of Masses

%Initialize the variables

acc=0;

s1=0;

s2=0;

s3=0;

%Compute the elements of the n-body vector field

for i=1:N

for j=1:N

Rij=(y(144+2*i-1)-y(144+2*j-1))^2+(y(144+2*i)-y(144+2*j))^2;

%compute the three components of acceleration i

if j~=i

s1=s1+(Mass(1,j)/(sqrt(Rij))^3)*(y(144+2*j-1)-y(144+2*i-1));

s2=s2+(Mass(1,j)/(sqrt(Rij))^3)*(y(144+2*j)-y(144+2*i));

else

s1=s1+0;

s2=s2+0;

end

end

acc(2*i-1)=G*s1;

acc(2*i)=G*s2;

s1=0;

s2=0;

end

%Store the accelerations

accelerations=0;

accelerations=acc;

%enter the velociety components

velocities=0;

for i=1:(2*N)

velocities(i)=y(144+2*N+i);

end

%constructs a vector whose first 3*N entries are the velocities and whose

%last 3*N entries are the accelerations

c=0;

c(1:2*N,1)=velocities;

c(2*N+1:4*N,1)=accelerations;
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%------------------------------------------------------------------------

%------------------------’End of Nbody.m’----------------------------------

%------------------------------------------------------------------------

%Put it all toghether and pass back to integrator

ydot=[a’;c];

’computeG’ does exactly that.

function GMatrix=computeG(x,G, m1, m2, m3)

%function returns the matrix ’G’ for the three body problem in the

%plane with parameters as specified.

%Collection the x data into the r_i vectors.

r1=x(1:2);

r2=x(3:4);

r3=x(5:6);

%The distances. Rij stands for |r_j-r_i| where here r_i and

%r_j are vectors. (two scripts is a scalar and one script is a vector.)

R12=sqrt((r2-r1)*(r2-r1)’);

R21=R12;

R13=sqrt((r3-r1)*(r3-r1)’);

R31=R13;

R23=sqrt((r3-r2)*(r3-r2)’);

R32=R23;

%Only three terms, which are denoted by A12, A13, and A23 and are each 2X2

%matrices are necessary tocompute G. All the elements of G are composed

%of these.

A12=((3/(R12)^5)*(r2-r1)’*(r2-r1)-(1/(R12)^3)*eye(2));

A13=((3/(R13)^5)*(r3-r1)’*(r3-r1)-(1/(R13)^3)*eye(2));

A23=((3/(R23)^5)*(r3-r2)’*(r3-r2)-(1/(R23)^3)*eye(2));

%These are combined to make G;

GMatrix=[G*(m2*A12+m3*A13), -G*m2*A12, -G*m3*A13;

-G*m1*A12, G*(m1*A12+m3*A23), -G*m3*A23;

-G*m1*A13, -G*m2*A23, G*(m1*A13+m2*A23)];
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Here is an example program which calls repeatedly calls ’stateTrans.m’ dur-
ing a differential correction scheme. This prigram finds the coreography orbit
from problem 4. It also calls the program ’plamarNbody.m’ which is included
below.

%Program produces results for problem 4 of homework two

%This is the Choreography problem

%This is the code to cary out problem 3c and 3d in homework 2

G=1; %gravatational constant

N=3; %Number of bodies

%Masses

m1=1;

m2=1;

m3=1;

%Sum of masses

M=m1+m2+m3;

%mass vector

mass=[m1,m2,m3];

%time parameters

t0=0.0; %initial time

%Initial positions

r11=-0.755;

r12=0.355;

r21=1.155;

r22=-0.0755;

r31=-0.4055;

r32=-0.3055;

%Initial velocities

v11=0.9955;

v12=0.07855;

v21=0.1055;

v22=0.4755;

v31=-1.1055;

v32=-0.5355;
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%Initial state

xStar0=[r11; r12;

r21; r22

r31; r32;

v11; v12

v21; v22

v31; v32];

%Aux matrices

I=eye(2);

O=zeros(2);

J=[O,I; -I,O];

%---------------------------------------------------------

%The program will search for a coreography orbit

%Using a Newton method. An equation of the form

%f(x)=0, where f:R^13->R^13 is the constraint

%vector. Then the difference equation has the form

%

% x_{n+1} = x_n - [Df(x_n)]^-1 * f(x_n)

%

%To begin an initial condition is necessary. It

%will be called x_n, and depends on xStar0, the

%final time at each step.

%--------------------------------------------------------

%Set the initial guess for the final time;

tau=2.15; %This should be roughly 1/3 the desired period

%Number of itterations

K=8;

%Itteration loop

for i=1:K

i

%x_n and f(x_n) must be computed. They depend on the initial

%positions and velocities of the reference orbit,

%the final time tau, and the final positions and

%velocities. So, first a reference orbit must be computed;

tspan=[t0, tau];

options=odeset(’RelTol’,1e-13,’AbsTol’,1e-22);

[t,xStar]=ode113(’planarNbody’,tspan,xStar0’,options,[],G,m1,m2,m3,N);

%xStar_tau is now extracted. This is the positions and

%velocities at time tau.

b=size(xStar);
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m=b(1,1);

xStar_tau=xStar(m,:)’;

%Then the current state depends on the following variables;

r1_tau=xStar_tau(1:2);

r2_tau=xStar_tau(3:4);

r3_tau=xStar_tau(5:6);

r1_0=xStar0(1:2);

r2_0=xStar0(3:4);

r3_0=xStar0(5:6);

v1_tau=xStar_tau(7:8);

v2_tau=xStar_tau(9:10);

v1_0=xStar0(7:8);

v2_0=xStar0(9:10);

v3_0=xStar0(11:12);

rcm_0=(1/M)*(m1*r1_0 + m2*r2_0 + m3*r3_0);

vcm_0=(1/M)*(m1*v1_0 + m2*v2_0 + m3*v3_0);

hz_01=m1*(r1_0(1)*v1_0(2) - r1_0(2)*v1_0(1));

hz_02=m2*(r2_0(1)*v2_0(2) - r2_0(2)*v2_0(1));

hz_03=m3*(r3_0(1)*v3_0(2) - r3_0(2)*v3_0(1));

hz_0=hz_01+hz_02+hz_03;

%The current state is;

x_n=[r1_0;

r2_0;

r3_0;

v1_0;

v2_0;

v3_0;

tau];

%While the current constraint vector is

fx_n=[r1_tau-r2_0;

r2_tau-r3_0;

v1_tau-v2_0;

v2_tau-v3_0

rcm_0;

vcm_0;

hz_0];

error=norm(fx_n)

%---------------------------------------------

%To execute the Newton algorithm the derivative

%of the constraint vector is needed. This

%13X13 matrix is put together as follows;

%First the 2X2 blocks are computed

%--------------------------------------------

%The upper right 8X12 submatrix ’UR’ of Df

%depends on the state transition matrix

X=stateTrans(t0,tau,xStar0,G,m1,m2,m3);

44



%This submatrix is made of two 4X12 pieces UR1 and UR2;

I1=[O, I, O, O, O, O;

O, O, I, O, O, O];

I2=[O, O, O, O, I, O;

O, O, O, O, O, I];

X1=X(1:4,:);

X2=X(7:10,:);

UR1=X1-I1;

UR2=X2-I2;

UR=[UR1; UR2];

%Df also contains two of the N-body field terms

R12=sqrt((r2_tau - r1_tau)’*(r2_tau - r1_tau));

R13=sqrt((r3_tau - r1_tau)’*(r3_tau - r1_tau));

R23=sqrt((r3_tau - r2_tau)’*(r3_tau - r2_tau));

g1=G*(m2*((r2_tau - r1_tau)/(R12)^3) + m3*((r3_tau - r1_tau)/(R13)^3));

g2=G*(m1*((r1_tau - r2_tau)/(R12)^3) + m3*((r3_tau - r2_tau)/(R23)^3));

%For typographic reasons the following three terms are defined

a=m1/M;

b=m2/M;

c=m3/M;

%The partial derivatives of hz_0 with respect to

%the initial positions and velocities are;

d1h=m1*[v1_0(2), -v1_0(1)];

d2h=m2*[v2_0(2), -v2_0(1)];

d3h=m3*[v3_0(2), -v3_0(1)];

d4h=m1*[-r1_0(2), r1_0(1)];

d5h=m2*[-r2_0(2), r2_0(1)];

d6h=m3*[-r3_0(2), r3_0(1)];

%The 8X13 top half ’TH’ of Df is

TH=[UR, [v1_tau; v2_tau; g1; g2]];

%The bottom 5X13 submatrix ’BH’ is

BH= [a*I, b*I, c*I, O, O, O, [0;0];

O, O, O, a*I, b*I, c*I, [0;0];

d1h, d2h, d3h, d4h, d5h, d6h, 0];

%These compose Df which is now computed to be;

Df=[TH; BH];

%This must now be inverted

DfInv=inv(Df);

%Now the Newton step can be maid;

x_n= x_n - DfInv*fx_n;

%Then prepair for the next itteration

tau=x_n(13);

xStar0=x_n(1:12);

end

%--------------------------------------------------------------------------
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%----------------------------------Results---------------------------------

%--------------------------------------------------------------------------

tau_target=tau

T=3*tau

xStar0_target=xStar0

RoughError=norm(fx_n)

%Compute the state transition matrix for the target trajectory

X=stateTrans(t0,T,xStar0_target,G,m1,m2,m3);

%Test Determinant

detTest=det(X)

%Compute eigenvalues and eigenvectors

[eigenVectors,eigenvalues]=eig(X);

outputEigenVect=eigenVectors

outputeigenvalues=eigenvalues

%moduli of eigenvalues

moduli=[norm(eigenvalues(1,1));

norm(eigenvalues(2,2));

norm(eigenvalues(3,3));

norm(eigenvalues(4,4));

norm(eigenvalues(5,5));

norm(eigenvalues(6,6));

norm(eigenvalues(7,7));

norm(eigenvalues(8,8));

norm(eigenvalues(9,9));

norm(eigenvalues(10,10));

norm(eigenvalues(11,11));

norm(eigenvalues(12,12))]

%real parts of eigenvalues

realParts=[real(eigenvalues(1,1));

real(eigenvalues(2,2));

real(eigenvalues(3,3));

real(eigenvalues(4,4));

real(eigenvalues(5,5));

real(eigenvalues(6,6));

real(eigenvalues(7,7));

real(eigenvalues(8,8));

real(eigenvalues(9,9));

real(eigenvalues(10,10));

real(eigenvalues(11,11));

real(eigenvalues(12,12))]
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%Integrate the system with the target conditions;

tspan=[t0, 6*tau_target];

options=odeset(’RelTol’,1e-13,’AbsTol’,1e-22);

[t,xCoreography]=ode113(’planarNbody’,tspan,xStar0_target’,options,[],G,m1,m2,m3,N);

%__________________________________________________________________________

%--------------------------Constants of Motion-----------------------------

%__________________________________________________________________________

%The functions below were writen for the N body in three dimensions.

%Rather than rewriting them just make ’y’ the system which is equal

%to xCoreography in the xy plane and equal to zeros in the z direction

A=size(xCoreography) %vector containing (rows,columns)

timeMax=A(1,1) %number of rows of y is number of time steps

Mass=mass;

y(1:timeMax,1:2)=xCoreography(1:timeMax,1:2);

y(1:timeMax,3)=zeros(1:timeMax,1);

y(1:timeMax,4:5)=xCoreography(1:timeMax,3:4);

y(1:timeMax,6)=zeros(1:timeMax,1);

y(1:timeMax,7:8)=xCoreography(1:timeMax,5:6);

y(1:timeMax,9)=zeros(1:timeMax,1);

y(1:timeMax,10:11)=xCoreography(1:timeMax,7:8);

y(1:timeMax,12)=zeros(1:timeMax,1);

y(1:timeMax,13:14)=xCoreography(1:timeMax,9:10);

y(1:timeMax,15)=zeros(1:timeMax,1);

y(1:timeMax,16:17)=xCoreography(1:timeMax,11:12);

y(1:timeMax,18)=zeros(1:timeMax,1);

%Energy: (T-U)(t)

%Potential Energy: U(t)

U=0;

for i=1:timeMax

S=0; %Initialize S

for j=1:N

s=0;

for k=1:N

Rjk=(y(i,3*j-2)-y(i,3*k-2))^2+(y(i,3*j-1)-y(i,3*k-1))^2+(y(i,3*j)-y(i,3*k))^2

if k~=j
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s=s+Mass(1,k)/[sqrt(Rjk)];

else

s=s+0;

end

end

S=S+Mass(1,j)*s;

end

U(i)=(G/2)*S;

end

%Kenetic Energy; T(t)

T=0;

for i=1:timeMax

S=0; %Initialize S

for j=1:N

S=S+Mass(1,j)*[(y(i,3*N+(3*j-2)))^2+(y(i,3*N+(3*j-1)))^2+(y(i,3*N+(3*j)))^2];

end

T(i)=S/2;

end

%Tenth integral; Energy E(t)

E=0;

for i=1:timeMax

E(i)=T(i)-U(i);

end

%Aux Quanties

%I or moment of inerita

I=0;

for i=1:timeMax

S=0; %Initialize S

for j=1:N

S=S+Mass(1,j)*[(y(i,3*j-2))^2+(y(i,3*j-1))^2+(y(i,3*j))^2];

end

I(i)=S;

end

%d/dt(I)

Idot=0;

for i=1:timeMax

S=0; %Initialize S

for j=1:N
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S=S+Mass(1,j)*[y(i,3*N+(3*j-2))*y(i,3*j-2)+y(i,3*N+(3*j-1))*y(i,3*j-1)+y(i,3*N+(3*j))

end

Idot(i)=S*2;

end

%d^2/(dt)^2(I)

Idotdot=0;

for i=1:timeMax

Idotdot(i)=2*T(i)+2*E(i);

end

%Change in Energy. If integration is perfect then this is always zero.

%Its deviation from zero measures the solutions deviation from the real

%one.

%deltaE

deltaE=0;

deltaE(1)=0;

for i=2:timeMax

deltaE(i)=E(i)-E(1);

end

%---------------------------------Plotting---------------------------------

%Plotting

plot(xCoreography(:,1), xCoreography(:,2),’r’, xCoreography(:,3), xCoreography(:,4),’b’, xCoreography(:,5)

grid on

xlabel(’x axis’), ylabel(’y axis’)

%Plotting the integrals

%plot(t(1:timeMax),I(1:timeMax))

This program is necessary only to run the coreography program and is in-
cluded only for completeness.

function ydot=planarNdody(t,y,options,flag,G,m1,m2,m3,N)

%code solves the planar N-Body problem

M=m1+m2+m3; %Total mass

Mass=[m1 m2 m3]; %Vector of Masses
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%Initialize the variables

acc=0;

s1=0;

s2=0;

s3=0;

%Compute the elements of the n-body vector field

for i=1:N

for j=1:N

Rij=(y(2*i-1)-y(2*j-1))^2+(y(2*i)-y(2*j))^2;

%compute the three components of acceleration i

if j~=i

s1=s1+(Mass(1,j)/(sqrt(Rij))^3)*(y(2*j-1)-y(2*i-1));

s2=s2+(Mass(1,j)/(sqrt(Rij))^3)*(y(2*j)-y(2*i));

else

s1=s1+0;

s2=s2+0;

end

end

acc(2*i-1)=G*s1;

acc(2*i)=G*s2;

s1=0;

s2=0;

end

%Store the accelerations

accelerations=0;

accelerations=acc;

%enter the velociety components

velocities=0;

for i=1:(2*N)

velocities(i)=y(2*N+i);

end

%constructs a vector whose first 3*N entries are the velocities and whose

%last 3*N entries are the accelerations

c=0;

c(1:2*N,1)=velocities;

c(2*N+1:4*N,1)=accelerations;

ydot=c;

50



References

[A] Methods of Applied Mathematics, Unpublished Notes:
www.math.utexas.edu/ arbogast/

[C] Alain Chenciner, Richard Montgomery, “ A Remarkable peri-
odic solution of the three-body problem in the case of equal
masses”, Annals of Mathematics, 152 (2000), 881-901

[CH] Ward Cheney, Analysis for Applied Mathematics, Springer

[GR] Marian Gidea, Clark Robinson, “Symbolic Dynamics for Transi-
tion Tori-II”, Qualitative Theory of Dynamical Systems 1, 1-14
(2000) Article No.1

[HS] Morris W. Hirsch, Stephen Smale, Differential Equations, Dy-
namical Systems, and Linear Algebra, Academic Press

[MH] K.R. Meyer, G.R. Hall, Introduction to Hamiltonian Dynamical
Systems and the N-body Problem, Springer-Verlag

[M] Richard Montgomery, “A New Solution to the Three-Body
Problem”, Notices of the AMS, May 2001, 471-481

[R] Clark Robinson, Dynamical Systems: Stability, Symbolic Dy-
namics, and Chaos, Second Edition, CRC Press, Boca Raton
Florida, 1999

[KZ] Tomasz Kapela, Piotr Zgliczynski, Preprint

51


